
C++ tutorial for C users

This text is aimed at C users who wish to learn C++. It is also interesting for experienced C++ users
who leaved out some features of the language. The possibilities of C++ are briefly enunciated and
illustrated. When you will try to use them for your own programs you will encounter a lot of problems
and compilation errors. Come back to this text and look carefully at the examples. Make use of the
help files of your development environment. Do not hesitate to copy the examples from this text and
paste them inside your development environment in order to test and modify them.

You can use / / to type a remark :

#include <iostream.h> // This library is often used

void main () // The program's main routine.

{

 double a; // Declaration of variable a.

 a = 456;

 a = a + a * 21.5 / 100; // A calculation.

 cout << a; // Display the content of a.

}

Input from keyboard and output to screen can be performed through cout << and cin >> :

#include <iostream.h>

void main()

{

1 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 int a; // a is an integer variable

 char s [100]; // s points to a sring of 99 characters

 cout << "This is a sample program." << endl;

 cout << endl; // Line feed (end of line)

 cout << "Type your age : ";

 cin >> a;

 cout << "Type your name : ";

 cin >> s;

 cout << endl;

 cout << "Hello " << s << " you're " << a << " old." << endl;

 cout << endl << endl << "Bye !" << endl;

}

Variables can be declared everywhere :

#include <iostream.h>

void main ()

{

 double a;

 cout << "Hello, this is a test program." << endl;

 cout << "Type parameter a : ";

 cin >> a;

2 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 a = (a + 1) / 2;

 double c;

 c = a * 5 + 1;

 cout << "c contains : " << c << endl;

 int i, j;

 i = 0;

 j = i + 1;

 cout << "j contains : " << j << endl;

}

A variable can be initialised by a calculation :

#include <iostream.h>

void main ()

{

 double a = 12 * 3.25;

 double b = a + 1.112;

 cout << "a contains : " << a << endl;

 cout << "b contains : " << b << endl;

 a = a * 2 + b;

 double c = a + b * a;

3 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "c contains : " << c << endl;

}

Like in C, variables can be encapsulated between hooks :

#include <iostream.h>

void main()

{

 double a;

 cout << "Type a number : ";

 cin >> a;

 {

 int a = 1;

 a = a * 10 + 4;

 cout << "Local number : " << a << endl;

 }

 cout << "You typed : " << a << endl;

}

C++ allows to declare a variable inside the for loop declaration. It's like if the variable had
been declared just before the loop :

#include <iostream.h>

4 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

void main ()

{

 for (int i = 0; i < 4; i++)

 {

 cout << i << endl;

 }

 cout << "i contains : " << i << endl;

 for (i = 0; i < 4; i++)

 {

 for (int i = 0; i < 4; i++) // we're between

 { // previous for's hooks

 cout << i;

 }

 cout << endl;

 }

}

A global variable can be accessed even if another variable with the same name has been
declared inside the function :

#include <iostream.h>

double a = 128;

void main ()

{

 double a = 256;

 cout << "Local a : " << a << endl;

5 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "Global a : " << ::a << endl;

}

It is possible to make one variable be another :

#include <iostream.h>

void main ()

{

 double a = 3.1415927;

 double &b = a; // b IS a

 b = 89;

 cout << "a contains : " << a << endl; // Displays 89.

}

(If you are used at pointers and absolutely want to know what happens, simply think double
&b = a is translated to double *b = &a and all subsequent b are replaced by *b.)

The value of REFERENCE b cannot be changed afther its declaration. For example you cannot
write, a few lines further, &b = c expecting now b IS c. It won't work.

Everything is said on the declaration line of b. Reference b and variable a are married on that
line and nothing will separate them.

References can be used to allow a function to modify a calling variable :

#include <iostream.h>

void change (double &r, double s)

6 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

{

 r = 100;

 s = 200;

}

void main ()

{

 double k, m;

 k = 3;

 m = 4;

 change (k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

}

If you are used at pointers in C and wonder how exactly the program above works, here is how
the C++ compiler translates it (those who are not used at pointers, please skip this ugly piece of
code) :

#include <iostream.h>

void change (double *r, double s)

{

 *r = 100;

 s = 200;

}

void main ()

{

 double k, m;

7 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 k = 3;

 m = 4;

 change (&k, m);

 cout << k << ", " << m << endl; // Displays 100, 4.

}

A reference can be used to let a function return a variable :

#include <iostream.h>

double &biggest (double &r, double &s)

{

 if (r > s) return r;

 else return s;

}

void main ()

{

 double k = 3;

 double m = 7;

 cout << "k : " << k << endl;

 cout << "m : " << m << endl;

 cout << endl;

 biggest (k, m) = 10;

 cout << "k : " << k << endl;

 cout << "m : " << m << endl;

8 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << endl;

 biggest (k, m) ++;

 cout << "k : " << k << endl;

 cout << "m : " << m << endl;

 cout << endl;

}

Again, provided you're used at pointer arithmetics and if you wonder how the program above
works, just think the compiler translated it into the following standard C program :

#include <iostream.h>

double *biggest (double *r, double *r)

{

 if (*r > *s) return r;

 else return s;

}

void main ()

{

 double k = 3;

 double m = 7;

 cout << "k : " << k << endl;

 cout << "m : " << m << endl;

 cout << endl;

 (*(biggest (&k, &m))) = 10;

 cout << "k : " << k << endl;

9 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "m : " << m << endl;

 cout << endl;

 (*(biggest (&k, &m))) ++;

 cout << "k : " << k << endl;

 cout << "m : " << m << endl;

 cout << endl;

}

To end with, for people who have to deal with pointers yet do not like it, references are very
useful to un-pointer variables :

#include <iostream.h>

double *silly_function () // This function returns a pointer to a double

{

 static double r = 342;

 return &r;

}

void main()

{

 double *a;

 a = silly_function();

 double &b = *a; // Now b IS the double towards which a points !

 b += 1; // Great !

 b = b * b; // No need to write *a everywhere !

 b += 4;

10 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "Content of *a, b, r : " << b << endl;

}

If they contain just simple lines of code, use no for loops or the like, C++ functions can be
declared INLINE. This means their code will be inserted right everywhere the function is used.
That's somehow like a macro. Main advantage is the program will be faster. A little drawback
is it will be bigger, because the full code of the function was inserted everywhere it is used :

#include <iostream.h>

#include <math.h>

inline double hypothenuse (double a, double b)

{

 return sqrt (a * a + b * b);

}

void main ()

{

 double k = 6, m = 9;

 // Next two lines produce exactly the same code :

 cout << hypothenuse (k, m) << endl;

 cout << sqrt (k * k + m * m) << endl;

}

You know the classical structures of C : for, if, do, while, switch... C++ adds one more structure
named EXCEPTION :

11 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

#include <math.h>

void main ()

{

 int a, b;

 cout << "Type a number : ";

 cin >> a;

 cout << endl;

 try

 {

 if (a > 100) throw 100;

 if (a < 10) throw 10;

 throw a / 3;

 }

 catch (int result)

 {

 cout << "Result is : " << result << endl;

 b = result + 1;

 }

 cout << "b contains : " << b << endl;

 cout << endl;

 // another example of exception use :

 char zero[] = "zero";

 char pair[] = "pair";

 char notprime[] = "not prime";

 char prime[] = "prime";

12 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 try

 {

 if (a == 0) throw zero;

 if ((a / 2) * 2 == a) throw pair;

 for (int i = 3; i <= sqrt (a); i++)

 {

 if ((a / i) * i == a) throw notprime;

 }

 throw prime;

 }

 catch (char *conclusion)

 {

 cout << "The number you typed is "<< conclusion << endl;

 }

 cout << endl;

}

It is possible to define default parameters for functions :

#include <iostream.h>

double test (double a, double b = 7)

{

 return a - b;

}

void main ()

{

 cout << test (14, 5) << endl;

 cout << test (14) << endl;

13 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

}

One important advantage of C++ is the "operators overload". Different functions can have the
same name provided something allows to distinguish between them : number of parameters,
type of parameters...

#include <iostream.h>

double test (double a, double b)

{

 return a + b;

}

int test (int a, int b)

{

 return a - b;

}

void main ()

{

 double m = 5, n = 3;

 int k = 5, p = 3;

 cout << test(m, n) << " , " << test(k, p) << endl;

}

The "operators overload" can be used to define the basic symbolic operators for new sorts of
parameters :

14 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

struct vector

{

 double x;

 double y;

};

vector operator * (double a, vector b)

{

 vector r;

 r.x = a * b.x;

 r.y = a * b.y;

 return r;

}

void main ()

{

 vector k, m; // No need to type "struct vector"

 k.x = 2; // Keep cool, soon you'll be able

 k.y = -1; // to write k = vector (45, -4).

 m = 3.1415927 * k; // Magic !

 cout << "(" << m.x << ", " << m.y << ")" << endl;

}

Besides multiplication, 43 other basic C++ operators can be overloaded, including +=, ++, the
matrix [], and so on...

The operation cout << is an overload of the binary shift of integers. That way the << symbol is
used a completely different way. It is thus possible to define the output of vectors :

15 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

struct vector

{

 double x;

 double y;

};

ostream& operator << (ostream& o, vector a)

{

 o << "(" << a.x << ", " << a.y << ")";

 return o;

}

void main ()

{

 vector a;

 a.x = 35;

 a.y = 23;

 cout << a << endl;

}

The keywords new and delete can be used to allocate and deallocate memory. They are much
more sweet than the functions malloc and free from standard C :

#include <iostream.h>

#include <string.h>

16 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

void main ()

{

 double *d; // d is a variable whose purpose

 // is to contain the address of a

 // zone where a double is located

 d = new double; // new allocates a zone of memory

 // large enough to contain a double

 // and returns its address.

 // That address is stored in d.

 *d = 45.3; // The number 45.3 is stored

 // inside the memory zone

 // whose address is given by d.

 cout << "Type a number : ";

 cin >> *d;

 *d = *d + 5;

 cout << "Result : " << *d << endl;

 delete (d); // delete deallocates the

 // zone of memory whose address

 // is given by pointer d.

 // Now we can no more use that zone.

 d = new double[15]; // allocates a zone for an array

 // of 15 doubles

 d[0] = 4456;

 d[1] = d[0] +567;

17 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "Content of d[1] : " << d[1] << endl;

 delete (d);

 int n = 30;

 d = new double[n]; // new can be used to allocate an

 // array of random size.

 for (int i = 0; i < n; i++)

 {

 d[i] = i;

 }

 delete (d);

 char *s;

 s = new char[100];

 strcpy (s, "Hello !");

 cout << s << endl;

 delete (s);

}

What is a CLASS ? Well, that's a struct yet with more possibilities. METHODS can be
defined. They are C++ functions dedicated to the class. Here is an example of such a class
definition :

18 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 double surface ()

 {

 double s;

 s = x * y;

 if (s < 0) s = -s;

 return s;

 }

};

void main(void)

{

 vector a;

 a.x = 3;

 a.y = 4;

 cout << "The surface of a : " << a.surface() << endl;

}

In the example above, a is an INSTANCE of the class "vector".

Just like a function, a method can be an overload of any C++ operator, have any number of
parameters (yet one parameter is always implicit : the instance it acts upon), return any type of

19 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

parameter, or return no parameter at all.

A method is allowed to change the variables of the instance it is acting upon :

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 vector its_oposite()

 {

 vector r;

 r.x = -x;

 r.y = -y;

 return r;

 }

 void be_oposited()

 {

 x = -x;

 y = -y;

 }

 void be_calculated (double a, double b, double c, double d)

 {

 x = a - c;

 y = b - d;

 }

20 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 vector operator * (double a)

 {

 vector r;

 r.x = x * a;

 r.y = y * a;

 return r;

 }

};

void main (void)

{

 vector a, b;

 a.x = 3;

 b.y = 5;

 b = a.its_oposite();

 cout << "Vector a : " << a.x << ", " << a.y << endl;

 cout << "Vector b : " << b.x << ", " << b.y << endl;

 b.be_oposited();

 cout << "Vector b : " << b.x << ", " << b.y << endl;

 a.be_calculated (7, 8, 3, 2);

 cout << "Vector a : " << a.x << ", " << a.y << endl;

 a = b * 2;

 cout << "Vector a : " << a.x << ", " << a.y << endl;

 a = b.its_oposite() * 2;

 cout << "Vector a : " << a.x << ", " << a.y << endl;

21 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "x of oposite of a : " << a.its_oposite().x << endl;

}

Very special and essential methods are the CONSTRUCTORS and DESTRUCTORS. They are
automatically called whenever an instance of a class is created or destroyed.

The constructor will initialize the variables of the instance, do some calculation, allocate some
memory for the instance, output some text... whatever is needed.

Here is an example of a class definition with two overloaded constructors.

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 vector () // same name as class

 {

 x = 0;

 y = 0;

 }

 vector (double a, double b)

 {

 x = a;

 y = b;

 }

22 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

};

void main ()

{

 vector k; // vector () is called

 cout << "vector k : " << k.x << ", " << k.y << endl << endl;

 vector m (45, 2); // vector (double, double) is called

 cout << "vector m : " << m.x << ", " << m.y << endl << endl;

 k = vector (23, 2); // vector created, copied to k, then

erased

 cout << "vector k : " << k.x << ", " << k.y << endl << endl;

}

It is a good practice to try not to overload the constructors. Best is to declare only one
constructor and give it default parameters wherever possible :

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

23 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 x = a;

 y = b;

 }

};

void main ()

{

 vector k;

 cout << "vector k : " << k.x << ", " << k.y << endl << endl;

 vector m (45, 2);

 cout << "vector m : " << m.x << ", " << m.y << endl << endl;

 vector p (3);

 cout << "vector p : " << p.x << ", " << p.y << endl << endl;

}

The destructor is often not necessary. You can use it to do some calculation whenever an
instance is destroyed or output some text for debugging. But if variables of the instance point
towards some allocated memory then the role of the destructor is essential : it must free that
memory ! Here is an example of such an application :

#include <iostream.h>

#include <string.h>

class person

{

public:

 char *name;

 int age;

 person (char *n = "no name", int a = 0)

24 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 {

 name = new char[100]; // better than malloc !

 strcpy (name, n);

 age = a;

 cout << "Instance initialized, 100 bytes allocated" << endl;

 }

 ~person () // The destructor

 {

 delete (name); // instead of free !

 cout << "Instance going to be deleted, 100 bytes freed" << endl;

 }

};

void main ()

{

 cout << "Hello !" << endl << endl;

 person a;

 cout << a.name << ", age " << a.age << endl << endl;

 person b ("John");

 cout << b.name << ", age " << b.age << endl << endl;

 b.age = 21;

 cout << b.name << ", age " << b.age << endl << endl;

 person c ("Miki", 45);

 cout << c.name << ", age " << c.age << endl << endl;

 cout << "Bye !" << endl << endl;

}

25 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

If you cast an object like a vector, everything will happen all right. For example if vector k
contains (4, 7), afther the cast m = k the vector m will contain (4, 7) too. Now suppose you're
playing with objects like the person class above. If you cast such person object p, r by writing
p = r it is necesary that some function does the necessary work to make p be a correct copy of r.
Otherwise the result will be catastrophic; a mess of pointers and lost data. The method that will
do that job is the COPY CONSTRUCTOR :

#include <iostream.h>

#include <string.h>

class person

{

public:

 char *name;

 int age;

 person (char *n = "no name", int a = 0)

 {

 name = new char[100];

 strcpy (name, n);

 age = a;

 }

 person (person &s) // The COPY CONSTRUCTOR

 {

 strcpy (name, s.name);

 age = s.age;

 }

 ~person ()

 {

 delete (name);

 }

};

26 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

void main ()

{

 person p;

 cout << p.name << ", age " << p.age << endl << endl;

 person k ("John", 56);

 cout << k.name << ", age " << k.age << endl << endl;

 p = k;

 cout << p.name << ", age " << p.age << endl << endl;

 p = person ("Bob", 10);

 cout << p.name << ", age " << p.age << endl << endl;

}

In all the examples above the methods are defined inside the class definition. That makes them
automatically be inline methods.

If a method cannot be inline, if you do not want it to be inline or if you want the class
definition contain the minimum of information, then you must just put the prototype of the
method inside the class and define the method below the class :

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 double surface(); // The ; and no {} shows it is a prototype

27 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

};

double vector::surface()

{

 double s = 0;

 for (double i = 0; i < x; i++)

 {

 s = s + y;

 }

 return s;

}

void main ()

{

 vector k;

 k.x = 4;

 k.y = 5;

 cout << "Surface : " << k.surface() << endl;

}

When a method is applied to an instance, that method may use the instance's variables, modify
them... But sometimes it is necessary to know the address of the instance. No problem, the
keyword "this" is intended therefore :

#include <iostream.h>

#include <math.h>

class vector

{

28 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double module()

 {

 return sqrt (x * x + y * y);

 }

 void set_length (double a = 1)

 {

 double length;

 length = this->module();

 x = x / length * a;

 y = y / length * a;

 }

};

void main ()

{

 vector c (3, 5);

 cout << "The module of vector c : " << c.module() << endl;

 c.set_length(2); // Transforms c in a vector of size 2.

29 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "The module of vector c : " << c.module() << endl;

 c.set_length(); // Transforms b in an unitary vector.

 cout << "The module of vector c : " << c.module() << endl;

}

Of course it is possible to declare arrays of objects :

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double module ()

 {

 return sqrt (x * x + y * y);

 }

};

30 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

void main ()

{

 vector s[1000];

 vector t[3] = {vector(4, 5), vector(5, 5), vector(2, 4)};

 s[23] = t[2];

 cout << t[0].module() << endl;

}

Here is an example of a full class declaration :

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double = 0, double = 0);

 vector operator + (vector);

 vector operator - (vector);

 vector operator - ();

 vector operator * (double a);

 double module();

 void set_length (double = 1);

31 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

};

vector::vector (double a, double b)

{

 x = a;

 y = b;

}

vector vector::operator + (vector a)

{

 return vector (x + a.x, y + a.y);

}

vector vector::operator - (vector a)

{

 return vector (x - a.x, y - a.y);

}

vector vector::operator - ()

{

 return vector (-x, -y);

}

vector vector::operator * (double a)

{

 return vector (x * a, y * a);

}

double vector::module()

{

 return sqrt (x * x + y * y);

}

void vector::set_length (double a)

{

32 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 double length = this->module();

 x = x / length * a;

 y = y / length * a;

}

ostream& operator << (ostream& o, vector a)

{

 o << "(" << a.x << ", " << a.y << ")";

 return o;

}

void main ()

{

 vector a;

 vector b;

 vector c (3, 5);

 a = c * 3;

 a = b + c;

 c = b - c + a + (b - a) * 7;

 c = -c;

 cout << "The module of vector c : " << c.module() << endl;

 cout << "The content of vector a : " << a << endl;

 cout << "The oposite of vector a : " << -a << endl;

 c.set_length(2); // Transforms c in a vector of size 2.

 a = vector (56, -3);

 b = vector (7, c.y);

 b.set_length(); // Transforms b in an unitary vector.

33 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "The content of vector b : " << b << endl;

 double k;

 k = vector(1, 1).module(); // k will contain 1.4142.

 cout << "k contains : " << k << endl;

}

It is also possible to define the sum of vectors without mentioning it inside the vector class
definition. Then it will not be a method of the class vector. Just a function that uses vectors :

vector operator + (vector a, vector b)

{

 return vector (a.x + b.x, a.y + b.y);

}

In the example above of a full class definition, the multiplication of a vector by a double is
defined. Suppose we want the multiplication of a double by a vector be defined too. Then we
must to write an isolated function outside the class :

vector operator * (double a, vector b)

{

 return vector (a * b.x, a * b.y);

}

Of course the keywords new and delete work for class instances too. What's more, new
automatically calls the constructor in order to initialize the objects, and delete automatically
calls the destructor before deallocating the zone of memory the instance variables take :

34 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double = 0, double = 0);

 vector operator + (vector);

 vector operator - (vector);

 vector operator - ();

 vector operator * (double);

 double module();

 void set_length (double = 1);

};

vector::vector (double a, double b)

{

 x = a;

 y = b;

}

vector vector::operator + (vector a)

{

 return vector (x + a.x, y + a.y);

}

vector vector::operator - (vector a)

{

35 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 return vector (x - a.x, y - a.y);

}

vector vector::operator - ()

{

 return vector (-x, -y);

}

vector vector::operator * (double a)

{

 return vector (a * x, a * y);

}

double vector::module()

{

 return sqrt (x * x + y * y);

}

void vector::set_length (double a)

{

 vector &the_vector = *this;

 double length = the_vector.module();

 x = x / length * a;

 y = y / length * a;

}

ostream& operator << (ostream& o, vector a)

{

 o << "(" << a.x << ", " << a.y << ")";

 return o;

}

36 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

void main ()

{

 vector c (3, 5);

 vector *r; // r is a pointer to a vector.

 r = new vector; // new allocates the memory necessary

 cout << *r << endl; // to hold a vectors' variable,

 // calls the constructor who will

 // initialize it to 0, 0. Then finally

 // new returns the address of the vector.

 r->x = 94;

 r->y = 345;

 cout << *r << endl;

 *r = vector (94, 343);

 cout << *r << endl;

 *r = *r - c;

 r->set_length(3);

 cout << *r << endl;

 *r = (-c * 3 + -*r * 4) * 5;

 cout << *r << endl;

 delete (r); // Calls the vector destructor then

 // frees the memory.

 r = &c; // r points towards vector c

 cout << *r << endl;

 r = new vector (78, 345); // Creates a new vector.

 cout << *r << endl; // The constructor will initialise

37 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 // the vector's x and y at 78 and 345

 cout << "x component of r : " << r->x << endl;

 cout << "x component of r : " << (*r).x << endl;

 delete (r);

 r = new vector[4]; // creates an array of 4 vectors

 r[3] = vector (4, 5);

 cout << r[3].module() << endl;

 delete (r); // deletes the array

 int n = 5;

 r = new vector[n]; // Cute !

 r[1] = vector (432, 3);

 cout << r[1] << endl;

 delete (r);

}

A class' variable can be declared STATIC. Then only one instance of that variable exists,
shared by all instances of the class :

#include <iostream.h>

class vector

{

public:

38 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 double x;

 double y;

 static int count;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 count = count + 1;

 }

 ~vector()

 {

 count = count - 1;

 }

};

void main ()

{

 vector::count = 0;

 cout << "Number of vectors :" << endl;

 vector a;

 cout << vector::count << endl;

 vector b;

 cout << vector::count << endl;

 vector *r, *u;

 r = new vector;

 cout << vector::count << endl;

39 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 u = new vector;

 cout << a.count << endl;

 delete (r);

 cout << vector::count << endl;

 delete (u);

 cout << b.count << endl;

}

A class variable can also be CONSTANT. That's just like static, except it is alocated a value
inside the class declaration and that value may not be modified :

#include <iostream.h>

class vector

{

public:

 double x;

 double y;

 const double pi = 3.1415927;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double cilinder_volume ()

 {

 return x * x / 4 * pi * y;

40 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 }

};

void main(void)

{

 cout << "The value of pi : " << vector::pi << endl << endl;

 vector k (3, 4);

 cout << "Result : " << k.cilinder_volume() << endl;

}

A class may be DERIVED from another class. The new class INHERITS the variables and
methods of the BASE CLASS. Additional variables and/or methods can be added :

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double module()

41 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 {

 return sqrt (x*x + y*y);

 }

 double surface()

 {

 return x * y;

 }

};

class trivector : public vector // trivector is derived from vector

{

public:

 double z; // added to x and y from vector

 trivector (double m=0, double n=0, double p=0) : vector (m, n)

 {

 z = p; // Vector constructor will

 } // be called before trivector

 // constructor, with parameters

 // m and n.

 trivector (vector a) // What to do if a vector is

 { // cast to a trivector

 x = a.x;

 y = a.y;

 z = 0;

 }

 double module () // define module() for trivector

 {

 return sqrt (x*x + y*y + z*z);

 }

42 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 double volume ()

 {

 return this->surface() * z; // or x * y * z

 }

};

void main()

{

 vector a (4, 5);

 trivector b (1, 2, 3);

 cout << "a (4, 5) b (1, 2, 3) *r = b" << endl << endl;

 cout << "Surface of a : " << a.surface() << endl;

 cout << "Volume of b : " << b.volume() << endl;

 cout << "Surface of base of b : " << b.surface() << endl;

 cout << "Module of a : " << a.module() << endl;

 cout << "Module of b : " << b.module() << endl;

 cout << "Module of base of b : " << b.vector::module() << endl;

 trivector k;

 k = a; // thanks to trivector(vector) definition

 // copy of x and y, k.z = 0

 vector j;

 j = b; // copy of x and y. b.z leaved out

 vector *r;

 r = &b;

 cout << "Surface of r : " << r->surface() << endl;

 cout << "Module of r : " << r->module() << endl;

}

43 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

In the program above, r->module() calculates the vector module, using x and y, because r has
been declared a vector pointer. The fact r actually points towards a trivector is not taken into
account. If you want the program to check the type of the pointed object and choose the
appropriate method, then you must declare that method VIRTUAL inside the base class.

(If at least one of the methods of the base class is virtual then a "header" of 4 bytes is added to
every instance of the classes. This allows the program to determine towards what a vector
actually points.)

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 virtual double module()

 {

 return sqrt (x*x + y*y);

 }

};

class trivector : public vector

{

public:

 double z;

44 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 trivector (double m = 0, double n = 0, double p = 0)

 {

 x = m; // Just for the game,

 y = n; // here I do not call the vector

 z = p; // constructor and I make the

 } // trivector constructor do the

 // whole job. Same result.

 double module ()

 {

 return sqrt (x*x + y*y + z*z);

 }

};

void test (vector &k)

{

 cout << "Test result : " << k.module() << endl;

}

void main()

{

 vector a (4, 5);

 trivector b (1, 2, 3);

 cout << "a (4, 5) b (1, 2, 3)" << endl << endl;

 vector *r;

 r = &a;

 cout << "module of vector a : " << r->module() << endl;

 r = &b;

 cout << "module of trivector b : " << r->module() << endl;

45 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 test (a);

 test (b);

 vector &s = b;

 cout << "module of trivector b : " << s.module() << endl;

}

Maybe you wonder if a class can be derived from more than one base class. Answer is yes :

#include <iostream.h>

#include <math.h>

class vector

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double surface()

 {

 return fabs (x * y);

 }

46 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

};

class number

{

public:

 double z;

 number (double a)

 {

 z = a;

 }

 int is_negative ()

 {

 if (z < 0) return 1;

 else return 0;

 }

};

class trivector : public vector, public number

{

public:

 trivector(double a=0, double b=0, double c=0) : vector(a,b), number(c)

 {

 } // The trivector constructor calls the vector

 // constructor, then the number constructor,

 // and in this example does nothing more.

 double volume()

 {

 return fabs (x * y * z);

 }

47 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

};

void main()

{

 trivector a(2, 3, -4);

 cout << a.volume() << endl;

 cout << a.surface() << endl;

 cout << a.is_negative() << endl;

}

Class derivation allows to construct "more complicated" classes build above other classes.
There is another application of class derivation : allow the programmer to write generic
functions.

Suppose you define a base class with no variables. It makes no sense to use instances of that
class inside your program. But you write a function whose purpose is to sort instances of that
class. Well, that function will be able to sort any types of objects provided they belong to a class
derived from that base class ! The only condition is that inside every derived class definition all
methods the sort function needs are correctly defined :

#include <iostream.h>

#include <math.h>

class octopus

{

public :

 virtual double module() = 0; // = 0 implies function is not

 // defined. This makes instances

 // of this class cannot be declared.

};

double biggest_module (octopus &a, octopus &b, octopus &c)

{

48 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 double r = a.module();

 if (b.module() > r) r = b.module();

 if (c.module() > r) r = c.module();

 return r;

}

class vector : public octopus

{

public:

 double x;

 double y;

 vector (double a = 0, double b = 0)

 {

 x = a;

 y = b;

 }

 double module()

 {

 return sqrt (x * x + y * y);

 }

};

class number : public octopus

{

public:

 double n;

 number (double a = 0)

 {

 n = a;

49 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 }

 double module()

 {

 if (n >= 0) return n;

 else return -n;

 }

};

void main ()

{

 vector k (1,2), m (6,7), n (100, 0);

 number p (5), q (-3), r (-150);

 cout << biggest_module (k, m, n) << endl;

 cout << biggest_module (p, q, r) << endl;

 cout << biggest_module (p, q, n) << endl;

}

Perhaps you think "okay, that's a good idea to derive classes from the class octopus because
that way I can apply to instances of my classes methods and function that were designed a
generic way for the octopus class. But what if there exists another base class, named cuttlefish,
which has very interesting methods and functions too ? Do I have to make my choice between
octopus and cuttlefish when I want to derive a class ?" No, of course. A derived class can be at
the same time derived from octopus and from cuttlefish. That's POLYMORPHISM. The
derived class simply has to define the methods necessary for octopus together with the methods
necessary for cuttlefish :

class octopus

{

 virtual double module() = 0;

};

50 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

class cuttlefish

{

 virtual int test() = 0;

};

class vector : public octopus, public cuttlefish

{

 double x;

 double y;

 double module ()

 {

 return sqrt (x * x + y * y);

 }

 int test ()

 {

 if (x > y) return 1;

 else return 0;

 }

}

Probably you wonder what all those public: keywords mean. They mean the variables or the
methods below them may be accessed and used everywhere in the program.

If you want them to be accessible only to methods of the class AND to methods of derived
classes then you must put the keyword protected: above them.

If you want variables or methods be accessible ONLY to methods of the class then you must
put the keyword private: above them.

The fact variables or methods are declared private or protected means no function external to
the class may access or use them. That's ENCAPSULATION. If you want to give to a specific
function the right to access those variables and methods then you must include that function's
prototype inside the class definition, preceded by the keyword friend.

Now let's talk about input/output. In C++ that's a very broad subject.

Here is a program that writes to a file :

51 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

#include <iostream.h>

#include <fstream.h>

void main ()

{

 fstream f;

 f.open("c:\\test.txt", ios::out);

 f << "This is a text output to a file." << endl;

 double a = 345;

 f << "A number : " << a << endl;

 f.close();

}

Here is a program that reads from a file :

#include <iostream.h>

#include <fstream.h>

void main ()

{

 fstream f;

 char c;

 cout << "What's inside the test.txt file from";

52 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << "the C: hard disk root " << endl;

 cout << endl;

 f.open("c:\\test.txt", ios::in);

 while (! f.eof())

 {

 f.get(c); // Or c = f.get()

 cout << c;

 }

 f.close();

}

Roughly said, it is possible to do on character arrays the same operations as on files. This is
very useful to convert data or manage memory arrays.

Here is a program that writes inside a character array :

#include <iostream.h>

#include <strstrea.h>

#include <string.h>

#include <math.h>

void main ()

{

 char a[1024];

 ostrstream b(a, 1024);

 b.seekp(0); // Start from first char.

 b << "2 + 2 = " << 2 + 2 << ends; // (ends, not endl)

 // ends is simply the

 // null character '\0'

53 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << a << endl;

 double v = 2;

 strcpy (a, "A sinus : ");

 b.seekp(strlen (a));

 b << "sin (" << v << ") = " << sin(v) << ends;

 cout << a << endl;

}

A program that reads from a character string :

#include <iostream.h>

#include <strstrea.h>

#include <string.h>

void main ()

{

 char a[1024];

 istrstream b(a, 1024);

 strcpy (a, "45.656");

 double k, p;

 b.seekg(0); // Start from first character.

 b >> k;

 k = k + 1;

54 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 cout << k << endl;

 strcpy (a, "444.23 56.89");

 b.seekg(0);

 b >> k >> p;

 cout << k << ", " << p + 1 << endl;

}

This program performs formated output two different ways. Please note the width() and setw()
MODIFIERS are only effective on the next item output to the stream. The second next item
will not be influenced.

#include <iostream.h>

#include <iomanip.h>

void main ()

{

 int i;

 cout << "A list of numbers :" << endl;

 for (i = 1; i <= 1024; i *= 2)

 {

 cout.width (7);

 cout << i << endl;

 }

 cout << "A table of numbers :" << endl;

 for (i = 0; i <= 4; i++)

 {

 cout << setw(3) << i << setw(5) << i * i * i << endl;

55 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

 }

}

You now have a basic knowledge about C++. Inside good books you will learn many more
things. The file management system is very powerful. It has many other possibilities than those
illustrated here. There is also a lot more to say about classes : template classes, virtual classes...

In order to work correctly with C++ you will need a good reference book, just like you needed
one for C.

You will also need information on how C++ is used in your particular domain of activity. The
standards, the global approach, the tricks, the typical problems encountered and their
solutions...

Eric Brasseur - 23 february 1998 [Homepage]

56 of 56 12.03.99 01:19

C++ Tutorial file:///C|/Eigene Dateien/Manualz/not added/C++ Tutorial for C Users/cppcen.htm

