

C++ By Example

© 1992 by Que

All rights reserved. Printed in the United States of America. No part of this
book may be used or reproduced, in any form or by any means, or stored
in a database or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles
and reviews. Making copies of any part of this book for any purpose other
than your own personal use is a violation of United States copyright laws.
For information, address Que, 11711 N. College Ave., Carmel, IN 46032.

Library of Congress Catalog Card Number: 92-64353
ISBN: 1-56529-038-0

This book is sold as is, without warranty of any kind, either express or
implied, respecting the contents of this book, including but not limited to
implied warranties for the book’s quality, performance, merchantability,
or fitness for any particular purpose. Neither Que Corporation nor its
dealers or distributors shall be liable to the purchaser or any other person
or entity with respect to any liability, loss, or damage caused or alleged to
be caused directly or indirectly by this book.

9% 95 94 93 92 8 7 6 5 4 3 21

Interpretation of the printing code: the rightmost double-digit number is
the year of the book’s printing; the rightmost single-digit number, the
number of the book’s printing. For example, a printing code of 92-1 shows
that the first printing of the book occurred in 1992,

Publisher Book Design
Lloyd Short Scott Cook
Michele Laseau
Publishing Manager

Joseph Wikert Production Analyst
Mary Beth Wakefield
Development Editor
Stacy Hiquet Cover Design
Jean Bisesi
Production Editor
Kezia Endsley Indexer
Johnna VanHoose
Copy Editor
Bryan Gambrel Production
Caroline Roop (Book Shepherd)
Technical Editor Jeff Baker, Paula Carroll,
Tim Moore Michelle Cleary, Brook Farling,
Kate Godfrey, Bob LaRoche,
Editorial Assistants Laurie Lee, Jay Lesandrini,
Rosemarie Graham Cindy L. Phipps, Linda Seifert,
Melissa Keegan Phil Worthington

Composed in Palatino and MCPdigital typefaces by Prentice Hall Computer Publishing.
Screen reproductions in this book were created by means of the program Collage Plus
from Inner Media, Inc., Hollis, NH.

Dedication

Dr. Rick Burgess, you shaped my life. Good or bad, I’'m what | am
thanks to your help. I appreciate the many hours we’ve shared together.
G.M.P.

About the Author

Greg Perry has been a programmer and trainer for the past 14 years.
He received his first degree in computer science, then he received a
Masters degree in corporate finance. He currently is a professor of
computer science at Tulsa Junior College, as well as a computer
consultant and a lecturer. Greg Perry is the author of 11 other
computer books, including QBASIC By Example and C By Example. In
addition, he has published articles in several publications, including
PC World, Data Training, and Inside First Publisher. He has attended
computer conferences and trade shows in several countries, and is
fluent in nine computer languages.

Acknowledgments

Much thanks to Stacy Hiquet and Joseph Wikert at Prentice Hall
(Que) for trusting me completely with the direction and style of this
book. The rest of my editors: Kezia Endsley, Bryan Gambrel, and the
Technical Editor, Tim Moore, kept me on track so the readers can
have an accurate and readable text.

The Tulsa Junior College administration continues to be sup-
portive of my writing. More importantly, Diane Moore, head of our
Business Services Division, Tony Hirad, and Elaine Harris, are
friends who make teaching a joy and not a job.

As always, my beautiful bride Jayne, and my parents Glen and
Bettye Perry, are my closest daily companions. It is for them | work.

Trademark Acknowledgments

Que Corporation has made every attempt to supply trademark
information about company names, products, and services men-
tioned in this book. Trademarks indicated below were derived from
various sources. Que Corporation cannot attest to the accuracy of
this information.

AT&T is a registered trademark of American Telephone &

Telegraph Company.

FORTRAN and COBOL are trademarks of International

Business Machines Corporation (IBM).

Turbo BASIC is a registered trademark of Borland

International, Inc.

Turbo C is a registered trademark of Borland International, Inc.

Microsoft QuickC and MS-DOS are registered trademarks of

Microsoft Corporation.

ANSI is a registered trademark of American National Standards

Institute.

Overview

Introduction to C++

1 WEeICOME 10 CAt i 11
2 What IS @ Program?cccceiiiiieie e 35
3 Your First C++ Program ..o 51
4 Variables and Literalscccooeieviiiieiiiiinniee e 69
5 Character Arrays and Stringscccoceeveievievieeieencse e 99
6 Preprocessor DIreCLiVEScccccvveveiiiieie e, 113
7 Simple INPULZOULPUL.......c.ooveiirce e 133
Using C++ Operators
8 Using C++ Math Operators and Precedence.............ccccccu..... 163
9 Relational OPErators ... 185
10 Logical OPEratOrSccccveviiiieieie st sre e 207
11 Additional C++ Operatorsc.c.cococvvenninienssniecse 221
C++ Constructs
12 The While LOOP ..eoiiie et 245
13 THe TOr LOOP ...ceviiiiiieieieee e 273
14 Other LOOP OPLIONSccoovieiriiiieieeieiceie e 295
15 The switch and goto Statements.........cccccoccveceeeevnie e s, 311
16 Writing C++ FUNCLIONSc.ccviiiiicececc e, 331
Variable Scope and Modular
Programming
17 Variable SCOPE ... 353
18 PasSING VAIUESccooeiiiiiiiiccee e 379
19 Function Return Values and Prototypesccoceevevveresinnnenn, 397
20 Default Arguments and Function Overloading.................... 415

Character Input/Output and
String Functions

21 Device and Character Input/Output..........cccoovveveneiinncnnne. 431
22 Character, String, and Numeric FUNCtionscccccceevvvnen. 449

VI

VAR

VIl

Arrays and Pointers

23 INTrodUCING ATTAYS ...oveiiieeeieie e
24 ATTAY PrOCESSINGccvviiiieiieieiieie et
25 Multidimensional ArFaysccccceviviieeieiesieiie e
26 POINTEIS .ottt
27 POINTErs @aNd AITAYSocooveiieieeiee e se e s se e eesteeseesre e e sre e

Structures and File Input/Output

28 SEIUCTUIES ...t
29 ATrrays Of STTUCTUIEScoeiiiiirieeee e
30 Sequential Filescccoeiiiieieic e
31 Random-ACCESS FileScooiiiviiicc e
32 Introduction to Object-Oriented Programming

References

Memory Addressing, Binary, and Hexadecimal Review
Answers to Review QUESLIONScccceevveiec e
ASCHETaADIE ..o
C++ Precedence Table ...
Keyword and Function Reference..........ccccooevovvcviiieneinnneneen,
The Mailing List Application ...
GlOSSAIY ..ttt
INAEX et

TmMmOUOwm>

Contents

INTtrodUCtioON ... et cea e 1
Who Should Use This BOOKccccovveieiiiiie e 1

The Book’s PhiloSOphY ..o 2
Overview of ThiS BOOKoocviviiiiiiis e 2
Conventions Used in ThiS BOOKcocvevviiiiiiiii e, 5
INAEX t0 the ICONScoveiieecce e 5
Margin Graphics (Book Diagrams)cccccevvvevverivennesinenne. 6
Companion DisK OFfer ..o 8

I Introduction to C++

1 Welcome tO CHt i 11
What C++ Can Do fOr YOUccovvvviieieie e 12

The Background of CH++ ..o 15

C++ Compared with Other Languages.........ccccoevvvevverieivnnenn, 16

C++ and MICrOCOMPULETScocveeiiirieiee et 17

An Overview of Your COMPULENcccoocvvveiiiiineieee e 19
HArdWAreooviiiie et 19

SOFEWANE ..o e 29

REVIEW QUESLIONSvecviiiiec ettt ettt 33
SUMIMAKY ittt ettt e srae e snbe e snbe e teeereeenes 34

2 Whatls a Program™? 35
CoMPULEr Programsccoceeeiieeiie e e e siee e siee e 36
Program DeSIigNcccoeeriiiiiie e 38

Using a Program Editor ... 40

Using a C++ COMPIIET ..o 42
Running a Sample Programccccoceveienvciene e, 44
HanNdling EFTOrS ... 46

REVIEW QUESTIONSoooviiiciiicce ettt 48

SUMIMIATY ittt e e e sbe b e 49

Contents &

3 Your First C++ Programoeeiiiiiiiaaanaannanns 51
Looking at a C++ Programcccceeeeeneneenenenesee e 52

The Format of a C++ Programc.cccceeviiiiniicincnens 53
Readability IS the Key ..., 54

Uppercase Versus LOWEICASEcccvvevireeirieeireesiee e 55

Braces and Main()cccccevveveeiiiieieeccce e 56

CommENtS IN CH .o 57

Explaining the Sample Programcccocooiiiiiiiieiencneennen, 60

REVIEW QUESTIONS ..o 66
SUMMATY it 67

4 Variables and Literals ... iiiL. 69
VariabIes ... 70

Naming Variablesccccccviiiiiiiie e, 70

Variable TYPES ..o 72

Declaring Variables..........cccccoooiiiiiiiicece e, 73

Looking at Data TYPEScccoerveiririnieieisenesie e 75

Assigning Values to Variables ..., 80

LITEIAIS ..o 82
Assigning Integer LiteralS........c.ccooevvviiieicie e 83

Assigning String Literals.........cccoocvvvviiiiiiicecc e 85

Assigning Character Literalsccccoovoeiiieieieie e 89

Constant Variables ... 94

REVIEW QUESLIONS ..o 95

REVIEW EXEICISEScviiviiiieiiiiiiie et 97
SUMIMAKY ittt ettt e srae e snbe e snbe e teeereeenes 97

5 Character Arrays and StringsS..........c.cocoaa... 99
(O g P 7 101 (] AN o -\ Y S USSR 100
Character Arrays Versus StringsS......ccoccoovvvevenenenieneseeeeenns 103

ReVIEW QUESTIONS ..o e 110

REVIEW EXEICISES ...oivvivieiieiieeiieie e e eeeste sttt 111
SUMMATY oo 111

6 Preprocessor Directives 113
Understanding Preprocessor Directivesccccoceevevvieenenn 114

The #include DIreCtiVe ... 115

The #AdefiNe DITECLIVEoccevveeeeee ettt 120

EXAMPLE

REVIEW QUESLIONScocviiiii e 128
REVIEW EXEICISES ...ocvvivieiiiieciieie ettt 130
SUMIMAKY oottt saeessae e sae et e e snaeennee s 130
7 Simple Input/Output.......ooii i 133
The COULt OPEIratorccooveeee e 134
Printing StriNgScooiiiiiieeieee e 134
The CiN OPEratorccoiiiiiciee e 144
printf() and scanf()cccocveieii i 149
The printf() FUNCLION ..., 149
Conversion Characters ... 151
The scanf() FUNCLION ..o, 154
ReVIEW QUESTIONS ..o s 157
REVIEW EXEICISES ...ocvviiiiiiieiie sttt 158
10 (0] 0 T Y TSRS 159

Il Using C++ Operators

8 Using C++ Math Operators

and PrecedencCeo 163
C++’s Primary Math Operators.........ccccccvevviiivivieiiieene e 164

The Unary OPerators.........cocvveeerieneneeeene e, 165
Division and ModulUus...........ccoceveiiiiiieie e 167

The Order of Precedenceccoovvvvieveiv e 168
UsSIiNg Parentheses ... 170

The Assignment Statementsccccceveveeeeceve e, 174
Multiple ASSIGNMENTScccoviiieciccee e 175
Compound ASSIGNMENTScccviiiiereieeeee e 176
Mixing Data Types in Calculationscc.ccoceveiviininenen. 178
TYPE CASTING ..o 179
REVIEW QUESLIONSeocviiiiicie e 182
REVIEW EXEICISES ...oviiviiirieiiiiinie et 183
SUMIMAKY oottt ssae e sae et e snaeennne s 184

9 Relational Operatorsoiiiiiiiiiiiiii i, 185
Defining Relational Operators...........ccoocvvovveveveiieiese e 186

The if Statementcccoov i, 189

The else STateMENToeeeeeeeeeeeee et 199

Contents &

REVIEW QUESLIONScocviiiii e 203

REVIEW EXEICISES ...ocviiviiirieiisiiiie et 204

SUMIMAKY oottt saeessae e sae et e e snaeennee s 205

10 Logical OperatorsSoooiiiiiiii i iiiiaiaaaeaaaens 207
Defining Logical Operators..........ccocevereneneeneneeeee e 207

Logical Operators and Their USESccccevevvvivrveienninennns 209

C++’s Logical EffiCiency ... 211

Logical Operators and Their Precedence..........c..cccccevvvnnenn 216

REVIEW QUESLIONSocvviiii ettt 217

REVIEW EXEICISES ...oviiiieieiieeiieiie ettt 218

SUMMIATY it 219

11 Additional C++ Operatorscvviieiiinainnnnn. 221
The Conditional OPeratorcccooveiereisineseeeese e 222

The Increment and Decrement Operatorsc.ccceevrereene. 225

The Sizeof OPerator ..., 230

The Comma OPEeratorcccccoeeeieiiiece e 232

BItwWise OPEratorsScccveviieiiesie e e e 234

Bitwise Logical Operators.........cccccooevvieeneneneie e 235

ReVIEW QUESTIONS ..o 242

REVIEW EXEICISES ...iivvieieieiieeiieie e ettt 243

10 (0] 0 T Y TSRS 243

Il C++ Constructs

12 The while LOOP ..o i 245
The while Statement...........cccoco e, 246

The Concept OF LOOPS ...cvevveieiiieiicie e 247

The do-While LOOP ..o 252

The if Loop Versus the while LOOp........ccccovvvininiiiincnne 255

The exit() Function and break Statement...............ccccceeveneen. 256

Counters and TOtalSccovvvviiiieie e 260
Producing TOtalScccccooviieiiiie e 265

REVIEW QUESLIONSocveiiiie e 268

REVIEW EXEICISES ...oivvivieiieiieeiieie ettt 269

SUMIMATY ittt nn s 270

EXAMPLE

13 The fOr LOOP cii it eaeaaee s 273
The for Statement ... 274
The Concept Of fOr LOOPSocvvveieiriiriinieieiseseseeee e 274
Nested FOr LOOPScoveviiiiiiiieisi e 286
REVIEW QUESLIONScocviiiii e 292
REVIEW EXEICISES ...ocvvivieiiiieciieie ettt 293
SUMIMAKY oottt e st ssae e snae et e sraeennne s 293
14 Other LOoOp OPtiONS ..ot aaiaaaeeaaens 295
TIMING LOOPS ..ottt 296
The break and for Statementsccccovcveeeveice v, 298
The continue Statement ... 303
REVIEW QUESLIONSeocviiiiicie e 308
REVIEW EXEICISES ...ocvvivieiieiiectieie ettt 308
SUMIMAKY oottt e st ssae e snae et e sraeennne s 309
15 The switch and goto Statements.............. 311
The switch Statement ... 312
The goto Statement ... 321
ReVIEW QUESTIONS ..o 327
REVIEW EXEICISES ...oivvivieieiiecieeie e se ettt 328
SUMIMAKY ittt et sae e sree e snbe et e sraeessee s 328
16 Writing C++ Functionsciiiiiiiiiiiia.. 331
FUNCLION BASICS ..o 332
Breaking Down Problems ... 333
More FUNCLION BASICScoiviieieiiie e 335
Calling and Returning FUNCLIONScccooviiinincnciicies 337
REVIEW QUESLIONSeocviiiiicie e 349
YU 10 010 0 F= Y PRSI 350

IV Variable Scope and Modular Programming

17 Variable SCcope ... 353
Global Versus Local Variables.........cccccoovoeviieiceiiciriee 354

Defining Variable SCOPe.........cooooiiiiiiiiiiiec e 355

Use Global Variables Sparinglycccocoovniniiiincnenn. 362

The Need for Passing Variablesccccccocviviiviviieinnenn, 363

Automatic Versus Static Variables........cccoccccvveiiiicei e 369

Contents ¢

Three Issues of Parameter Passing..........cccccecvevvviveiieiennnnnn, 374
REVIEW QUESLIONSocvviiii ettt 375
REVIEW EXEICISES ...oviiiieieiieeiieie ettt 375
SUMMIATY i 377
18 Passing VValues ... it 379
Passing by Value (by COPY)cooviviiiiniiiiineeecsciee 379
Passing by Address (by Reference).........ccccoovvveieicinnnens 385
Variable AdAresses ... 385
Sample Programccccocveveiiieiie e 386
Passing Nonarrays by Address........cccccvvvvievieiiesnesenenn, 391
REVIEW QUESLIONScocviiiicc e 394
REVIEW EXEICISES ...oivvivieiieiieeiieie ettt 395
SUMMAIY ittt 396
19 Function Return VValues and Prototypes ...397
Function Return Values ... 398
FUNCLion Prototypes ..o 405
Prototype for Safetycccoccvvvviivi i 407
Prototype All FUNCLIONScocoiiiiiiitceee e 407
ReVIEW QUESTIONS ..o 412
REVIEW EXEICISES ...iivvieieieiieeiieie e ettt 412
10 (0] 0 T Y TSRS 413

20 Default Arguments
and Function Overloadingo.cooo... 415
Default Argument LiStScccceviiiiiiiciiece e 416
Multiple Default Argumentsccccceveveee e veevee s 417
Overloaded FUNCLIONScooiiiieeieee e 420
ReVIEW QUESTIONS ..o e 426
REVIEW EXEICISES ...oivvivieiieiieeiieie e e eeeste sttt 426
SUMMATY oo 427

V Character Input/Output
and String Functions

21 Device and Character Input/Output 431
Stream and Character 17O ... 432
StANAArd DEVICES ...oeoiiieveiii i 434

Redirecting Devices from MS-DOSc.ccocvviviininienn. 435

EXAMPLE

Printing Formatted Output to the Printer............cccccceevvenen. 436
Character 1/0 FUNCLIONSc.cooeiiiiiniieeee e 437
The get() and put() FUNCLIONS............ccccecveveeie e, 438
The getch() and putch() Functionsccccoevevviennneen. 444
ReVIEW QUESTIONS ..o e 446
REVIEW EXEICISES ...ocvviiiiiiieiie sttt 447
10 (0] 0 T Y TSRS 448
22 Character, String,

and Numeric Functionsciiiiiiiiiaa... 449
Character FUNCLIONSccocviiiiiiiiineseeee s 450
Character Testing FUNCLIONS.........cccooviceieeie e 450
Alphabetic and Digital TeStingccccceeevvviveeieirieennn 450
Special Character-Testing FUNCLIONScccccoeiiiniennen. 453
Character Conversion FUNCLIONScccccocvvevveienienenennnn, 453
StriNG FUNCLIONS ... 455
Useful String FUNCLIONS ... 456
String 170 FUNCLIONSccvviiicie e 456
Converting Strings to NUMDErS..........ccoceiiviieeienereeen, 460
NUMEFIC FUNCLIONSooiiiiiiee e 461
Useful Mathematical FUNCLIONScccevevvivieicc 461
Trigonometric FUNCLIONScccoeveve i, 464
Logarithmic FUNCLIONScccovviiiiiccice e 465
Random-Number Processingc.ccccvevvviervveviesieesnesnenns 465
REVIEW QUESLIONScoivveiiicc e 467
REVIEW EXEICISES ...oivvivieiieiieeiieie ettt 468
SUMIMATY ittt nn s 469

VI Arrays and Pointers

23 INtrodUuCIiNg ArNTAY S ..ot aaes 473
ATTAY BASICS ...oiiviiiiiie ettt 474
INILIAHZING AITAYS ..ooveiee e 479

Initializing Elements at Declaration Timec...cc....... 479
Initializing Elements in the Programc.ccccceveninens 486
ReVIEW QUESTIONS ..o 491
REVIEW EXEICISES ...ccviiviieriiiiiiisie et 491

SUMIMAKY <eiiiiieiiie sttt sae e srae e st e b e sraeensee s 492

Contents &

24 Array ProcessiNg ...oooiiiiiii i 493
SEArCHING ATTAYS ..ot 494

Searching for Values ... 496

SOFTING ATTAYS ..ottt 501
Advanced Referencing of Arrays.......ccccocevvviiiviievenesnennen, 508

REVIEW QUESLIONSocvviiii ettt 515

REVIEW EXEICISES ...oviiiieieiieeiieiie ettt 516

SUMMIATY it 517

25 Multidimensional ArraysS...ccocecveiiiececiinann.. 519
Multidimensional Array BasiCSccocerviniincneneininenen, 520

Reserving Multidimensional Arraysccccooeveieinienennes 522

Mapping Arrays to MemOIYccccovvviiiviiiese e se e 524

Defining Multidimensional Arraysccccoeviveieeveinieennns 526

Tables and fOr LOOPSccovvvvee i 530

REVIEW QUESLIONScocviiiicc e 537

REVIEW EXEICISES ...oivvivieiieiieeiieie ettt 538

SUMMAIY ittt 538

26 POINEerS . 541
Introduction to Pointer Variablescccocooviiniiiiinnn 542

Declaring POINTEIScccccveieie e 543

Assigning Values to Pointerscccocevveveevcvec e, 545

Pointers and Parametersccooevoeveeiienenenene e 546

ATTAYS OF POINTEIS ...t 551

ReVIEW QUESTIONS ..o 553

10 (] 0 T Y TSRS 555

27 Pointers and ArTaAYS - coouoiii i aaaaaaan 557
Array Names as POINEErS..........cccooiiiiiniiniiiis 558

Pointer Advantages..........ccoccoieiiiiiiiiicice 560

Using Character POINTErSccooviveiiiieeee e 563

Pointer ArithmetiC........cocoocveeee e 568

ATTAYS OF STHINGS ..o 574

REVIEW QUESLIONSeocviiiiicie et 578

REVIEW EXEICISES ...oviiviiirieiiiiinie et 579

SUMIMAKY oottt ssae e sae et e snaeennne s 580

EXAMPLE

VIl Structures and File Input/Output

28 STrUCTUINES ... et aaaaaes 583
INtroduction tO StrUCTUIESccovviieieie e, 584
Defining StrUCTUIEScoiiiiieiceee e 587
Initializing Structure Data...........cccccceveiivcieie e, 591
NESEEd STFUCTUIESovviiiiiiie e 600
REVIEW QUESTIONSeeiviiiciiiccec et 603
REVIEW EXEICISES ...oviivieieeiieeieeie sttt 604
SUMMATY it 604
29 Arrays of StruCturesooiiiiiiiiiiiiiiiiaannnn 605
Declaring Arrays Of StrUCTUIeSccooeivineneneeeee e, 606
Arrays as MEMDEISccccoviiiiiiecece e 615
REVIEW QUESLIONSocvviiii ettt 623
REVIEW EXEICISES ...oviiiieieiieeiieiie ettt 624
SUMMIATY it 624
30 Sequential Files ... i 625
Why Use @ DiSK?ccoiiiiiiiiicccee e 626
Types oOf DiSK File ACCESScceovviiiriieiesiresee e 627
Sequential File CONCEPLScccvvvveiviieie e 628
Opening and Closing FileS.........ccccevvveiiiiievccc e 629
WHtING tO @ FIle v 635
Wrting t0 @ PriNENooviiiiieeeceee e 637
AddING T @ FIE ..o 638
Reading from a File ... 639
REVIEW QUESLIONSeocviiiiicie e 642
REVIEW EXEICISES ...oviiviiirieiiiiinie et 643
SUMIMAKY oottt ssae e sae et e snaeennne s 644
31 Random-Access Files ...l 645
Random File Recordsc.covviiiiiiiiiiiiici, 646
Opening Random-Access Files..........ccooviiiiiiiiiciiiens 647
The seekg() FUNCHION ..o 649
Other Helpful 170 FUNCLIONS........ccooviiiiieccc e 656
REVIEW QUESLIONScoovviiiecie ettt 658
REVIEW EXEICISES ...oviiiieiieiieeiieiie ettt 658

SUMMATY i 659

Contents ¢

32 Introduction to Object-Oriented

Programmingocoiii it 661
WHhat 1S @ ClaSS?coveiieiie e 662
Data MEMDBEISccovciicecc e 662
Member FUNCLIONScccoove i 662
Default Member Arguments...........ccocevevviieve s 670
Class Member Visibilitycccccooveviiiiiieiecece e 674
REVIEW QUESTIONSeeiviiiciiiccec et 676
REVIEW EXEICISEviivviiiiiiie e ee st ee et te et 676
SUMMATY it 676

VIlIl References

A Memory Addressing, Binary,

and Hexadecimal Review 679
Computer MEMOIYocoeiieiieieee e 680

Memory and Disk Measurementscccccoevevveveieinenn. 680

MeEMOTrY AAAIreSSEScccveieeiierieriec e 681

BitS aNd BYTESooiiiiiiiee et 682

The Order OF BitS ...cooo v 686

Binary NUMDErS ... 686

Binary Arithmetic ... 690

Binary Negative NUMDEIScccoovveviiiiice e 692
Hexadecimal NUMDErS ..o 695

Why Learn Hexadecimal?cccooeiiiiiiiiinieene e, 697

How Binary and Addressing Relate to C++.........ccccccvveneen. 698

B Answers to Review Questions 701
C ASCIllI Table ..o e 719
D C++ Precedence Table ... 729
E Keyword and Function Reference 733
SEAION i 734

CLYPE. N 734

SEEING.N oo 735

MALN.N e 735

STANID.N e 735

EXAMPLE
F The Mailing List Application 737
GlOS S AN Y tii it e e 747

INntroduction

Every day, more and more people learn and use the C++ program-
ming language. | have taught C to thousands of students in my life.
| see many of those students now moving to C++ in their school work
or career. The C++ language is becoming an industry-accepted
standard programming language, using the solid foundation of C to
gain a foothold. C++ is simply a better C than C.

C++ By Example is one of several books in Que’s new line of By
Example series. The philosophy of these books is simple: The best
way to teach computer programming concepts is with multiple
examples. Command descriptions, format syntax, and language
references are not enough to teach a newcomer a programming
language. Only by looking at numerous examples and by running
sample programs can programming students get more than just a
“feel” for the language.

Who Should Use This Book

This book teaches at three levels: beginning, intermediate, and
advanced. Text and numerous examples are aimed at each level. If
you are new to C++, and even if you are new to computers, this book
attempts to put you at ease and gradually build your C++ program-
ming skills. If you are an expert at C++, this book provides a few
extras for you along the way.

Introduction ¢

The Book’s Philosophy

This book focuses on programming correctly in C++ by teaching
structured programming techniques and proper program design.
Emphasis is always placed on a program’s readability rather than
“tricks of the trade” code examples. In this changing world, pro-
grams should be clear, properly structured, and well-documented,
and this book does not waver from the importance of this philos-
ophy.

This book teaches you C++ using a holistic approach. In addi-
tion to learning the mechanics of the language, you learn tips and
warnings, how to use C++ for different types of applications, and a
little of the history and interesting asides about the computing
industry.

Many other books build single applications, adding to them a
little at a time with each chapter. The chapters of this book are stand-
alone chapters, and show you complete programs that fully demon-
strate the commands discussed in the chapter. There is a program for
every level of reader, from beginning to advanced.

This book contains almost 200 sample program listings. These
programs show ways that you can use C++ for personal finance,
school and business record keeping, math and science, and general-
purpose applications that almost everybody with a computer can
use. This wide variety of programs show you that C++ is a very
powerful language that is easy to learn and use.

Appendix F, “The Mailing List Application,” is a complete
application—much longer than any of the other programs in the
book—that brings together your entire working knowledge of C++.
The application is a computerized mailing-list manager. Through-
out the chapters that come before the program, you learn how each
command in the program works. You can modify the program to
better suit your own needs. (The comments in the program suggest
changes you can make.)

Overview of This Book

This book is divided into eight parts. Part | introduces you to
the C++ environment, as well as introductory programming con-
cepts. Starting with Part 11, the book presents the C++ programming

EXAMPLE

language commands and built-in functions. After mastering the
language, you can use the book as a handy reference. When you
need help with a specific C++ programming problem, turn to the
appropriate area that describes that part of the language to see
numerous examples of code.

To get an idea of the book’s layout, read the following descrip-
tion of each section of the book:

Part I: Introduction to C++

This section explains what C++ is by describing a brief history
of the C++ programming language and presenting an overview of
C++’s advantages over other languages. This part describes your
computer’s hardware, how you develop your C++ programs, and
the steps you follow to enter and run programs. You begin to write
C++ programs in Chapter 3.

Part Il: Using C++ Operators

This section teaches the entire set of C++ operators. The rich
assortment of operators (more than any other programming lan-
guage except APL) makes up for the fact that the C++ programming
language is very small. The operators and their order of precedence
are more important to C++ than most programming languages.

Part Ill: C++ Constructs

C++ data processing is most powerful due to the looping,
comparison, and selection constructs that C++ offers. This part
shows you how to write programs flowing with control computa-
tions that produce accurate and readable code.

Part 1'V: VVariable Scope and
Modular Programming

To support true structured programming techniques, C++
must allow for local and global variables, as well as offer several

Introduction ¢

ways to pass and return variables between functions. C++ is a very
strong structured language that attempts, if the programmer is
willing to “listen to the language,” to protect local variables by
making them visible only to the parts of the program that need them.

Part V: Character Input/Output and
String Functions

C++ contains no commands that perform input or output. To
make up for this apparent oversight, C++ compiler writers supply
several useful input and output functions. By separating input and
output functions from the language, C++ achieves better portability
between computers; if your program runs on one computer, it will
work on any other.

This part also describes several of the other built-in math,
character, and string functions available with C++. These functions
keep you from having to write your own routines to perform
common tasks.

Part VI: Arrays and Pointers

C++ offers single and multidimensional arrays that hold mul-
tiple occurrences of repeating data, but that do not require much
effort on your part to process.

Unlike many other programming languages, C++ also uses
pointer variables a great deal. Pointer variables and arrays work
together to give you flexible data storage that allow for easy sorting
and searching of data.

Part VIl: Structures and File
Input/Output

Variables, arrays, and pointers are not enough to hold the types
of data that your programs require. Structures allow for more
powerful grouping of many different kinds of data into manageable
units.

Your computer would be too limiting if you could not store
data to the disk and retrieve that data back in your programs. Disk

EXAMPLE

files are required by most “real world” applications. This section
describes how C++ processes sequential and random-access files
and teaches the fundamental principles needed to effectively save
data to the disk. The last chapter in this section introduces object-
oriented programming and its use of classes.

Part VIll: References

This final section of the book includes a reference guide to the
ASCII table, the C++ precedence table, and to keywords and func-
tions in C++. Also in this section are the mailing list application and
the answers to the review questions.

Conventions Used in This
Book
The following typographic conventions are used in this book:

¢ Code lines, variables, and any text you see on-screen are in
monospace.

¢ Placeholders on format lines are in italic monospace.
¢ Filenames are in regular text, all uppercase (CCDOUB.CPP).

¢ Optional parameters on format lines are enclosed in flat
brackets ([1). You do not type the brackets when you
include these parameters.

¢ New terms, which are also found in the glossary, are in italic.

Index to the Icons

The following icons appear throughout this book:

Level 1 difficulty

Introduction ¢

Level 2 difficulty

Level 3 difficulty

Tip
g?.
o Note
’
L Caution
_'H
Pseudocode

The pseudocode icon appears beside pseudocode, which is
typeset in italic immediately before the program. The pseudocode
consists of one or more sentences indicating what the program
instructions are doing, in English. Pseudocode appears before se-
lected programs.

Margin Graphics (Book Diagrams)

To help your understanding of C++ further, this book includes
numerous margin graphics. These margin graphics are similar to
flowcharts you have seen before. Both use standard symbols to
represent program logic. If you have heard of the adage “A picture
is worth a thousand words,” you will understand why it is easier to
look at the margin graphics and grasp the overall logic before
dissecting programs line-by-line.

EXAMPLE

Throughout this book, these margin graphics are used in two
places. Some graphics appear when a new command is introduced,
to explain how the command operates. Others appear when new
commands appear in sample programs for the first time.

The margin graphics do not provide complete, detailed expla-
nations of every statement in each program. They are simple instruc-
tions and provide an overview of the new statements in question.
The symbols used in the margin graphics, along with descriptions

of them, follow:
Terminal symbol
({.},Return...)

Assignment staement (total =
total + newvalue; ctr = ctr =
1;...)

Input/output
(scanf , print f._.)

Calling a function

I:::} Small circle; loop begin

Large dot; begining and end
» of IF-THEN, IF-THEN-ELSE,
and Switch

Input/output of arrays;
assumes implied FOR loop(s)
needed to deal with array I/O

Comment bracket; used for
- added info, such as name of a
function

Introduction ¢

The margin graphics, the program listings, the program com-
ments, and the program descriptions in the book provide many
vehicles for learning the C++ language!

Companion Disk Offer

If you’d like to save yourself hours of tedious typing, use the
order form in the back of this book to order the companion disk for
C++ By Example. This disk contains the source code for all complete
programs and sample code in this book, as well as the mailing-list
application that appears in Appendix F. Additionally, the answers
to many of the review exercises are included on the disk.

Part |

Introduction to C++

Welcome to C++

C++ is a recent addition to the long list of programming languages
now available. Experts predict that C++ will become one of the most
widely used programming languages within two to three years.
Scan your local computer bookstore’s shelves and you will see that
C++ is taking the programming world by storm. More and more
companies are offering C++ compilers. In the world of PCs, both
Borland and Microsoft, two of the leading names of PC software,
offer full-featured C++ compilers.

Although the C++ language is fairly new, having become
popular within the last three years, the designers of C++ compilers
are perfecting this efficient, standardized language that should soon
be compatible with almost every computer in the world. Whether
you are a beginning, an intermediate, or an expert programmer, C++
has the programming tools you need to make your computer do just
what you want it to do. This chapter introduces you to C++, briefly
describes its history, compares C++ to its predecessor C, shows you
the advantages of C++, and concludes by introducing you to hard-
ware and software concepts.

Chapter 1 ¢ Welcome to C++

What C++ Can Do for You

C#+is currently Imagine a language that makes your computer perform to your
defined by American - personal specifications! Maybe you have looked for a program that

ie'ephone & keeps track of your household budget—exactly as you prefer—but
elegraph, ,

Incorporated, to haven’t found one. Perhaps you want to track the records of a small
achieve conformity (or large) business with your computer, but you haven’t found a
b?t\CNeen versions program that prints reports exactly as you’d like them. Possibly you
or C++.

have thought of a new and innovative use for a computer and you
would like to implement your idea. C++ gives you the power to
develop all these uses for your computer.

If your computer could understand English, you would not
have to learn a programming language. But because it does not
understand English, you must learn to write instructions in a
language your computer recognizes. C++ is a powerful program-
ming language. Several companies have written different versions
of C++, but almost all C++ languages available today conform to the
AT&T standard. AT&T-compatible means the C++ language in ques-
tion conforms to the standard defined by the company that invented
the language, namely, American Telephone & Telegraph, Incorpo-
rated. AT&T realizes that C++ is still new and has not fully matured.
The good people there just completed the AT&T C++ 3.0 standard
to which software companies can conform. By developing a uniform
C++ language, AT&T helps ensure that programs you write today
will most likely be compatible with the C++ compilers of tomorrow.

NOTE: The AT&T C++ standard is only a suggestion. Software
companies do not have to follow the AT&T standard, although
most choose to do so. No typical computer standards commit-
tee has yet adopted a C++ standard language. The committees
are currently working on the issue, but they are probably
waiting for C++ to entrench the programming community
before settling on a standard.

C++is called a Companies do not have to follow the AT&T C++ 3.0 standard.

“better C than C.” Many do, but add their own extensions and create their own version
to do more work than the AT&T standard includes. If you are using
the AT&T C++ standard, your program should successfully run on
any other computer that also uses AT&T C++.

EXAMPLE

AT&T developed C++ as an improved version of the C pro-
gramming language. C has been around since the 1970s and has
matured into a solid, extremely popular programming language.
ANSI, the American National Standards Institute, established a
standard C programming specification called ANSI C. If your C
compiler conforms to ANSI C, your program will work on any other
computer that also has ANSI C. This compatibility between comput-
ers is so important that AT&T’s C++ 3.0 standard includes almost
every element of the ANSI C, plus more. In fact, the ANSI C
committee often requires that a C++ feature be included in subse-
guent versions of C. For instance, function prototypes, a feature not
found in older versions of ANSI C, is now a requirement for
approval by the ANSI committee. Function prototypes did not exist
until AT&T required them in their early C++ specification.

C++ By Example teaches you to program in C++. All programs
conform to the AT&T C++ 2.1 standard. The differences between
AT&T 2.1 and 3.0 are relatively minor for beginning programmers.
As you progress in your programming skills, you will want to tackle
the more advanced aspects of C++ and Version 3.0 will come more
into play later. Whether you use a PC, a minicomputer, a mainframe,
or a supercomputer, the C++ language you learn here should work
on any that conform to AT&T C++ 2.1 and later.

There is a debate in the programming community as to whether
a person should learn C before C++ or learn only C++. Because C++
is termed a “better C,” many feel that C++ is an important language
in its own right and can be learned just as easily as C. Actually, C++
pundits state that C++ teaches better programming habits than the
plain, “vanilla” C. This book is aimed at the beginner programmer,
and the author feels that C++ is a great language with which to
begin. If you were to first learn C, you would have to “unlearn” a few
things when you moved to C++. This book attempts to use the C++
language elements that are better than C. If you are new to program-
ming, you learn C++ from the start. If you have a C background, you
learn that C++ overcomes many of C’s limitations.

When some people attempt to learn C++ (and C), even if they
are programmers in other computer languages, they find that
C++ can be cryptic and difficult to understand. This does not have
to be the case. When taught to write clear and concise C++ code in
an order that builds on fundamental programming concepts,

Chapter 1 ¢ Welcome to C++

programmers find that C++ is no more difficult to learn or use than
any other programming language. Actually, after you start using it,
C++’s modularity makes it even easier to use than most other
languages. Once you master the programming elements this book
teaches you, you will be ready for the advanced power for which
C++ was designed—aobject-oriented programming (OOP). The last
chapter of this book, “Introduction to Object-Oriented Program-
ming,” offers you the springboard to move to this exciting way of
writing programs.

Even if you’ve never programmed a computer before, you will
soon understand that programming in C++ is rewarding. Becoming
an expert programmer in C++—or in any other computer lan-
guage—takes time and dedication. Nevertheless, you can start
writing simple programs with little effort. After you learn the
fundamentals of C++ programming, you can build on what you
learn and hone your skills as you write more powerful programs.
You also might see new uses for your computer and develop
programs others can use.

The importance of C++ cannot be overemphasized. Over the
years, several programming languages were designed to be “the
only programming language you would ever need.” PL/1 was
heralded as such in the early 1960s. It turned out to be so large and
took so many system resources that it simply became another
language programmers used, along with COBOL, FORTRAN, and
many others. In the mid-1970s, Pascal was developed for smaller
computers. Microcomputers had just been invented, and the Pascal
language was small enough to fit in their limited memory space
while still offering advantages over many other languages. Pascal
became popular and is still used often today, but it never became the
answer for all programming tasks, and it failed at being “the only
programming language you would ever need.”

When the mass computer markets became familiar with C in
the late 1970s, C also was promoted as “the only programming
language you would ever need.” What has surprised so many
skeptics (including this author) is that C has practically fulfilled this
promise! An incredible number of programming shops have con-
verted to C. The appeal of C’s efficiency, combined with its portabil-
ity among computers, makes it the language of choice. Most of

EXAMPLE

today’s familiar spreadsheets, databases, and word processors are
written in C. Now that C++ has improved on C, programmers are
retooling their minds to think in C++ as well.

The programmer help-wanted ads seek more and more C++
programmers every day. By learning this popular language, you
will be learning the latest direction of programming and keeping
your skills current with the market. You have taken the first step:
with this book, you learn the C++ language particulars as well as
many programming tips to use and pitfalls to avoid. This book
attempts to teach you to be not just a C++ programmer, but a better
programmer by applying the structured, long-term programming
habits that professionals require in today’s business and industry.

The Background of C++

The UNIX operating Before you jump into C++, you might find it helpful to know a
system was written little about the evolution of the C++ programming language. C++ is
almostentirelyinC. g4 deeply rooted in C that you should first see where C began. Bell
Labs first developed the C programming language in the early
1970s, primarily so Bell programmers could write their UNIX oper-
ating system for a new DEC (Digital Equipment Corporation) com-
puter. Until that time, operating systems were written in assembly
language, which is tedious, time-consuming, and difficult to main-
tain. The Bell Labs people knew they needed a higher-level pro-
gramming language to implement their project quicker and create
code that was easier to maintain.
Because other high-level languages at the time (COBOL, FOR-
TRAN, PL/I, and Algol) were too slow for an operating system’s
code, the Bell Labs programmers decided to write their own lan-
guage. They based their new language on Algol and BCPL. Algol is
still used in the European markets, but is not used much in America.
BCPL strongly influenced C, although it did not offer the various
data types that the makers of C required. After a few versions, these
Bell programmers developed a language that met their goals well. C
is efficient (it is sometimes called a high, low-level language due to
its speed of execution), flexible, and contains the proper language
elements that enable it to be maintained over time.

Chapter 1 ¢ Welcome to C++

In the 1980s, Bjourn Stroustrup, working for AT&T, took the C
language to its next progression. Mr. Stroustrup added features to
compensate for some of the pitfalls C allowed and changed the way
programmers view programs by adding object-orientation to the
language. The object-orientation aspect of programming started in
other languages, such as Smalltalk. Mr. Stroustrup realized that C++
programmers needed the flexibility and modularity offered by a
true OOP programming language.

C++ Compared with Other

Languages
C++ requires more If you have programmed before, you should understand a little
stringent data-type about how C++ differs from other programming languages on the

checking than
does C.

market. C++ is efficient and has much stronger typing than its C
predecessor. C is known as a weakly typed language; variable data
types do not necessarily have to hold the same type of data. (Func-
tion prototyping and type casting help to alleviate this problem.)

For example, if you declare an integer variable and decide to
put a character value in it, C enables you to do so. The data might not
be in the format you expect, but C does its best. This is much different
from stronger-typed languages such as COBOL and Pascal.

If this discussion seems a little over your head at this point,
relax. The upcoming chapters will elaborate on these topics and
provide many examples.

C++ is a small, block-structured programming language. It has
fewer than 46 keywords. To compensate for its small vocabulary,
C++ has one of the largest assortment of operators such as +, -, and &&
(second only to APL). The large number of operators in C++ might
tempt programmers to write cryptic programs that have only a
small amount of code. As you learn throughout this book, however,
you will find that making the program more readable is more
important than saving some bytes. This book teaches you how to
use the C++ operators to their fullest extent, while maintaining
readable programs.

C++’s large number of operators (almost equal to the number
of keywords) requires a more judicious use of an operator precedence

EXAMPLE

table. Appendix D, “C++ Precedence Table,” includes the C++
operator precedence table. Unlike most other languages that have
only four or five levels of precedence, C++ has 15. As you learn C++,
you have to master each of these 15 levels. This is not as difficult as
it sounds, but its importance cannot be overstated.

C++ also has no input or output statements. You might want to
read that sentence again! C++ has no commands that perform input
or output. This is one of the most important reasons why C++ is
available on so many different computers. The 170 (input/output)
statements of most languages tie those languages to specific hard-
ware. BASIC, for instance, has almost twenty I/0 commands—
some of which write to the screen, to the printer, to a modem, and so
forth. If you write a BASIC program for a microcomputer, chances
are good that it cannot run on a mainframe without considerable
modification.

C++’s input and output are performed through the abundant
use of operators and function calls. With every C++ compiler comes
a library of standard 1/0 functions. 1/0 functions are hardware
independent, because they work on any device and on any computer
that conform to the AT&T C++ standard.

To master C++ completely, you have to be more aware of your
computer’s hardware than most other languages would require you
to be. You certainly do not have to be a hardware expert, but
understanding the internal data representation makes C++ much
more usable and meaningful.

It also helps if you can become familiar with binary and
hexadecimal numbers. You might want to read Appendix A,
“Memory Addressing, Binary, and Hexadecimal Review,” for a
tutorial on these topics before you start to learn the C++ language.
If you do not want to learn these topics, you can still become a good
C++ programmer, but knowing what goes on “under the hood”
makes C++ more meaningful to you as you learn it.

C++ and Microcomputers

C was a relatively unknown language until it was placed on the
microcomputer. With the invention and growth of the microcom-
puter, C blossomed into a worldwide computer language. C++

Chapter 1 ¢ Welcome to C++

extends that use on smaller computers. Most of readers of C++ By
Example are probably working on a microcomputer-based C++
system. If you are new to computers, this section will help you learn
how microcomputers were developed.

In the 1970s, NASA created the microchip, a tiny wafer of sili-
con that occupies a space smaller than a postage stamp. Computer
components were placed on these microchips, hence computers
required much less space than before. NASA produced these
smaller computers in response to their need to send rocket ships to
the moon with on-board computers. The computers on Earth could
not provide split-second accuracy for rockets because radio waves
took several seconds to travel between the Earth and the moon.
Through development, these microchips became small enough so
the computers could travel with a rocket and safely compute the
rocket’s trajectory.

The space program was not the only beneficiary of computer
miniaturization. Because microchips became the heart of the mi-
crocomputer, computers could now fit on desktops. These micro-
computers cost much less than their larger counterparts, so many
people started buying them. Thus, the home and small-business
computer market was born.

Today, microcomputers are typically called PCs from the wide-
spread use of the original IBM PC. The early PCs did not have the
memory capacity of the large computers used by government and
big business. Nevertheless, PC owners still needed a way to pro-
gram these machines. BASIC was the first programming language
used on PCs. Over the years, many other languages were ported
from larger computers to the PC. However, no language was as
successful as C in becoming the worldwide standard programming
language. C++ seems to be the next standard.

Before diving into C++, you might take a few moments to
familiarize yourself with some of the hardware and software com-
ponents of your PC. The next section, “An Overview of Your
Computer,” introduces you to computer components that C++
interacts with, such as the operating system, memory, disks, and
I/0 devices. If you are already familiar with your computer’s
hardware and software, you might want to skip to Chapter 2, “What
Is a Program?,” and begin using C++.

EXAMPLE

An Overview of Your
Computer

Your computer system consists of two parts: hardware and
software. The hardware consists of all the physical parts of the
machine. Hardware has been defined as “anything you can kick.”
Although this definition is coarse, it illustrates that your computer’s
hardware consists of the physical components of your PC. The
software is everything else. Software comprises the programs and
data that interact with your hardware. The C++ language is an
example of software. You can use C++ to create even more software
programs and data.

Hardware

Figure 1.1 shows you a typical PC system. Before using C++,
you should have a general understanding of what hardware is and
how your hardware components work together.

yd

Monitor

System Unit

O 9%

Disk Drives

Modem

Keyboard Mouse Printer

Figure 1.1. A typical PC system.

Chapter 1 ¢ Welcome to C++

The System Unit and Memory

The system unit is the large, box-shaped component of the
computer. This unit houses the PC’s microprocessor. You might
hear the microprocessor called the CPU, or central processing unit.
The CPU acts like a traffic cop, directing the flow of information
throughout your computer system. The CPU is analogous also to the
human brain. When you use a computer, you are actually interact-
ing with its CPU. All the other hardware exists so the CPU can send
information to you (through the monitor or the printer), and you can
give instructions to the CPU (through the keyboard or the mouse).

The CPU also houses the computer’s internal memory. Al-
though the memory has several names, it is commonly referred to as
RAM (random-access memory). RAM is where the CPU looks for
software and data. When you run a C++ program, for example, you
are instructing your computer’s CPU to look in RAM for that
program and carry out its instructions. C++ uses RAM space when
it is loaded.

A byte is a single RAM is used for many things and is one of the most important

character of memory. components of your computer’s hardware. Without RAM, your
computer would have no place for its instructions and data. The
amount of RAM can also affect the computer’s speed. In general, the
more RAM your computer has, the more work it can do and the
faster it can process data.

The amount of RAM is measured by the number of characters
it can hold. PCs generally hold approximately 640,000 characters of
RAM. A character in computer terminology is called a byte, and a
byte can be a letter, a number, or a special character such as an
exclamation point or a question mark. If your computer has 640,000
bytes of RAM, it can hold a total of 640,000 characters.

All the zeros following RAM measurements can become cum-
bersome. You often see the shortcut notation K (which comes from
the metric system’s kilo, meaning 1000) in place of the last three
zeros. In computer terms, K means exactly 1024 bytes; but this
number is usually rounded to 1000 to make it easier to remember.
Therefore, 640K represents approximately 640,000 bytes of RAM.
For more information, see the sidebar titled “The Power of Two.”

The limitations of RAM are similar to the limitations of audio
cassette tapes. If a cassette is manufactured to hold 60 minutes of

EXAMPLE

music, it cannot hold 75 minutes of music. Likewise, the total
number of characters that compose your program, the C++ data, and
your computer’s system programs cannot exceed the RAM’s limit
(unless you save some of the characters to disk).

You want as much RAM as possible to hold C++, data, and the
system programs. Generally, 640K is ample room for anything you
might want to do in C++. Computer RAM is relatively inexpensive,
so if your computer has less than 640K bytes of memory, you should
consider purchasing additional memory to increase the total RAM
to 640K. You can put more than 640K in most PCs. There are two
types of additional RAM: extended memory and expanded memory
(they both offer memory capacity greater than 640K). You can access
this extra RAM with some C++ systems, but most beginning C++
programmers have no need to worry about RAM beyond 640K.

The Power of Two

Although K means approximately 1000 bytes of memory, K
equates to 1024. Computers function using on and off states of
electricity. These are called binary states. At the computer’s
lowest level, it does nothing more than turn electricity on and
off with many millions of switches called transistors. Because
these switches have two possibilities, the total number of states
of these switches—and thus the total number of states of
electricity—equals a number that is a power of 2.

The closest power of 2 to 1000 is 1024 (2 to the 10th power). The
inventors of computers designed memory so that it is always
added in kilobytes, or multiples of 1024 bytes at a time. There-
fore, if you add 128K of RAM to a computer, you are actually
adding a total of 131,072 bytes of RAM (128 times 1024 equals
131,072).

Because K actually means more than 1000, you always have a
little more memory than you bargained for! Even though your
computer might be rated at 640K, it actually holds more than
640,000 bytes (655,360 to be exact). See Appendix A, “Memory
Addressing, Binary, and Hexadecimal Review,” for a more
detailed discussion of memory.

Chapter 1 ¢ Welcome to C++

The computer stores C++ programs to RAM as you write them.
If you have used a word processor before, you have used RAM. As
you type words in your word-processed documents, your words
appear on the video screen and also go to RAM for storage.

Despite its importance, RAM is only one type of memory in
your computer. RAM is volatile; when you turn the computer off, all
RAM is erased. Therefore, you must store the contents of RAM to a
nonvolatile, more permanent memory device (such as a disk) before
you turn off your computer. Otherwise, you lose your work.

Disk Storage

A disk is another type of computer memory, sometimes called
external memory. Disk storage is nonvolatile. When you turn off your
computer, the disk’s contents do not go away. This is important.
After typing a long C++ program in RAM, you do not want to retype
the same program every time you turn your computer back on.
Therefore, after creating a C++ program, you save the program to
disk, where it remains until you’re ready to retrieve it again.

Disk storage differs from RAM in ways other than volatility.
Disk storage cannot be processed by the CPU. If you have a program
or data on disk that you want to use, you must transfer it from the
disk to RAM. This is the only way the CPU can work with the
program or data. Luckily, most disks hold many times more data
than the RAM’s 640K. Therefore, if you fill up RAM, you can store
its contents on disk and continue working. As RAM continues to fill
up, you or your C++ program can keep storing the contents of RAM
to the disk.

This process might sound complicated, but you have only to
understand that data must be transferred to RAM before your
computer can process it, and saved to disk before you shut your
computer off. Most the time, a C++ program runs in RAM and
retrieves data from the disk as it needs it. In Chapter 30, “Sequential
Files,” you learn that working with disk files is not difficult.

There are two types of disks: hard disks and floppy disks. Hard
disks (sometimes called fixed disks) hold much more data and are
many times faster to work with than floppy disks. Most of your C++
programs and data should be stored on your hard disk. Floppy disks

Write-protect notch

C++ By

EXAMPLE

are good for backing up hard disks, and for transferring data and
programs from one computer to another. (These removable floppy
disks are often called diskettes.) Figure 1.2 shows two common sizes,
the 5 1/4-inch disk and the 3 1/2-inch disk. These disks can hold
from 360K to 1.4 million bytes of data.

Insert this side into drive

Insert this side into drive

Label

Label LT

Write-protect notch

Figure 1.2. 5 1/4-inch disk and 3 1/2-inch disk.

Before using a new box of disks, you have to format them
(unless you buy disks that are already formatted). Formatting
prepares the disks for use on your computer by writing a pattern of
paths, called tracks, where your data and programs are stored. Refer
to the operating system instruction manual for the correct format-
ting procedure.

Disk drives house the disks in your computer. Usually, the disk
drives are stored in your system unit. The hard disk is sealed inside
the hard disk drive, and you never remove it (except for repairs). In
general, the floppy disk drives also are contained in the system unit,
but you insert and remove these disks manually.

Disk drives have names. The computer’s first floppy disk drive
is called drive A. The second floppy disk drive, if you have one, is
called drive B. The first hard disk (many computers have only one)
is called drive C. If you have more than one hard disk, or if your hard
disk is logically divided into more than one, the others are named
drive D, drive E, and so on.

Chapter 1 ¢ Welcome to C++

Disk size is measured in bytes, just as RAM is. Disks can hold
many millions of bytes of data. A 60-million-byte hard disk is
common. In computer terminology, a million bytes is called a
megabyte, or M. Therefore, if you have a 60-megabyte hard disk, it
can hold approximately 60 million characters of data before it runs
out of space.

The Monitor

The television-like screen is called the monitor. Sometimes the
monitor is called the CRT (which stands for the primary component
of the monitor, the cathode-ray tube). The monitor is one place where
the output of the computer can be sent. When you want to look at a
list of names and addresses, you could write a C++ program to list
the information on the monitor.

The advantage of screen output over printing is that screen
output is faster and does not waste paper. Screen output, however,
is not permanent. When text is scrolled off-screen (displaced by
additional text coming on-screen), it is gone and you might not
always be able to see it again.

All monitors have a cursor, which is a character such as a
blinking underline or a rectangle. The cursor moves when you type
letters on-screen, and always indicates the location of the next
character to be typed.

Monitors that can display pictures are called graphics monitors.
Most PC monitors are capable of displaying graphics and text, but
some can display only text. If your monitor cannot display colors, it
is called a monochrome monitor.

Your monitor plugs into a display adapter located in your system
unit. The display adapter determines the amount of resolution and
number of possible on-screen colors. Resolution refers to the number
of row and column intersections. The higher the resolution, the more
rows and columns are present on your screen and the sharper your
text and graphics appear. Some common display adapters are
MCGA, CGA, EGA, and VGA.

EXAMPLE

The Printer

The printer provides a more permanent way of recording your
computer’s results. It is the “typewriter” of the computer. Your
printer can print C++ program output to paper. Generally, you can
print anything that appears on your screen. You can use your printer
to print checks and envelopes too, because most types of paper work
with computer printers.

The two most common PC printers are the dot-matrix printer
and the laser printer. A dot-matrix printer is inexpensive, fast, and
uses a series of small dots to represent printed text and graphics. A
laser printer is faster than a dot-matrix, and its output is much
sharper because a laser beam burns toner ink into the paper. For
many people, a dot-matrix printer provides all the speed and quality
they need for most applications. C++ can send output to either type
of printer.

The Keyboard

Figure 1.3 shows a typical PC keyboard. Most the keys are the
same as those on a standard typewriter. The letter and number keys
in the center of the keyboard produce their indicated characters on-
screen. If you want to type an uppercase letter, be sure to press one
of the Shift keys before typing the letter. Pressing the CapsLock key
shifts the keyboard to an uppercase mode. If you want to type one
of the special characters above a number, however, you must do so
with the Shift key. For instance, to type the percent sign (%), you
would press Shift-5.

Like the Shift keys, the Alt and Ctrl keys can be used with some
other keys. Some C++ programs require that you press Alt or Ctrl
before pressing another key. For instance, if your C++ program
prompts you to press Alt-F, you should press the Alt key, then press
F while still holding down Alt, then release both keys. Do not hold
them both down for long, however, or the computer keeps repeating
your keystrokes as if you typed them more than once.

The key marked Esc is called the escape key. In many C++
programs, you can press Esc to “escape,” or exit from, something
you started and then wanted to stop. For example, if you prompt
your C++ compiler for help and you no longer need the help

Chapter 1 ¢ Welcome to C++

message, you can press Esc to remove the help message from the

screen.

Escape Tab Control Backslash (\) Backspace Enter
N1/ |
r Q2 ! = Qi~ H A - e

H et i =] i T Gl [= f Ia n
,EE ,,,,,,,
[][-] II_I I_F
3 [—_ b
S \ N~ 7 T\)
Function keys AIt Shift Spacebar Slash () shift Numeric keypad
Tab Control Enter Backslash (\) Backspace Escape
-

ﬂHHJ z

1 \ T
Functionkeys Alt shift Spacebar Slash () spirx Numeric keypad

Escape Functlon keys Backspace Backslash 0
@ EREE IIII LlllEl@f = |w all|

mfrr rrrrrrrrﬁm
rm|rrrrrrrrrr el

L [T i o | N
[l Iﬁl—ﬁi

\

Y N v 1] \ =
Tab control shift Alt Spacebar .. () Shitt Enter Numeric keypad

Figure 1.3. The various PC keyboards.

EXAMPLE

The group of numbers and arrows on the far right of the
keyboard is called the numeric keypad. People familiar with a 10-key
adding machine usually prefer to type numbers from the keypad
rather than from the top row of the alphabetic key section. The
numbers on the keypad work only when you press the NumLock
key. If you press NumLock a second time, you disable these number
keys and make the arrow keys work again. To prevent confusion,
many keyboards have separate arrow keys and a keypad used solely
for numbers.

The arrows help you move the cursor from one area of the
screen to another. To move the cursor toward the top of the screen,
you have to press the up arrow continuously. To move the cursor to
the right, you press the right-arrow, and so on. Do not confuse the
Backspace key with the left-arrow. Pressing Backspace moves the
cursor backward one character at a time—erasing everything as it
moves. The left-arrow simply moves the cursor backward, without
erasing.

The keys marked Insert and Delete (Ins and Del on some
keyboards) are useful for editing. Your C++ program editor prob-
ably takes advantage of these two keys. Insert and Delete work on
C++ programs in the same way they work on a word processor’s
text. If you do not have separate keys labeled Insert and Delete, you
probably have to press NumLock and use the keypad key 0 (for
Insert) and period (for Delete).

PgUp and PgDn are the keys to press when you want to scroll
the screen (that is, move your on-screen text either up or down).
Your screen acts like a camera that pans up and down your C++
programs. You can move the screen down your text by pressing
PgDn, and up by pressing PgUp. (Like Insert and Delete, you might
have to use the keypad for these operations.)

The keys labeled F1 through F12 (some keyboards go only to
F10) are called function keys. The function keys are located either
across the top of the alphabetic section or to the left of it. These keys
perform an advanced function, and when you press one of them,
you usually want to issue a complex command, such as searching for
a specific word in a program. The function keys in your C++
program, however, do not necessarily produce the same results as
they might in another program, such as a word processor. In other
words, function keys are application-specific.

Chapter 1 ¢ Welcome to C++

’ CAUTION: Computer keyboards have a key for number 1, so
i do not substitute the lowercase | to represent the number 1, as
you might on a typewriter. To C++, a1 is different from the
letter I. You should be careful also to use 0 when you mean zero,
and O when you want the uppercase letter O.

The Mouse

The mouse is a relatively new input device. The mouse moves
the cursor to any on-screen location. If you have never used a mouse
before, you should take a little time to become skillful in moving the
cursor with it. Your C++ editor (described in Chapter 2, “What is a
Program?”) might use the mouse for selecting commands from its
menus.

Mouse devices have two or three buttons. Most of the time,
pressing the third button produces the same results as simulta-
neously pressing both keys on a two-button mouse.

The Modem

A modem can be A PC modem enables your PC to communicate with other

used to communi- computers over telephone lines. Some modems, called external
cate between two

distant computers.

modems, sit in a box outside your computer. Internal modems reside
inside the system unit. It does not matter which one you have,
because they operate identically.

Some people have modems so they can share data between
their computer and that of a long-distance friend or off-site co-
worker. You can write programs in C++ that communicate with
your modem.

EXAMPLE

A Modem by Any Other Name...

The term digital computer comes from the fact that your com-
puter operates on binary (on and off) digital impulses of
electricity. These digital states of electricity are perfect for your
computer’s equipment, but they cannot be sent over normal
telephone lines. Telephone signals are called analog signals,
which are much different from the binary digital signals in
your PC.

Therefore, before your computer can transmit data over a
telephone line, the information must be modulated (converted)
to analog signals. The receiving computer must have a way to
demodulate (convert back) those signals to digital.

The modem is the means by which computer signals are
modulated and demodulated from digital to analog and vice
versa. Thus, the name of the device that modulates and demodu-
lates these signals is modem.

Software

No matter how fast, large, and powerful your computer’s
hardware is, its software determines what work is done and how the
computer does it. Software is to a computer what music is to a stereo
system. You store software on the computer’s disk and load it in
your computer’s memory when you are ready to process the soft-
ware, just as you store music on a tape and play it when you want
to hear music.

Programs and Data

No doubt you have heard the phrase, data processing. This is
what computers actually do: they take data and manipulate it into

Chapter 1 ¢ Welcome to C++

meaningful output. The meaningful output is called information.
Figure 1.4 shows the input-process-output model, which is the foun-
dation of everything that happens in your computer.

Irpt B chiba Frcecen s Hre b mamchh
Figure 1.4. Data processing at its most elementary level.

In Chapter 2, “What Is a Program?,” you learn the mechanics of
programs. For now, you should know that the programs you write
in C++ process the data that you input in the programs. Both data
and programs compose the software. The hardware acts as a vehicle
to gather the input and produce the output. Without software,
computers would be worthless, just as an expensive stereo would be
useless without some way of playing music so you can hear it.

The input comes from input devices, such as keyboards, mo-
dems, and disk drives. The CPU processes the input and sends the
results to the output devices, such as the printer and the monitor. A
C++ payroll program might receive its input (the hours worked)
from the keyboard. It would instruct the CPU to calculate the payroll
amounts for each employee in the disk files. After processing the
payroll, the program could print the checks.

MS-DOS

MS-DOS (Microsoft disk operating system) is a system that lets
your C++ programs interact with hardware. MS-DOS (commonly
called DOS) is always loaded into RAM when you turn on your
computer. DOS controls more than just the disks; DOS is there so
your programs can communicate with all the computer’s hardware,
including the monitor, keyboard, and printer.

Figure 1.5 illustrates the concept of DOS as the “go-between”
with your computer’s hardware and software. Because DOS under-
stands how to control every device hooked to your computer, it
stays in RAM and waits for a hardware request. For instance,
printing the words “c++ is fun!” on your printer takes many
computer instructions. However, you do not have to worry about all

EXAMPLE

those instructions. When your C++ program wants to print some-
thing, it tells DOS to print it. DOS always knows how to send
information to your printer, so it takes your C++ program requests
and does the work of routing that data to the printer.

Figure 1.5. DOS interfaces between hardware and software.

Many people program computers for years and never take the
time to learn why DOS is there. You do not have to be an expert in
DOS, or even know more than a few simple DOS commands, to be
proficient with your PC. Nevertheless, DOS does some things that
C++ cannot do, such as formatting disks and copying files to your
disks. As you learn more about the computer, you might see the
need to better understand DOS. For a good introduction to using
DOS, refer to the book MS-DOS 5 QuickStart (Que).

Chapter 1 ¢ Welcome to C++

NOTE: As mentioned, DOS always resides in RAM and is
loaded when you start the computer. This is done automati-
cally, so you can use your computer and program in C++
without worrying about how to transfer DOS to RAM. It is
important to remember that DOS always uses some of your
total RAM.

Figure 1.6 shows you the placement of DOS, C++, and your
C++ data area in RAM. This formation is a typical way to represent
RAM—several boxes stacked on top of each other. Each memory
location (each byte) has a unique address, just as everybody'’s resi-
dence has a unique address. The first address in memory begins at
0, the second RAM address is 1, and so on until the last RAM
location, many thousands of bytes later.

Rl

"]

l oos
=T §
=1}

Frogran

Feefisirire
Tepof Coabs Are=
Rl

Figure 1.6. After MS-DOS and a C++ program, there is less RAM for
data.

Your operating system (whether you use MS-DOS, PC DOS,
DR DOS, or UNIX) takes part of the first few thousand bytes of
memory. The amount of RAM that DOS takes varies with each
computer’s configuration. When working in C++, the C++ system
sits on top of DOS, leaving you with the remainder of RAM for your
program and data. This explains why you might have a total of 512K
of RAM and still not have enough memory to run some programs—
DOS is using some of the RAM for itself.

C++ By

EXAMPLE

Review Questions

The answers to each chapter’s review questions are in Appen-

dix B, aptly named “Answers to Review Questions.”

. What is the name of one of the programming languages

from which C was developed?

True or false; C++ is known as a “better C.”

3. In what decade was C++ developed?

True or false: C++ is too large to fit on many micro-
computers.

Which usually holds more data: RAM or the hard disk?

What device is needed for your PC to communicate over
telephone lines?

Which of the following device types best describes the
mouse?

a. Storage

b. Input

c. Output

d. Processing

What key would you press to turn off the numbers on the
numeric keypad?

What operating system is written almost entirely in C?

. Why is RAM considered volatile?

. True or false: The greater the resolution, the better the

appearance of graphics on-screen.
How many bytes is 512K?

. What does modem stand for?

Chapter 1 ¢ Welcome to C++

Summary

C++ is an efficient, powerful, and popular programming lan-
guage. Whether you are new to C++ or an experienced programmer,
C++ is all you need to program the computer to work the way you
want it to.

This chapter presented the background of C++ by walking you
through the history of its predecessor, the C programming lan-
guage. C++ adds to C and offers some of the most advanced
programming language commands that exist today.

The rest of this book is devoted to teaching you C++. Chapter
2, “What Is a Program?,” explains program concepts so you can
begin to write C++ programs.

What Is a
Program?®?

This chapter introduces you to fundamental programming con-
cepts. The task of programming computers has been described as
rewarding, challenging, easy, difficult, fast, and slow. Actually, it is
a combination of all these descriptions. Writing complex programs
to solve advanced problems can be frustrating and time-consuming,
but you can have fun along the way, especially with the rich
assortment of features that C++ has to offer.

This chapter also describes the concept of programming, from
a program’s inception to its execution on your computer. The most
difficult part of programming is breaking the problem into logical
steps that the computer can execute. Before you finish this chapter,
you will type and execute your first C++ program.

This chapter introduces you to

The concept of programming
The program’s output
Program design

Using an editor

* & & o o

Using a compiler

Chapter 2 ¢ What Is a Program?

¢ Typing and running a C++ program
¢ Handling errors

After you complete this chapter, you should be ready to learn
the C++ programming language elements in greater detail.

Computer Programs

Before you can make C++ work for you, you must write a C++
program. You have seen the word program used several times in this
book. The following note defines a program more formally.

NOTE: A program is a list of instructions that tells the computer
to do things.

Keep in mind that computers are only machines. They’re not
smart; in fact, they’re quite the opposite! They don’t do anything
until they are given detailed instructions. A word processor, for
example, is a program somebody wrote—in a language such as
C++—that tells your computer exactly how to behave when you
type words into it.

You are familiar with the concept of programming if you have
ever followed a recipe, which is a “program,” or a list of instructions,
telling you how to prepare a certain dish. A good recipe lists these
instructions in their proper order and with enough description so
you can carry out the directions successfully, without assuming
anything.

If you want your computer to help with your budget, keep
track of names and addresses, or compute your gas mileage, it needs
a program to tell it how to do those things. You can supply that
program in two ways: buy a program somebody else wrote, or write
the program yourself.

Writing the program yourself has a big advantage for many
applications: The program does exactly what you want it to do. If you
buy one that is already written, you have to adapt your needs to
those of the author of the program. This is where C++ comes into

EXAMPLE

play. With the C++ programming language (and a little studying),

you can make your computer carry out your own tasks precisely.
To give C++ programming instructions to your computer, you

need an editor and a C++ compiler. An editor is similar to a word

T program processor; it is a program that enables you to type a C++ program
N e _l into memory, make changes (such as moving, copying, inserting,
wirita and deleting text), and save the program more permanently in a disk
F‘E_:“ file. After you use the editor to type the program, you must compile
wdbor it before you can run it.
! The C++ programming language is called a compiled language.
B You cannot write a C++ program and run it on your computer unless
Cos you have a C++ compiler. This compiler takes your C++ language
conpiler instructions and translates them into a form that your computer can
TL read. A C++ compiler is the tool your computer uses to understand
Fregram the C++ language instructions in your programs. Many compilers
I come with their own built-in editor. If yours does, you probably feel

that your C++ programming is more integrated.

To some beginning programmers, the process of compiling a
program before running it might seem like an added and meaning-
less step. If you know the BASIC programming language, you might
not have heard of a compiler or understand the need for one. That’s
because BASIC (also APL and some versions of other computer
languages) is not a compiled language, but an interpreted language.
Instead of translating the entire program into machine-readable
form (as a compiler does in one step), an interpreter translates each
program instruction—then executes it—before translating the next
one. The difference between the two is subtle, but the bottom line is
not: Compilers produce much more efficient and faster-running
programs than interpreters do. This seemingly extra step of compil-
ing is worth the effort (and with today’s compilers, there is not much
extra effort needed).

Because computers are machines that do not think, the instruc-
tions you write in C++ must be detailed. You cannot assume your
computer understands what to do if some instruction is not in your
program, or if you write an instruction that does not conform to C++
language requirements.

After you write and compile a C++ program, you have to run,
or execute, it. Otherwise, your computer would not know that you

Chapter 2 ¢ What Is a Program?

want it to follow the instructions in the program. Just as a cook must
follow a recipe’s instructions before making the dish, so too your
computer must execute a program’s instructions before it can ac-
complish what you want it to do. When you run a program, you are
telling the computer to carry out your instructions.

The Program and Its Output

While you are programming, remember the difference be-
tween a program and its output. Your program contains only
the C++ instructions that you write, but the computer follows
your instructions only after you run the program.

Throughout this book, you often see a program listing (that is,
the C++ instructions in the program) followed by the results
that occur when you run the program. The results are the
output of the program, and they go to an output device such as
the screen, the printer, or a disk file.

Program Design

Df;'?;ﬂg’:‘é;fore " You must plan your programs before typing them into your
fypgthem. Y C++ editor. When builders construct houses, for example, they don’t
immediately grab their lumber and tools and start building! They
first find out what the owner of the house wants, then they draw up
the plans, order the materials, gather the workers, and finally start
building the house.
The hardest part of writing a program is breaking it into logical
steps that the computer can follow. Learning the C++ language is a
requirement, but it is not the only thing to consider. There is a
method of writing programs, a formal procedure you should learn,
that makes your programming job easier. To write a program you
should:

1. Define the problem to be solved with the computer.

2. Design the program’s output (what the user should see).

EXAMPLE

Break the problem into logical steps to achieve this output.
Write the program (using the editor).

Compile the program.

o g k~ w

Test the program to assure it performs as you expect.

As you can see from this procedure, the typing of your program
occurs toward the end of your programming. This is important,
because you first have to plan how to tell the computer how to
perform each task.

Your computer can perform instructions only step-by-step.
You must assume that your computer has no previous knowledge
of the problem, so it is up to you to provide that knowledge, which,
after all, is what a good recipe does. It would be a useless recipe for
a cake if all it said was: “Bake the cake.” Why? Because this assumes
too much on the part of the baker. Even if you write the recipe in
step-by-step fashion, proper care must be taken (through planning)
to be sure the steps are in sequence. Wouldn’t it be foolish also to
instruct a baker to put the ingredients into the oven before stirring
them?

This book adheres to the preceding programming procedure
throughout the book, as each program appears. Before you see the
actual program, the thought process required to write the program
appears. The goals of the program are presented first, then these
goals are broken into logical steps, and finally the program is
written.

Designing the program in advance guarantees that the entire
program structure is more accurate and keeps you from having to
make changes later. A builder, for example, knows that a room is
much harder to add after the house is built. If you do not properly
plan every step, it is going to take you longer to create the final,
working program. It is always more difficult to make major changes
after you write your program.

Planning and developing according to these six steps becomes
much more important as you write longer and more complicated
programs. Throughout this book, you learn helpful tips for program
design. Now it’s time to launch into C++, so you can experience the
satisfaction of typing your own program and seeing it run.

Chapter 2 ¢ What Is a Program?

Using a Program Editor

The instructions in your C++ program are called the source code.
You type source code into your computer’s memory by using your
program editor. After you type your C++ source code (your pro-
gram), you should save it to a disk file before compiling and running
the program. Most C++ compilers expect C++ source programs to be
stored in files with names ending in .CPP. For example, the follow-
ing are valid filenames for most C++ compilers:

MYPROG.CPP
SALESACT.CPP
EMPLYEE.CPP
ACCREC.CPP

Many C++ compilers include a built-in editor. Two of the most
popular C++ compilers (both conform to the AT&T C++ 2.1 stan-
dard and include their own extended language elements) are
Borland’s C++ and Microsoft’s C/C++ 7.0 compilers. These two
programs run in fully integrated environments that relieve the
programmer from having to worry about finding a separate pro-
gram editor or learning many compiler-specific commands.

Figure 2.1 shows a Borland C++ screen. Across the top of the
screen (as with Microsoft C/C++ 7.0) is a menu that offers pull-
down editing, compiling, and running options. The middle of the
screen contains the body of the program editor, and this is the area
where the program goes. From this screen, you type, edit, compile,
and run your C++ source programs. Without an integrated environ-
ment, you would have to start an editor, type your program, save the
program to disk, exit the editor, run the compiler, and only then run
the compiled program from the operating system. With Borland’s
C++ and Microsoft C/C++ 7.0, you simply type the program into the
editor, then—in one step—you select the proper menu option that
compiles and runs the program.

EXAMPLE

= File Edit Search Run Compile Debug Project Options Window Help
\CPP\C12CNT1.CPP ——

/7 Filename: C12CNT1.CPP
/7 Program to print a message 18 times
#include {iostream.h>
main()
{
int ctr = B: /7 Holds the number of times printed

do
{ cout <{ "Computers are fun?\n';
ctr++; /7 fidd one to the count,
/7 after each printf ()
} while (ctr < 18): /7 Print again if fewer
/7 than 18 times
return B;
1:1
[1]—————— Mes=age

+Linking C12CNT1.EXE:

Fi1 Help F18 Menu

Figure 2.1. Borland Turbo C++'s integrated environment.

If you do not own an integrated environment such as Borland
C++ or Microsoft C/C++, you have to find a program editor. Word
processors can act as editors, but you have to learn how to save and
load files in a true ASCII text format. It is often easier to use an editor
than it is to make a word processor work like one.

On PCs, DOS Version 5 comes with a nice, full-screen editor
called EDIT. It offers menu-driven commands and full cursor-
control capabilities. EDIT is a simple program to use, and is a good
beginner’s program editor. Refer to your DOS manual or a good
book on DOS, such as MS-DOS 5 QuickStart (Que), for more infor-
mation on this program editor.

Another editor, called EDLIN, is available for earlier versions
of DOS. EDLIN is a line editor that does not allow full-screen cursor
control, and it requires you to learn some cryptic commands. The
advantage to learning EDLIN is that it is always included with all
PCs that use a release of DOS prior to Version 5.

Chapter 2 ¢ What Is a Program?

If you use a computer other than a PC, such as a UNIX-based
minicomputer or a mainframe, you have to determine which editors
are available. Most UNIX systems include the vi editor. If you
program on a UNIX operating system, it would be worth your time
to learn vi. It is to UNIX what EDLIN is to PC operating systems, and
is available on almost every UNIX computer in the world.

Mainframe users have other editors available, such as the ISPF
editor. You might have to check with your systems department to
find an editor accessible from your account.

NOTE: Because this book teaches the generic AT&T C++
standard programming language, no attempt is made to tie in
editor or compiler commands—there are too many on the
market to cover them all in one book. As long as you write
programs specific to the AT&T C++, the tools you use to edit,
compile, and run those programs are secondary; your goal of
good programming is the result of whatever applications you
produce.

Using a C++ Compiler

After you type and edit your C++ program’s source code, you
have to compile the program. The process you use to compile your
program depends on the version of C++ and the computer you are
using. Borland C++ and Microsoft C/C++ users need only press Alt-
R to compile and run their programs. When you compile programs
on most PCs, your compiler eventually produces an executable file
with a name beginning with the same name as the source code, but
ends with an .EXE file extension. For example, if your source
program is named GRADEAVG.CPP, the PC would produce a
compiled file called GRADEAVG.EXE, which you could execute at
the DOS prompt by typing the name gradeavg.

EXAMPLE

NOTE: Each program in this book contains a comment that
specifies a recommended filename for the source program. You
do not have to follow the file-naming conventions used in this
book; the filenames are only suggestions. If you use a main-
frame, you have to follow the dataset-naming conventions set
up by your system administrator. Each program name in the
sample disk (see the order form at the back of the book) matches
the filenames of the program listings.

UNIX users might have to use the cfront compiler. Most cfront
compilers actually convert C++ code into regular C code. The C code
is then compiled by the system’s C compiler. This produces an
executable file whose name (by default) is A.OUT. You can then run
the A.OUT file from the UNIX prompt. Mainframe users generally
have company-standard procedures for compiling C++ source pro-
grams and storing their results in a test account.

Unlike many other programming languages, your C++ pro-
gram must be routed through a preprocessor before it is compiled.
The preprocessor reads preprocessor directives that you enter in the
program to control the program’s compilation. Your C++ compiler
automatically performs the preprocessor step, so it requires no
additional effort or commands to learn on your part.

You might have to refer to your compiler’s reference manuals
or to your company’s system personnel to learn how to compile
programs for your programming environment. Again, learning the
programming environment is not as critical as learning the C++
language. The compiler is just a way to transform your program
from a source code file to an executable file.

Your program must go through one additional stage after
compiling and before running. It is called the linking, or the link
editing stage. When your program is linked, a program called the
linker supplies needed runtime information to the compiled pro-
gram. You can also combine several compiled programs into one
executable program by linking them. Most of the time, however,

Chapter 2 ¢ What Is a Program?

your compiler initiates the link editing stage (this is especially true
with integrated compilers such as Borland C++ and Microsoft C/
C++) and you do not have to worry about the process.

Figure 2.2 shows the steps that your C++ compiler and link
editor perform to produce an executable program.

Figure 2.2. Compiling C++ source code into an executable program.

Running a Sample Program

Before delving into the specifics of the C++ language, you
should take a few moments to become familiar with your editor and
C++ compiler. Starting with the next chapter, “Your First C++
Program,” you should put all your concentration into the C++
programming language and not worry about using a specific editor
or compiling environment.

C++ By

EXAMPLE

Therefore, start your editor of choice and type Listing 2.1,
which follows, into your computer. Be as accurate as possible—a
single typing mistake could cause the C++ compiler to generate a
series of errors. You do not have to understand the program’s
content at this point; the goal is to give you practice in using your
editor and compiler.

Listing 2.1. Practicing with the editor.

Comment the program with the program name.
Include the header file iostream.h so the output properly works.
Start of the main() function.
Define the BELL constant, which is the computer’s beep.
Initialize the integer variable ctr to 0.
Define the character array fname to hold 20 elements.
Print to the screen what is your first name?.
Accept a string from the keyboard.
Process a loop while the variable ctr is less than five.
Print the string accepted from the keyboard.
Increment the variable ctr by 1.
Print to the screen the character code that sounds the beep.
Return to the operating system.

// Filename: C2FIRST.CPP
// Requests a name, prints the name five times, and rings a bell.

#include <iostream.h>

main()

{
const char BELL="\a’; // Constant that rings the bell
int ctr=0; // Integer variable to count through loop
char fname[20]; // Define character array to hold name
cout << “What is your first name? “; // Prompt the user
cin >> fname; // Get the name from the keyboard
while (ctr < 5) // Loop to print the name

Chapter 2 ¢ What Is a Program?

{ // exactly five times.
cout << fname << “\n”’;
ctr++;
3
cout << BELL; // Ring the terminal’s bell
return O;

Be as accurate as possible. In most programming languages—
and especially in C++—the characters you type into a program must
be very accurate. In this sample C++ program, for instance, you see
parentheses, O, brackets, [1, and braces, {3, but you cannot use them
interchangeably.

The comments (words following the two slashes, //) to the right
of some lines do not have to end in the same place that you see in the
listing. They can be as long or short as you need them to be.
However, you should familiarize yourself with your editor and
learn to space characters accurately so you can type this program
exactly as shown.

Compile the program and execute it. Granted, the first time you
do this you might have to check your reference manuals or contact
someone who already knows your C++ compiler. Do not worry
about damaging your computer: Nothing you do from the keyboard
can harm the physical computer. The worst thing you can do at this
point is erase portions of your compiler software or change the
compiler’s options—all of which can be easily corrected by reload-
ing the compiler from its original source. (It is only remotely likely
that you would do anything like this, even if you are a beginner.)

Handling Errors

Because you are typing instructions for a machine, you must be
very accurate. If you misspell a word, leave out a quotation mark, or
make another mistake, your C++ compiler informs you with an
error message. In Borland C++ and Microsoft C/C++, the error
probably appears in a separate window, as shown in Figure 2.3. The
most common error is a syntax error, and this usually implies a
misspelled word.

EXAMPLE

= File Edit Search Run Compile Debug Project Options Window Help
\CPP\C12CNT1.CPP ——— 1

/7 Filename: C12CNT1.CPP

/7 Program to print a message 18 times

ftinclude {istrean.h>

nain()

int ctr = B: /7 Holds the number of times printed

do
{ cout << "Computers are fun?\n":
ctr++; /7 fidd one to the count,
/7 after each printf()
} while (ctr < 18): /7 Print again if fewer
/7 than 18 times
return B:
i 3:1
[1]——————— Message ————————J=[115

+Error ..\..\CPPAC12CNT1.CPP 3: Unable to open include file ' ISTREAM.H'

F1 Help Space View source + Edit source F1B Menu

Figure 2.3. The compiler reporting a program error.

When you get an error message (or more than one), you must
return to the program editor and correct the error. If you don’t
understand the error, you might have to check your reference
manual or scour your program’s source code until you find the
offending code line.

Getting the Bugs Out

One of the first computers, owned by the military, refused to
print some important data one day. After its programmers
tried for many hours to find the problem in the program, a
programmer by the name of Grace Hopper decided to check
the printer.

She found a small moth lodged between two important wires.
When she removed the moth, the printer started working
perfectly (although the moth did not have the same luck).

Chapter 2 ¢ What Is a Program?

Grace Hopper was an admiral from the Navy and, although
she was responsible for developing many important computer
concepts (she was the author of the original COBOL language),
she might be best known for discovering the first computer
bug.

Ever since Admiral Hopper discovered that moth, errors in
computer programs have been known as computer bugs. When
you test your programs, you might have to debug them—get the
bugs (errors) out by correcting your typing errors or changing
the logic so your program does exactly what you want it to do.

After you have typed your program correctly using the editor
(and you get no compile errors), the program should run properly
by asking for your first name, then printing it on-screen five times.
After it prints your name for the fifth time, you hear the computer’s
bell ring.

This example helps to illustrate the difference between a pro-
gram and its output. You must type the program (or load one from
disk), then run the program to see its output.

Review Questions

The answers to the review questions are in Appendix B,
“Answers to Review Questions.”

1. What is a program?

2. What are the two ways to obtain a program that does what
you want?

3. True or false: Computers can think.
4. What is the difference between a program and its output?

5. What do you use for typing C++ programs into the
computer?

EXAMPLE

6. What filename extension do all C++ programs have?

7. Why is typing the program one of the last steps in the pro-
gramming process?

8. What does the term debug mean?

9. Why is it important to write programs that are compatible
with the AT&T C++?

10. True or false: You must link a program before compiling it.

Summary

After reading this chapter, you should understand the steps
necessary to write a C++ program. You know that planning makes
writing the program much easier, and that your program’s instruc-
tions produce the output only after you run the program.

You also learned how to use your program editor and compiler.
Some program editors are as powerful as word processors. Now
that you know how to run C++ programs, it is time to start learning
the C++ programming language.

Your First C++
Program

This chapter introduces you to some important C++ language
commands and other elements. Before looking at the language more
specifically, many people like to “walk through” a few simple
programs to get an overall feel for what a C++ program involves.
This is done here. The rest of the book covers these commands and
elements more formally.

This chapter introduces the following topics:

An overview of C++ programs and their structure
Variables and literals

Simple math operators

* & o o

Screen output format

This chapter introduces a few general tools you need to become
familiar with the C++ programming language. The rest of the book
concentrates on more specific areas of the actual language.

Chapter 3 Your First C++ Program

Looking at a C++ Program

Figure 3.1 shows the outline of a typical small C++ program.
No C++ commands are shown in the figure. Although there is much
more to a program than this outline implies, this is the general
format of the beginning examples in this book.

Preprocessor directives 1
go here

#include <iostream.h>
Function name —t—main()

{
Block {

Program goes here

Figure 3.1. A skeleton outline of a simple C++ program.

To acquaint yourself with C++ programs as fast as possible,
you should begin to look at a program in its entirety. The following
is a listing of a simple example C++ program. It doesn’t do much, but
it enables you to see the general format of C++ programming. The
next few sections cover elements from this and other programs. You
might not understand everything in this program, even after finish-
ing the chapter, but it is a good place to start.

// Filename: C3FIRST.CPP
// Initial C++ program that demonstrates the C++ comments
// and shows a few variables and their declarations.

EXAMPLE

#include <iostream.h>

mainQ)

{
int i, j; // These three lines declare four variables.
char c;
float x;
i =4; // 1 and j are both assigned integer literals.
i=iT
c = “A’; // All character literals are

// enclosed in single quotations.

X = 9.087; // x requires a floating-point value because it
// was declared as a floating-point variable.

X = X * 4.5; // Change what was in x with a formula.

// Sends the values of the variables to the screen.
cout << i << ¥, “ << J <, < g, M X << "\n7;

return O; // ALWAYS end programs and functions with return.
// The 0 returns to the operating system and
// usually indicates no errors occurred.

For now, familiarize yourself with this overall program. See if
you can understand any part or all of it. If you are new to program-
ming, you should know that the computer reads each line of the
program, starting with the first line and working its way down, until
it has completed all the instructions in the program. (Of course, you
first have to compile and link the program, as described in Chap-
ter 2, “What Is a Program?”.)

The output of this program is minimal: It simply displays four
values on-screen after performing some assignments and calcula-
tions of arbitrary values. Just concentrate on the general format at
this point.

The Format of a C++ Program

C++ s afree-form Unlike some other programming languages, such as COBOL,
language. C++ is a free-form language, meaning that programming statements

53

Chapter 3 Your First C++ Program

can start in any column of any line. You can insert blank lines in a
program if you want. This sample program is called C3FIRST.CPP
(you can find the name of each program in this book in the first line
of each program listing). It contains several blank lines to help
separate parts of the program. In a simple program such as this, the
separation is not as critical as it might be in a longer, more complex
program.

Generally, spaces in C++ programs are free-form as well. Your
goal should not be to make your programs as compact as possible.
Your goal should be to make your programs as readable as possi-
ble. For example, the C3FIRST.CPP program shown in the previous
section could be rewritten as follows:

// Filename: C3FIRST.CPP Initial C++ program that demonstrates
// the C++ comments and shows a few variables and their

// declarations.

#include <iostream.h>

mainQ{int i,j;// These three lines declare four variables.

char c;float x;i=4;// i and j are both assigned integer literals.
J=i+7;c="A7;// All character literals are enclosed in

//single quotations.

x=9.087;//x requires a floating-point value because it was
//declared as a floating-point variable.

x=x*4_.5;//Change what was in x with a formula.

//Sends the values of the variables to the screen.

cout<<i<<*, “<gj<<t, <o, “<<x<<*\n”;return 0;// ALWAYS
//end programs and functions with return. The 0 returns to
//the operating system and usually indicates no errors occurred.

}

To your C++ compiler, the two programs are exactly the same,
and they produce exactly the same result. However, to people who
have to read the program, the first style is much more readable.

Readability Is the Key

As long as programs do their job and produce correct output,
who cares how well they are written? Even in today’s world of fast
computers and abundant memory and disk space, you should still

EXAMPLE

care. Even if nobody else ever looks at your C++ program, you might
have to change it at a later date. The more readable you make your
program, the faster you can find what needs changing, and change
it accordingly.

If you work as a programmer for a corporation, you can almost
certainly expect to modify someone else’s source code, and others
will probably modify yours. In programming departments, it is said
that long-term employees write readable programs. Given this hew
global economy and all the changes that face business in the years
ahead, companies are seeking programmers who write for the
future. Programs that are straightforward, readable, abundant with
white space (separating lines and spaces), and devoid of hard-to-read
“tricks” that create messy programs are the most desirable.

Use ample white space so you can have separate lines and
spaces throughout your programs. Notice the first few lines of
C3FIRST.CPP start in the first column, but the body of the program
is indented a few spaces. This helps programmers “zero in” on the
important code. When you write programs that contain several
sections (called blocks), your use of white space helps the reader’s
eye follow and recognize the next indented block.

Uppercase Versus Lowercase

Use lowercase Your uppercase and lowercase letters are much more signifi-

abundantly in C++! cant in C++ than in most other programming languages. You can see
that most of C3FIRST.CPP is in lowercase. The entire C++ language
is in lowercase. For example, you must type the keywords int, char,
and return in programs using lowercase characters. If you use
uppercase letters, your C++ compiler would produce many errors
and refuse to compile the program until you correct the errors.
Appendix E, “Keyword and Function Reference,” shows a list of
every command in the C++ programming language. You can see
that none of the commands have uppercase letters.

Many C++ programmers reserve uppercase characters for
some words and messages sent to the screen, printer, or disk file;
they use lowercase letters for almost everything else. There is,
however, one exception to this rule in Chapter 4, “Variables and
Literals,” dealing with the const keyword.

Chapter 3 Your First C++ Program

Braces and main(Q)

All C++ programs require the following lines:

main(Q)

{

The statements that follow main() are executed first. The section
of a C++ program that begins with main(), followed by an opening
brace, {, is called the main function. A C++ program is actually a
collection of functions (small sections of code). The function called
main() is always required and always the first function executed.

A C++ block is In the sample program shown here, almost the entire program

Err‘;c"ézed in two is main() because the matching closing brace that follows main()’s

' opening brace is at the end of the program. Everything between two

matching braces is called a block. You read more about blocks in
Chapter 16, “Writing C++ Functions.” For now, you only have to
realize that this sample program contains just one function, main(Q,
and the entire function is a single block because there is only one
pair of braces.

All executable C++ All executable C++ statements must have a semicolon (;) after

statements must them so C++ is aware that the statement is ending. Because the

end with a semi- . ;i

colon (). computer ignores all comrr_lents, do I’_IO!Z put semicolons after your
comments. Notice that the lines containing main() and braces do not
end with semicolons either, because these lines simply define the
beginning and ending of the function and are not executed.

As you become better acquainted with C++, you learn when to
include the semicolon and when to leave it off. Many beginning C++
programmers learn quickly when semicolons are required; your
compiler certainly lets you know if you forget to include a semicolon
where one is needed.

Figure 3.2 repeats the sample program shown in Figure 3.1. It
contains additional markings to help acquaint you with these new
terms as well as other items described in the remainder of this
chapter.

EXAMPLE

[~ // Filename: C3FIRST.CPP
Comments // Initial C++ program that demonstrates the C++ comments
__// and shows a few variables and their declarations.

Preprocessor directive —— #include <iostream.h>
main()
Begin block —— {
int i, j; // These three lines declare four variables.
Variable declarations —| char c;
float Xx;
i =4; // 1 and j are both assigned integer literals.
J=1+7;
c = “A”; // All character literals are

// enclosed in single quotations.
X = 9.087; // x requires a floating-point value because it
// was declared as a floating-point variable.
X = X * 4.5; // Change what was in x with a formula.
Body of program —
// Sends the values of the variables to the screen.

cout << << =, << j << U << << L, Y << X << \n”T;

return O; // ALWAYS end programs and functions with return.
// The 0 returns to the operating system and
// usually indicates no errors occurred.

End block —— }

Figure 3.2. The parts of the sample program.

Comments in C++

In Chapter 2, “What Is a Program?,” you learned the difference
between a program and its output. Most users of a program do not
see the actual program; they see the output from the execution of the
program’s instructions. Programmers, on the other hand, look at the
program listings, add new routines, change old ones, and update for
advancements in computer equipment.

57

Chapter 3 Your First C++ Program

L As explained earlier, the readability of a program is important
Dcimnark so you and other programmers can look through it easily. Neverthe-
":':5,':;; less, no matter how clearly you write C++ programs, you can always

I enhance their readability by adding comments throughout.

Comments are messages that you insert in your C++ programs,
Comments tell laini hat i : t that intin th =
oeople what the explaining what is going on at that point in the program. For
program is doing. example, if you write a payroll program, you might put a comment
before the check-printing routine that describes what is about to
happen. You never put C++ language statements inside a comment,
because a comment is a message for people—not computers. Your
C++ compiler ignores all comments in every program.

NOTE: C++ comments always begin with a 77 symbol and end
at the end of the line.

Some programmers choose to comment several lines. Notice in
the sample program, C3FIRST.CPP, that the first three lines are
comment lines. The comments explain the filename and a little about
the program.

Comments also can share lines with other C++ commands. You
can see several comments sharing lines with commands in the
C3FIRST.CPP program. They explain what the individual lines do.
Use abundant comments, but remember who they’re for: people,
not computers. Use comments to help explain your code, but do not
overcomment. For example, even though you might not be familiar
with C++, the following statement is easy: It prints “C++ By Ex-
ample” on-screen.

cout << “C++ By Example”; // Print C++ By Example on-screen.

This comment is redundant and adds nothing to your under-
standing of the line of code. It would be much better, in this case, to
leave out the comment. If you find yourself almost repeating the
C++ code, leave out that particular comment. Not every line of a
C++ program should be commented. Comment only when code
lines need explaining—in English—to the people looking at your
program.

It does not matter if you use uppercase, lowercase, or a mixture
of both in your comments because C++ ignores them. Most C++

EXAMPLE

programmers capitalize the first letter of sentences in comments,
just as you would in everyday writing. Use whatever case seems
appropriate for the letters in your message.

C++ can also use C-style comments. These are comments that
begin with 7~ and end with /. For instance, this line contains a
comment in the C and C++ style:

netpay = grosspay - taxes; /* Compute take-home pay. */

Comment As You Go

Insert your comments as you write your programs. You are
most familiar with your program logic at the time you are
typing the program in the editor. Some people put off adding
comments until after the program is written. More often than
not, however, those comments are never added, or else they are
written halfheartedly.

If you comment as you write your code, you can glance back at
your comments while working on later sections of the pro-
gram—instead of having to decipher the previous code. This
helps you whenever you want to search for something earlier
in the program.

Examples

1. Suppose you want to write a C++ program that produces a
fancy boxed title containing your name with flashing dots
around it (like a marquee). The C++ code to do this might be
difficult to understand. Before such code, you might want to
insert the following comment so others can understand the
code later:

N

// The following few lines draw a fancy box around
// a name, then display flashing dots around the
// name like a Hollywood movie marquee.

Chapter 3 Your First C++ Program

This would not tell C++ to do anything because a comment
is not a command, but it would make the next few lines of
code more understandable to you and others. The comment
explains in English, for people reading the program, exactly
what the program is getting ready to do.

2. You should also put the disk filename of the program in one
of the first comments. For example, in the C3FIRST.CPP
program shown earlier, the first line is the beginning of a
comment:

// Filename: C3FIRST.CPP

The comment is the first of three lines, but this line tells you
in which disk file the program is stored. Throughout this
book, programs have comments that include a possible
filename under which the program can be stored. They
begin with Cx, where x is the chapter number in which they
appear (for example, C6VARPR.CPP and C10LNIN.CPP).
This method helps you find these programs when they are
discussed in another section of the book.

TIP: It might be a good idea to put your name at the top of a
program in a comment. If people have to modify your program
at a later date, they first might want to consult with you, as the
original programmer, before they change it.

Explaining the Sample
Program

Now that you have an overview of a C++ program, its struc-
ture, and its comments, the rest of this chapter walks you through
the entire sample program. Do not expect to become a C++ expert
just by completing this section—that is what the rest of the book is
for! For now, just sit back and follow this step-by-step description of
the program code.

EXAMPLE

As described earlier, this sample program contains several
comments. The first three lines of the program are comments:

// Filename: C3FIRST.CPP
// Initial C++ program that demonstrates the C++ comments
// and shows a few variables and their declarations.

This comment lists the filename and explains the purpose of the
program. This is not the only comment in the program; others
appear throughout the code.

The next line beginning with #include is called a preprocessor
directive and is shown here:

#include <iostream.h>

This strange looking statement is not actually a C++ command, but
is a directive that instructs the C++ compiler to load a file from disk
into the middle of the current program. The only purpose for this
discussion is to ensure that the output generated with cout works
properly. Chapter 6, “Preprocessor Directives,” more fully explains
this directive.

The next two lines (following the blank separating line) are
shown here:

mainQ)

{

This begins the main() function. Basically, the main¢ function’s
opening and closing braces enclose the body of this program and
main()’s instructions that execute. C++ programs often contain more
than one function, but they always contain a function called main(Q).
The main() function does not have to be the first one, but it usually is.
The opening brace begins the first and only block of this program.

When a programmer compiles and runs this program, the
computer looks for main() and starts executing whatever instruction
follows main()’s opening brace. Here are the three lines that follow:

int i, j; // These three lines declare four variables.
char c;
float Xx;

Chapter 3 Your First C++ Program

These three lines declare variables. A variable declaration describes
variables used in a block of code. Variable declarations describe the
program'’s data storage.

A C++ program processes data into meaningful results. All
C++ programs include the following:

¢ Commands
¢ Data

Data comprises variables and literals (sometimes called con-
stants). As the name implies, a variable is data that can change
(become variable) as the program runs. A literal remains the same.
In life, a variable might be your salary. It increases over time (if you
are lucky). A literal would be your first name or social security
number, because each remains with you throughout life and does
not (naturally) change.

Chapter 4, “Variables and Literals,” fully explains these con-
cepts. However, to give you an overview of the sample program’s
elements, the following discussion explains variables and literals in
this program.

C++ enables you to use several kinds of literals. For now, you
simply have to understand that a C++ literal is any humber, charac-
ter, word, or phrase. The following are all valid C++ literals:

5.6
-45

Q-
“Mary™
18.67643

0.0

As you can see, some literals are numeric and some are
character-based. The single and double quotation marks around
two of the literals, however, are not part of the actual literals. A
single-character literal requires single quotation marks around it; a
string of characters, such as “mary”, requires double quotation marks.

EXAMPLE

Look for the literals in the sample program. You find these:

9.087

4.5

A variable is like a box inside your computer that holds
something. That “something” might be a number or a character. You
can have as many variables as needed to hold changing data. After
you define a variable, it keeps its value until you change it or define
it again.

Variables have names so you can tell them apart. You use the
assignment operator, the equal sign (=), to assign values to variables.
The following statement,

ZE000 sales=25000;
T aal e

puts the literal value 25000 into the variable named sales. In the
sample program, you find the following variables:

i
i
c

X

The three lines of code that follow the opening brace of the
sample program declare these variables. This variable declaration
informs the rest of the program that two integer variables named i
and j as well as a character variable called ¢ and a floating-point
variable called x appear throughout the program. The terms integer
and floating-point basically refer to two different types of numbers:
Integers are whole numbers, and floating-point numbers contain
decimal points.

The next few statements of the sample program assign values
to these variables.

Chapter 3 Your First C++ Program

i =4; // 1 and j are both assigned integer literals.
J=1+7;
c = “A%; // All character literals are
// enclosed in single quotations.
X = 9.087; // x requires a floating-point value because it

// was declared as a floating-point variable.
X = X * 4.5; // Change what was in x with a formula.

The first line puts 4 in the integer variable, i. The second line
adds 7 to the variable i’s value to get 11, which then is assigned to (or
put into) the variable called j. The plus sign (+) in C++ works just
like it does in mathematics. The other primary math operators are
shown in Table 3.1.

Table 3.1. The primary math operators.

Operator Meaning Example
+ Addition 4+5

- Subtraction 7-2

* Multiplication 12*6

/ Division 48/ 12

The character literal a is assigned to the ¢ variable. The number
9.087 is assigned to the variable called x, then x is immediately
overwritten with a new value: itself (9.087) multiplied by 4.5. This
helps illustrate why computer designers use an asterisk (x) for
multiplication and not a lowercase x as people generally do to
show multiplication; the computer would confuse the variable x
with the multiplication symbol, x, if both were allowed.

TIP: If mathematical operators are on the right side of the
equal sign, the program completes the math before assigning
the result to a variable.

EXAMPLE

The next line (after the comment) includes the following
special—and, at first, confusing—statement:

cout << 1 << ¥, “ << jJ << ¥, “ << <<, < x << \n7;

When the program reaches this line, it prints the contents of the
four variables on-screen. The important part of this line is that the
four values for i, j, ¢, and x print on-screen.

The output from this line is

4, 11, A, 40.891499

Because this is the only cout in the program, this is the only
output the sample program produces. You might think the program
is rather long for such a small output. After you learn more about
C++, you should be able to write more useful programs.

The cout is not a C++ command. You might recall from Chapter
2, “What Is a Program?,” that C++ has no built-in input/output
commands. The cout is an operator, described to the compiler in the
#include file called iostream.h, and it sends output to the screen.

C++ also supports the printf() function for formatted output.
You have seen one function already, main(), which is one for which
you write the code. The C++ programming designers have already
written the code for the printf function. At this point, you can think
of printf as a command that outputs values to the screen, but it is
actually a built-in function. Chapter 7, “Simple Input/Output”
describes the printf function in more detail.

NOTE: To differentiate printf from regular C++ commandes,
parentheses are used after the name, as in printf(). In C++, all
function names have parentheses following them. Sometimes
these parentheses have something between them, and some-
times they are blank.

Putareturn The last two lines in the program are shown here:
statement at the end

of each function.

return 0; // ALWAYS end programs and functions with return.

}

Chapter 3 Your First C++ Program

The return command simply tells C++ that this function is
finished. C++ returns control to whatever was controlling the pro-
gram before it started running. In this case, because there was only
one function, control is returned either to DOS or to the C++ editing
environment. C++ requires a return value. Most C++ programmers
return a o (as this program does) to the operating system. Unless you
use operating-system return variables, you have little use for a
return value. Until you have to be more specific, always return a o
from mainQ).

Actually, many return statements are optional. C++ would
know when it reached the end of the program without this state-
ment. It is a good programming practice, however, to put a return
statement at the end of every function, including main(). Because
some functions require a return statement (if you are returning
values), it is better to get in the habit of using them, rather than run
the risk of leaving one out when you really need it.

You will sometimes see parentheses around the return value,
asin:

return (0); // ALWAYS end programs and functions with return.

The parentheses are unnecessary and sometimes lead begin-
ning C++ students into thinking that return is a built-in function.
However, the parentheses are recommended when you want to
return an expression. You read more about returning values in
Chapter 19, “Function Return Values and Prototypes.”

The closing brace after the return does two things in this
program. It signals the end of a block (begun earlier with the open-
ing brace), which is the end of the main() function, and it signals
the end of the program.

Review Questions

The answers to the review questions are in Appendix B, aptly
named “Answers to Review Questions.”

1. What must go before each comment in a C++ program?
2. What is a variable?

3. What s a literal?

EXAMPLE

4. What are four C++ math operators?

5. What operator assigns a variable its value? (Hint: It is called
the assignment operator.)

6. True or false: A variable can consist of only two types:
integers and characters.

7. What is the operator that writes output to the screen?
8. Is the following a variable name or a string literal?
city

9. What, if anything, is wrong with the following C++
statement?

RETURN;

Summary

This chapter focused on teaching you to write helpful and
appropriate comments for your programs. You also learned a little
about variables and literals, which hold the program’s data. Without
them, the term data processing would no longer be meaningful (there
would be no data to process).

Now that you have a feel for what a C++ program looks like, it
is time to begin looking at specifics of the commands. Starting with
the next chapter, you begin to write your own programs. The next
chapter picks up where this one left off; it takes a detailed look at
literals and variables, and better describes their uses and how to
choose their names.

Vvariables and
Literals

Garbage in, garbage
out!

To understand data processing with C++, you must understand
how C++ creates, stores, and manipulates data. This chapter teaches
you how C++ handles data by introducing the following topics:

¢

¢
¢
¢
¢
¢
¢

The concepts of variables and literals
The types of C++ variables and literals
Special literals

Constant variables

Naming and using variables
Declaring variables

Assigning values to variables

Now that you have seen an overview of the C++ programming

language, you can begin writing C++ programs. In this chapter, you
begin to write your own programs from scratch.

You learned in Chapter 3, “Your First C++ Program,” that C++

programs consist of commands and data. Datum is the heart of all
C++ programs; if you do not correctly declare or use variables and
literals, your data are inaccurate and your results are going to be

Chapter 4 ¢ Variables and Literals

inaccurate aswell. A computer adage says the if you put garbage in,
you are going to get garbage out. This is very true. People usually
blame computers for mistakes, but the computers are not always at
fault. Rather, their data are often not entered properly into their
programs.

This chapter spends a long time focusing on numeric variables
and numeric literals. If you are not a “numbers” person, do not fret.
Working with numbers is the computer’s job. You have to under-
stand only how to tell the computer what you want it to do.

Variables

Variables have characteristics. When you decide your program
needs another variable, you simply declare a new variable and C++
ensures that you get it. In C++, variable declarations can be placed
anywhere in the program, as long as they are not referenced until
after they are declared. To declare a variable, you must understand
the possible characteristics, which follow.

¢ Each variable has a name.
¢ Each variable has a type.

¢ Each variable holds a value that you put there, by assigning
it to that variable.

The following sections explain each of these characteristics in
detail.

Naming Variables

Because you can have many variables in a single program, you
must assign names to them to keep track of them. Variable names are
unique, just as house addresses are unique. If two variables have the
same name, C++ would not know to which you referred when you
request one of them.

Variable names can be as short as a single letter or as long as 32
characters. Their names must begin with a letter of the alphabet but,
after the first letter, they can contain letters, numbers, and under-
score (_) characters.

EXAMPLE

"\-\.l" lr_.-'

TIP: Spaces are not allowed in a variable name, so use the
underscore character to separate parts of the name.

The following list of variable names are all valid:
salary aug9l_sales i index_age amount

It is traditional to use lowercase letters for C++ variable names.
You do not have to follow this tradition, but you should know that
uppercase letters in variable names are different from lowercase
letters. For example, each of the following four variables is viewed
differently by your C++ compiler.

sales Sales SALES SALES

Be very careful with the Shift key when you type a variable
name. Do not inadvertently change the case of a variable name
throughout a program. If you do, C++ interprets them as distinct
and separate variables.

'%0 not give variables Variables cannot have the same name as a C++ command or
Loenf;?rfd”g;“;ﬁ_?n function. Appendix E, “Keyword and Function Reference,” shows
function. a list of all C++ command and function names.

The following are invalid variable names:

81 sales Aug91+Sales MY AGE printf

=My

TIP: Although you can call a variable any name that fits the
naming rules (as long as it is not being used by another variable
in the program), you should always use meaningful variable
names. Give your variables names that help describe the values
they are holding.

For example, keeping track of total payroll in a variable called
total_payroll iS much more descriptive than using the variable
name xvz34. Even though both names are valid, total_payrol1 is
easier to remember and you have a good idea of what the
variable holds by looking at its name.

Chapter 4 ¢ Variables and Literals

Variable Types

Variables can hold different types of data. Table 4.1 lists the
different types of C++ variables. For instance, if a variable holds an
integer, C++ assumes no decimal point or fractional part (the part to
the right of the decimal point) exists for the variable’s value. A large
number of types are possible in C++. For now, the most important
types you should concentrate on are char, int, and float. YOU can
append the prefix 1ong to make some of them hold larger values than
they would otherwise hold. Using the unsigned prefix enables them
to hold only positive numbers.

Table 4.1. Some C++ variable types.

Declaration Name

Type

char

unsigned char
signed char

int

unsigned int
signed int

short int
unsigned short int
signed short int
long

long int

signed long int
unsigned long int
float

double

long double

Character

Unsigned character

Signed character (same as char)
Integer

Unsigned integer

Signed integer (same as int)

Short integer

Unsigned short integer

Signed short integer (same as short int)
Long integer

Long integer (same as long)

Signed long integer (same as long int)
Unsigned long integer

Floating-point

Double floating-point

Long double floating-point

EXAMPLE

The next section more fully describes each of these types. For
now, you have to concentrate on the importance of declaring them
before using them.

Declaring VVariables
There are two places you can declare a variable:
¢ Before the code that uses the variable

¢ Before a function name (such as before main() in the
program)

The first of these is the most common, and is used throughout
much of this book. (If you declare a variable before a function name,
itis called a global variable. Chapter 17, “Variable Scope,” addresses
the pros and cons of global variables.) To declare a variable, you
must state its type, followed by its name. In the previous chapter,
you saw a program that declared four variables in the following
way.

- Start of the main(Q function.
= Declare the variables i and j as integers.

Declare the variable c as a character.
Declare the variable x as a floating-point variable.

main(Q)
{
int i, j; // These three lines declare four variables.
char c;
float x;
// The rest of program follows.

This declares two integer variables named i and j. You have no
idea what is inside those variables, however. You generally cannot
assume a variable holds zero—or any other number—until you

_ assign it a value. The first line basically tells C++ the following:
:?]eglérffgr‘ézrr':ges “| am going to use two integer variables somewhere in this
beforeyou use them. Program. Be expecting them. | want them named i and j. When |

put a value into i or j, | ensure that the value is an integer.”

Chapter 4 ¢ Variables and Literals

Without such a declaration, you could not assign i or j a value
later. All variables must be declared before you use them. This does
not necessarily hold true in other programming languages, such as
BASIC, but it does for C++. You could declare each of these two
variables on its own line, as in the following code:

main(Q)
{
int i;
int j;
// The rest of program follows.

You do not gain any readability by doing this, however. Most
C++ programmers prefer to declare variables of the same type on the
same line.

The second line in this example declares a character variable
called c. Only single characters should be placed there. Next, a
floating-point variable called x is declared.

Examples

1. Suppose you had to keep track of a person’s first, middle,
and last initials. Because an initial is obviously a character, it
would be prudent to declare three character variables to
hold the three initials. In C++, you could do that with the
following statement:

main()
{
char first, middle, last;
// The rest of program follows.

This statement could go after the opening brace of mainQ. It
informs the rest of the program that you require these three
character variables.

2. You could declare these three variables also on three sepa-
rate lines, although it does not necessarily improve readabil-
ity to do so. This could be accomplished with:

EXAMPLE

main(Q)

{

char first;

char middle;

char last;

// The rest of program follows.

3. Suppose you want to keep track of a person’s age and
weight. If you want to store these values as whole numbers,
they would probably go in integer variables. The following
statement would declare those variables:

mainQ)
{
int age, weight;
// The rest of program follows.

Looking at Data Types

You might wonder why it is important to have so many
variable types. After all, a number is just a number. C++ has more
data types, however, than almost all other programming languages.
The variable’s type is critical, but choosing the type among the many
offerings is not as difficult as it might first seem.

The character variable is easy to understand. A character
variable can hold only a single character. You cannot put more than
a single character into a character variable.

NOTE: Unlike many other programming languages, C++
does not have a string variable. Also, you cannot hold more
than a single character in a C++ character variable. To store a
string of characters, you must use an aggregate variable type
that combines other fundamental types, such as an array.
Chapter 5, “Character Arrays and Strings,” explains this more
fully.

Integers hold whole numbers. Although mathematicians might
cringe at this definition, an integer is actually any number that does

Chapter 4 ¢ Variables and Literals

not contain a decimal point. All the following expressions are
integers:

45 -932 0 12 5421

Floating-point numbers contain decimal points. They are known
as real numbers to mathematicians. Any time you have to store a
salary, a temperature, or any other number that might have a
fractional part (a decimal portion), you must store it in a floating-
point variable. All the following expressions are floating-point
numbers, and any floating-point variable can hold them:

45.12 -2344.5432 0.00 .04594

Sometimes you have to keep track of large numbers, and
sometimes you have to keep track of smaller numbers. Table 4.2
shows a list of ranges that each C++ variable type can hold.

’ CAUTION: All true AT&T C++ programmers know that
i they cannot count on using the exact values in Table 4.2 on
every computer that uses C++. These ranges are typical on a
PC, but might be much different on another computer. Use this
table only as a guide.

Table 4.2. Typical ranges that C++ variables hold.

Type Range*

char -128 to 127
unsigned char 0to 255

signed char -128 to 127

int —32768 to 32767
unsigned int 0 to 65535
signed int -32768 to 32767
short int -32768 to 32767

unsigned short int 0 to 65535

EXAMPLE
Type Range*
signed short int -32768 to 32767
long int —2147483648 to 2147483647
signed long int —2147483648 to 2147483647
float -3.4E-38 to 3.4E+38
double -1.7E-308 to 1.7E+308
long double -3.4E-4932 to 1.1E+4932

* Use this table only as a guide; different compilers and different computers can have different
ranges.

NOTE: The floating-point ranges in Table 4.2 are shown in
scientific notation. To determine the actual range, take the
number before the E (meaning Exponent) and multiply it by
10 raised to the power after the plus sign. For instance, a
floating-point number (type float) can contain a number as
small as -3.4%,

Notice that long integers and long doubles tend to hold larger
numbers (and therefore, have a higher precision) than regular
integers and regular double floating-point variables. This is due to
the larger number of memory locations used by many of the C++
compilers for these data types. Again, this is usually—but not
always—the case.

Do Not Over Type a Variable

If the long variable types hold larger numbers than the regular
ones, you might initially want to use long variables for all your
data. This would not be required in most cases, and would
probably slow your program’s execution.

Chapter 4 ¢ Variables and Literals

As Appendix A, “Memory Addressing, Binary, and Hexadeci-
mal Review,” describes, the more memory locations used by
data, the larger that data can be. However, every time your
computer has to access more storage for a single variable (as is
usually the case for long variables), it takes the CPU much
longer to access it, calculate with it, and store it.

Use the long variables only if you suspect your data might
overflow the typical data type ranges. Although the ranges
differ between computers, you should have an idea of whether
you humbers might exceed the computer’s storage ranges.
If you are working with extremely large (or extremely small
and fractional) numbers, you should consider using the long
variables.

Generally, all numeric variables should be signed (the default)
unless you know for certain that your data contain only positive
numbers. (Some values, such as age and distances, are always
positive.) By making a variable an unsigned variable, you gain a
little extra storage range (as explained in Appendix A, “Memory
Addressing, Binary, and Hexadecimal Review”). That range of
values must always be positive, however.

Obviously, you must be aware of what kinds of data your
variables hold. You certainly do not always know exactly what each
variable is holding, but you can have a general idea. For example, in
storing a person’s age, you should realize that a long integer variable
would be a waste of space, because nobody can live to an age that
can’t be stored by a regular integer.

At first, it might seem strange for Table 4.2 to state that
character variables can hold numeric values. In C++, integers and
character variables frequently can be used interchangeably. As
explained in Appendix A, “Memory Addressing, Binary, and Hexa-
decimal Review,” each ASCII table character has a unique number
that corresponds to its location in the table. If you store a number in
a character variable, C++ treats the data as if it were the ASCII
character that matched that number in the table. Conversely, you
can store character data in an integer variable. C++ finds that

EXAMPLE

character’s ASCII number, and stores that number rather than the
character. Examples that help illustrate this appear later in the
chapter.

Designating Long, Unsigned, and Floating-Point Literals

When you type a number, C++ interprets its type as the
smallest type that can hold that number. For example, if you
print 63, C++ knows that this number fits into a signed integer
memory location. It does not treat the number as a long integer,
because 63 is not large enough to warrant a long integer literal
size.

However, you can append a suffix character to numeric literals
to override the default type. If you put an L at the end of an
integer, C++ interprets that integer as a long integer. The
number 63 is an integer literal, but the number 63L is a long
integer literal.

Assign the u suffix to designate an unsigned integer literal. The
number 63 is, by default, a signed integer literal. If you type 63y,
C++ treats it as an unsigned integer. The suffix uL indicates an
unsigned long literal.

C++ interprets all floating-point literals (numbers that contain
decimal points) as double floating-point literals (double float-
ing-point literals hold larger numbers than floating-point liter-
als). This process ensures the maximum accuracy in such
numbers. If you use the literal 6.82, C++ treats it as a double
floating-point data type, even though it would fit in a regular
float. YOU can append the floating-point suffix (F) or the long
double floating-point suffix (L) to literals that contain decimal
points to represent a floating-point literal or a long double
floating-point literal.

You may rarely use these suffixes, but if you have to assign a
literal value to an extended or unsigned variable, your literals
might be a little more accurate if you add v, L, uL, or F (their
lowercase equivalents work too) to their ends.

Chapter 4 ¢ Variables and Literals

Assigning VValues to Variables

Now that you know about the C++ variable types, you are
ready to learn the specifics of assigning values to those variables.
You do this with the assignment statement. The equal sign (=) is used
for assigning values to variables. The format of the assignment

| statement is
dmign wive
of GUprES SO variable=expression;
ber varia bk . . .
] The variable is any variable that you declared earlier. The

expression IS any variable, literal, expression, or combination that
produces a resulting data type that is the same as the variable’s data

type.

TIP: Think of the equal sign as a left-pointing arrow. Loosely,
the equal sign means you want to take the number, variable, or
expression on the right side of the equal sign and put it into the
variable on the left side of the equal sign.

Examples

1. If you want to keep track of your current age, salary, and
dependents, you could store these values in three C++
variables. You first declare the variables by deciding on
correct types and good names for them. You then assign
values to them. Later in the program, these values might
change (for example, if the program calculates a new pay
increase for you).

_fig

Good variable names include age, salary, and dependents.
To declare these three variables, the first part of the mainQ
function would look like this:

// Declare and store three values.
main()
{

int age;

float salary;

int dependents;

EXAMPLE

Notice that you do not have to declare all integer variables
together. The next three statements assign values to the
variables.

age=32;

salary=25000.00;
dependents=2;

// Rest of program follows.

This example is not very long and doesn’t do much, but it
illustrates the using and assigning of values to variables.

2. Do not put commas in values that you assign to variables.
Numeric literals should never contain commas. The follow-
ing statement is invalid:

salary=25,000.00;

3. You can assign variables or mathematical expressions to
other variables. Suppose, earlier in a program, you stored
your tax rate in a variable called tax_rate, then decided to
use your tax rate for your spouse’s rate as well. At the
proper point in the program, you would code the following:

spouse_tax_rate = tax_rate;

(Adding spaces around the equal sign is acceptable to the
C++ compiler, but you do not have to do so.) At this pointin
the program, the value in tax_rate is copied to a new variable
named spouse_tax_rate. The value in tax_rate is still there
after this line finishes. The variables were declared earlier in
the program.

If your spouse’s tax rate is 40 percent of yours, you can
assign an expression to the spouse’s variable, as in:

spouse_tax_rate = tax_rate * _.40;

Any of the four mathematical symbols you learned in the
previous chapter, as well as the additional ones you learn
later in the book, can be part of the expression you assign to
a variable.

Chapter 4 ¢ Variables and Literals

4. If you want to assign character data to a character variable,
you must enclose the character in single quotation marks.
All C++ character literals must be enclosed in single quota-
tion marks.

The following section of a program declares three variables,
then assigns three initials to them. The initials are character
literals because they are enclosed in single quotation marks.

main(Q)
{
char first, middle, last;
first = “G”;
middle = “M”;
last = “P7;
// Rest of program follows.

Because these are variables, you can reassign their values
later if the program warrants it.

' CAUTION: Do not mix types. C enables programmers to do
i this, but C++ does not. For instance, in the middle variable
presented in the previous example, you could not have stored
a floating-point literal:

middle = 345.43244; // You cannot do this!

If you did so, middle would hold a strange value that would
seem to be meaningless. Make sure that values you assign to
variables match the variable’s type. The only major exception
to this occurs when you assign an integer to a character vari-
able, or a character to an integer variable, as you learn shortly.

Literals

As with variables, there are several types of C++ literals.
Remember that a literal does not change. Integer literals are whole
numbers that do not contain decimal points. Floating-point literals

EXAMPLE

are numbers that contain a fractional portion (a decimal point with
an optional value to the right of the decimal point).

Assigning Integer Literals

You already know that an integer is any whole number without
a decimal point. C++ enables you to assign integer literals to vari-
ables, use integer literals for calculations, and print integer literals
using the cout operator.
An octal integer liter- A regular integer literal cannot begin with a leading 0. To C++,
al contains a leading the number 012 is not the number twelve. If you precede an integer
%ame?aﬁ);ar?tgﬁ:s a literal with ao, C++ interprets it as an octal literal. An octal literal is
leading Ox. a base-8 number. The octal numbering system is not used much in
today’s computer systems. The newer versions of C++ retain octal
capabilities for compatibility with previous versions.
A special integer in C++ that is still greatly used today is the
base-16, or hexadecimal, literal. Appendix A, “Memory Addressing,
Binary, and Hexadecimal Review,” describes the hexadecimal num-
bering system. If you want to represent a hexadecimal integer literal,
add the ox prefix to it. The following numbers are hexadecimal
numbers:

0x10 0x2C4 OXFFFF 0X9

Notice that it does not matter if you use a lowercase or upper-
case letter x after the leading zero, or an uppercase or lowercase
hexadecimal digit (for hex numbers A through F). If you write
business-application programs in C++, you might think you never
have the need for using hexadecimal, and you might be correct. For
a complete understanding of C++ and your computer in general,
however, you should become a little familiar with the fundamentals
of hexadecimal numbers.

Table 4.3 shows a few integer literals represented in their
regular decimal, hexadecimal, and octal notations. Each row con-
tains the same number in all three bases.

Chapter 4 ¢ Variables and Literals

Table 4.3. Integer literals represented in three

bases.

Decimal Hexadecimal Octal
(Base 10) (Base 16) (Base 8)
16 0x10 020
65536 0x10000 0100000
25 0x19 031

NOTE: Floating-point literals can begin with a leading zero,
for example, 0.7. They are properly interpreted by C++. Only
integers can be hexadecimal or octal literals.

Your Computer’s Word Size Is Important

If you write many system programs that use hexadecimal
numbers, you probably want to store those numbers in un-
signed variables. This keeps C++ from improperly interpreting
positive numbers as negative numbers.

For example, if your computer stores integers in 2-byte words
(as most PCs do), the hexadecimal literal OXFFFF represents
either —1 or 65535, depending on how the sign bit is interpreted.
If you declared an unsigned integer, such as

unsigned_int i_num = OXFFFF;

C++ knows you want it to use the sign bit as data and not as the
sign. If you declared the same value as a signed integer,
however, as in

int i_num = OxFFFF; /* The word “signed” is optional.*/

C++ thinks this is a negative number (-1) because the sign bit
is on. (If you were to convert OXFFFF to binary, you would get
sixteen 1s.) Appendix A, “Memory Addressing, Binary, and
Hexadecimal Review,” discusses these concepts in more detail.

EXAMPLE

Assigning String Literals

Astring literal is One type of C++ literal, called the string literal, does not have a
always enclosed in matching variable. A string literal is always enclosed in double

g%”rtk’lse quotation quotation marks. Here are examples of string literals:

“C++ Programming” “123” o “4323 E. Oak Road” “x”

Any string of characters between double quotation marks—
even a single character—is considered to be a string literal. A single
space, a word, or a group of words between double quotation marks
are all C++ string literals.

If the string literal contains only numeric digits, it is not a
number; it is a string of numeric digits that you cannot use to
perform mathematics. You can perform math only on numbers, not
on string literals.

NOTE: A string literal is any character, digit, or group of
characters enclosed in double quotation marks. A character
literal is any character enclosed in single quotation marks.

The double quotation marks are never considered part of the
string literal. The double quotation marks surround the string and
simply inform your C++ compiler that the code is a string literal and
not another type of literal.

It is easy to print string literals. Simply put the string literals in
a cout statement. The following code prints a string literal to the
screen:

ﬁ The following code prints the string literal, c++ By Example.

cout << “C++ By Example”;

Examples

1. The following program displays a simple message on-screen.
No variables are needed because no datum is stored or
calculated.

Chapter 4 ¢ Variables and Literals

// Filename: C4ST1.CPP
// Display a string on-screen.

#include <iostream.h>
main(Q)

{
cout << “C++ programming is fun!”;
return O;

}

Remember to make the last line in your C++ program (be-
fore the closing brace) a return statement.

2. You probably want to label the output from your programs.
Do not print the value of a variable unless you also print a
string literal that describes that variable. The following
program computes sales tax for a sale and prints the tax.
Notice a message is printed first that tells the user what the
next number means.

// Filename: C4ST2.CPP

Tompe // Compute sales tax and display it with an appropriate
ke b message.
#include <iostream.h>
] _
main(Q)
{ EriC {

float sale, tax;
float tax_rate = .08; // Sales tax percentage

// Determine the amount of the sale.
sale = 22.54;

// Compute the sales tax.
tax = sale * tax_rate;

// Print the results.
cout << “The sales tax is “ << tax << “\n”’;

return O;

EXAMPLE

Here is the output from the program:
The sales tax is 1.8032

You later learn how to print accurately to two decimal places
to make the cents appear properly.

String-Literal Endings

An additional aspect of string literals sometimes confuses
beginning C++ programmers. All string literals end with a zero. You
do not see the zero, but C++ stores the zero at the end of the string
in memory. Figure 4.1 shows what the string “c++ pProgram” looks like
in memory.

+|+la] - - -

Null zero

-|Ee3a--.n-:--'u

Figure 4.1. In memory, a string literal always ends with o.

You do not have to worry about putting the zero at the end of
a string literal; C++ does it for you every time it stores a string. If your
program contained the string “c++ Program”, for example, the com-
piler would recognize it as a string literal (from the double quotation
marks) and store the zero at the end.

Chapter 4 ¢ Variables and Literals

All string literals end The zero is important to C++. It is called the string delimiter.
ina null zero (also Without it, C++ would not know where the string literal ended in
called binary zero or .

ASCII zer0). memory. (Remember that the double quotation marks are not stored

as part of the string, so C++ cannot use them to determine where the
string ends.)

The string-delimiting zero is not the same as the character zero.
If you look at the ASCII table in Appendix C, “ASCII Table,” you can
see that the first entry, ASCII number o, is the null character. (If you
are unfamiliar with the ASCII table, you should read Appendix A,
“Memory Addressing, Binary, and Hexadecimal Review,” for a
brief description.) This string-delimiting zero is different from the
from the character <o0-, which has an ASCII value of 48.

As explained in Appendix A, “Memory Addressing, Binary,
and Hexadecimal Review,” all memory locations in your computer
actually hold bit patterns for characters. If the letter A is stored in
memory, an A is not actually there; the binary bit pattern for the
ASCII A (01000001) is stored there. Because the binary bit pattern for
the null zero is 00000000, the string-delimiting zero is also called a
binary zero.

To illustrate this further, Figure 4.2 shows the bit patterns for
the following string literal when stored in memory: =1 am 307,

| 0400 4004
s R Rn]n]ulu]s)
L] 0 400000 4§
01404404
e Rl]
oo440044
0044 0000
i fulnuiulnyuiy

[

String-terminating zero

Figure 4.2. The bit pattern showing that a null zero and a character zero
are different.

Figure 4.2 shows how a string is stored in your computer’s
memory at the binary level. It is important for you to recognize that
the character 0, inside the number 30, is not the same zero (at the bit
level) as the string-terminating null zero. If it were, C++ would think
this string ended after the 3, which would be incorrect.

EXAMPLE

This is a fairly advanced concept, but you truly have to under-
stand it before continuing. If you are new to computers, reviewing
the material in Appendix A, “Memory Addressing, Binary, and
Hexadecimal Review,” will help you understand this concept.

String Lengths

The length of a Many times, your program has to know the length of a string.
string literal does This becomes critical when you learn how to accept string input
E?;;py‘:'z‘;fg thendl from the keyboard. The length of a string is the number of characters
' up to, but not including, the delimiting null zero. Do not include the
null character in that count, even though you know C++ adds it to

the end of the string.

Examples
1. The following are all string literals:
“0” “c” “A much longer string literal”

2. The following table shows some string literals and their
corresponding string lengths.

String Length
o 1

Q" 21
“Hello” 5

0

»30 oranges” 10

Assigning Character Literals

All C character literals should be enclosed in single quotation
marks. The single quotation marks are not part of the character, but
they serve to delimit the character. The following are valid C++
character literals:

cw? fW? QT €77 ex» <=» < 3 <>

Chapter 4 ¢ Variables and Literals

C++ does not append a null zero to the end of character literals.
You should know that the following are different to C++.

“‘R” and “R”

<R~ is a single character literal. It is one character long, because
all character literals (and variables) are one character long. <r” is a
string literal because it is delimited by double quotation marks. Its
length is also one, but it includes a null zero in memory so C++
knows where the string ends. Due to this difference, you cannot mix

character literals and character strings. Figure 4.3 shows how these
two literals are stored in memory.

'R in Rkt F

‘R inFisAd

—
| &

Figure 4.3. The difference in memory between <R as a character
literal and “Rr” as a string literal.

All the alphabetic, numeric, and special characters on your
keyboard can be character literals. Some characters, however, can-
not be represented with your keyboard. They include some of
the higher ASCII characters (such as the Spanish N). Because you do
not have keys for every character in the ASCII table, C++ enables you
to represent these characters by typing their ASCII hexadecimal
number inside single quotation marks.

For example, to store the Spanish N in a variable, look up its
hexadecimal ASCII number from Appendix C, “ASCII Table.” You
find that it is as. Add the prefix \x to it and enclose it in single
quotation marks, so C++ will know to use the special character. You
could do that with the following code:

char sn=>\xA5"; // Puts the Spanish N into a variable called sn.

EXAMPLE

This is the way to store (or print) any character from the ASCI|I table,
even if that character does not have a key on your keyboard.

The single quotation marks still tell C++ that a single character
is inside the quotation marks. Even though <\xas- contains four
characters inside the quotation marks, those four characters repre-
sent a single character, not a character string. If you were to include
those four characters inside a string literal, C++ would treat \xas as
a single character in the string. The following string literal,

“An accented a is \xA0”

is a C++ string that is 18 characters, not 21 characters. C++ interprets
the \xao character as the &, just as it should.

’ CAUTION: If you are familiar with entering ASCII charac-
i ters by typing their ASCII numbers with the Alt-keypad com-
bination, do not do this in your C++ programs. They might
work on your computer (not all C++ compilers support this),
but your program might not be portable to another computer’s
C++ compiler.

Any character preceded by a backslash, \, (such as these have
been) is called an escape sequence, or escape character. Table 4.4 shows
some additional escape sequences that come in handy when you
want to print special characters.

"\-\.l" 'r_f

TIP: Include “\n” in a cout if you want to skip to the next
line when printing your document.

Table 4.4. Special C++ escape-sequence

characters.

Escape Sequence Meaning

\a Alarm (the terminal’s bell)
\b Backspace

\f Form feed (for the printer)

continues

Chapter 4 ¢ Variables and Literals

Table 4.4. Continued.

Escape Sequence Meaning

\n Newline (carriage return and line feed)
\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash (\)

\? Question mark

\” Single quotation mark

\” Double quotation mark
\000 Octal number

\xhh Hexadecimal number

\0 Null zero (or binary zero)

Math with C++ Characters

Because C++ links characters so closely with their ASCIl num-
bers, you can perform arithmetic on character data. The follow-
ing section of code,

char c;
c=*“T” +5; // Add five to the ASCII character.

actually stores a Y in c. The ASCII value of the letter T is 84.
Adding 5 to 84 produces 89. Because the variable c is not an
integer variable, but is a character variable, C++ adds the ASCII
character for 89, not the actual number.

Conversely, you can store character literals in integer variables.
If you do, C++ stores the matching ASCII number for that
character. The following section of code

int i="P”;

C++ By

EXAMPLE

does not put a letter P in i because i is not a character variable.
C++ assigns the number 80 in the variable because 80 is the
ASCII number for the letter P.

Examples

& 1. To print two names on two different lines, include the \n
= between them.
= Print the name Harry; drop the cursor down to a new line and
= print Jerry.

cout << “Harry\nJerry”;

When the program reaches this line, it prints

Harry
Jerry

You also could separate the two names by appending more
of the cout operator, such as:

cout << “Harry” << “\n” << “Jerry”’;

Because the \n only takes one byte of storage, you can output
it as a character literal by typing <\n- in place of the preced-
ing “\n”.

2. The following short program rings the bell on your com-
puter by assigning the \a escape sequence to a variable, then
printing that variable.

// Filename: C4BELL.CPP

// Rings the bell

#include <iostream._h>

mainQ)

{
char bell="\a’;
cout << bell; // No newline needed here.
return O;

Chapter 4 ¢ Variables and Literals

Constant VVariables

The term constant variable might seem like a contradiction. After
all, a constant never changes and a variable holds values that
change. In C++ terminology, you can declare variables to be con-
stants with the const keyword. Throughout your program, the
constants act like variables; you can use a constant variable any-
where you can use a variable, but you cannot change constant
variables. To declare a constant, put the keyword const in front of the
variable declaration, for instance:

const int days_of week = 7;

C++ offers the const keyword as an improvement of the #define
preprocessor directive that C uses. Although C++ supports #define
as well, const enables you to specify constant values with specific
data types.

The const keyword is appropriate when you have data that
does not change. For example, the mathematical 1tis a good candi-
date for a constant. If you accidently attempt to store a value in a
constant, C++ will let you know. Most C++ programmers choose to
type their constant names in uppercase characters to distinguish
them from regular variables. This is the one time when uppercase
reigns in C++,

NOTE: This book reserves the name constant for C++ pro-
gram constants declared with the const keyword. The term
literal is used for numeric, character, and string data values.
Some books choose to use the terms constant and literal inter-
changeably, but in C++, the difference can be critical.

Example

Suppose a teacher wanted to compute the area of a circle for the
class. To do so, the teacher needs the value of 1t (mathematically, 1t
is approximately 3.14159). Because 1tremains constant, it is a good
candidate for a const keyword, as the following program shows:

C++ By

EXAMPLE

Comment for the program filename and description.
Declare a constant value for 1t
Declare variables for radius and area.

Compute and print the area for both radius values.

// Filename: C4AREAC.CPP
// Computes a circle with radius of 5 and 20.
#include <iostream.h>
main(Q)
{
const float PI1=3.14159;
float radius = 5;
float area;

area = radius * radius * Pl; // Circle area calculation
cout << “The area is “ << area << “ with a radius of 5.\n”;

radius = 20; // Compute area with new radius.
area = radius * radius * PI;

cout << “The area is “ << area << “ with a radius of 20.\n”;

return O;

Review Questions

The answers to the review questions are in Appendix B.
1. Which of the following variable names are valid?
my_name 89_sales sales_89 a-salary

2. Which of the following literals are characters, strings, inte-
gers, and floating-point literals?

0 -12.0 “2.0” “X” “X 65.4 -708 “0”

Chapter 4 ¢ Variables and Literals

3. How many variables do the following statements declare,
and what are their types?

int i, j, k;
char c, d, e;
float x=65.43;

4. With what do all string literals end?

5. True or false: An unsigned variable can hold a larger value
than a signed variable.

6. How many characters of storage does the following literal
take?

“\x41”
7. How is the following string stored at the bit level?
“Order 10 of them.”

8. How is the following string (called a null string) stored at the
bit level? (Hint: The length is zero, but there is still a termi-
nating character.)

9. What is wrong with the following program?

#include <iostream.h>
main()
{
const int age=35;
cout << age << ‘“\n”’;

age = 52;
cout << age << ‘“\n”’;
return O;

C++ By

EXAMPLE

Review Exercises

Now that you have learned some basic C++ concepts, the
remainder of the book will include this section of review exercises so
you can practice your programming skills.

1. Write the C++ code to store three variables: your weight
(you can fib), height in feet, and shoe size. Declare the
variables, then assign their values in the body of your
program.

2. Rewrite your program from Exercise 1, adding proper cout
statements to print the values to the screen. Use appropriate
messages (by printing string literals) to describe the numbers
that are printed.

3. Write a program that stores a value and prints each type of
variable you learned in this chapter.

4. Write a program that stores a value into every type of vari-
able C++ allows. You must declare each variable at the
beginning of your program. Give them values and print
them.

Summary

A firm grasp of C++’s fundamentals is critical to a better
understanding of the more detailed material that follows. This is one
of the last general-topic chapters in the book. You learned about
variable types, literal types, how to name variables, how to assign
variable values, and how to declare constants. These issues are
critical to understanding the remaining concepts in C++.

This chapter taught you how to store almost every type of
literal into variables. There is no string variable, so you cannot store
string literals in string variables (as you can in other programming
languages). However, you can “fool” C++ into thinking it has a string
variable by using a character array to hold strings. You learn this
important concept in the next chapter.

Character Arrays
and Strings

Even though C++ has no string variables, you can act as if C++ has
them by using character arrays. The concept of arrays might be new
to you, but this chapter explains how easy they are to declare and
use. After you declare these arrays, they can hold character strings—
just as if they were real string variables. This chapter includes

¢ Character arrays
¢ Comparison of character arrays and strings
¢ Examples of character arrays and strings

After you master this chapter, you are on your way to being
able to manipulate almost every type of variable C++ offers. Ma-
nipulating characters and words is one feature that separates your
computer from a powerful calculator; this capability gives comput-
ers true data-processing capabilities.

Chapter 5 ¢ Character Arrays and Strings

Character Arrays

A string literal can be Almost every type of data in C++ has a variable, but there is no

SLOTedti“ anaryof yariable for holding character strings. The authors of C++ realized
characters.

that you need some way to store strings in variables, but instead of
storing them in a string variable (as some languages such as BASIC
or Pascal do) you must store them in an array of characters.

If you have never programmed before, an array might be new
to you. An array is a list (sometimes called a table) of variables, and
most programming languages allow the use of such lists. Suppose
you had to keep track of the sales records of 100 salespeople. You
could make up 100 variable names and assign a different salesperson’s
sales record to each one.

All those different variable names, however, are difficult to
track. If you were to put them in an array of floating-point variables,
you would have to keep track of only a single name (the array name)
and reference each of the 100 values by a numeric subscript.

The last few chapters of this book cover array processing in
more detail. However, to work with character string data in your
early programs, you have to become familiar with the concept of
character arrays.

Because a string is simply a list of one or more characters, a
character array is the perfect place to hold strings of information.
Suppose you want to keep track of a person’s full name, age, and
salary in variables. The age and salary are easy because there are
variable types that can hold such data. The following code declares
those two variables:

int age;
float salary;

You have no string variable to hold the name, but you can
create an appropriate array of characters (which is actually one or
more character variables in a row in memory) with the following
declaration:

char name[15];

This reserves a character array. An array declaration always
includes brackets (1) that declare the space for the array. This array
is 15 characters long. The array name is name. YOU also can assign a

C++ By

EXAMPLE

value to the character array at the time you declare the array. The
following declaration statement not only declares the character
array, but also assigns the name “Michael Jones” at the same time:

Declare the character array called name as 15 characters long, and assign
Michael Jones 10 the array.

char name[15]="Michael Jones”;

Figure 5.1 shows what this array looks like in memory. Each of
the 15 boxes of the array is called an element. Notice the null zero (the
string-terminating character) at the end of the string. Notice also that
the last character of the array contains no data. You filled only the
first 14 elements of the array with the data and the data’s null zero.
The 15th element actually has a value in it—but whatever follows
the string’s null zero is not a concern.

reme 0]

[1]

[
[5]

[£]
[r]

=
—lole|=lal-E] - - -

[19]
[11]
[1=]
[1=]
[14]

LEN o) =] L] E

&

Figure 5.1. A character array after being declared and assigned a string
value.

You can access individual elements in an array, or you can
access the array as a whole. This is the primary advantage of an array
over the use of many differently named variables. You can assign
values to the individual array elements by putting the elements’
location, called a subscript, in brackets, as follows:

name[3]="Kk”;

Chapter 5 ¢ Character Arrays and Strings

This overwrites the h in the name michael with a k. The string now
looks like the one in Figure 5.2.

rama [0]

[1]

[
[=]

[r]

[19]
[]
[12]
[4=]
[14]

L] REE Lol = L=

—

Figure 5.2. The array contents (see Figure 5.1) after changing one of the

elements.
All array subscripts All array subscripts start at zero. Therefore, to overwrite the
begin at 0. first element, you must use o as the subscript. Assigning name[3] (as
is done in Figure 5.2) changes the value of the fourth element in the
array.

You can print the entire string—or, more accurately, the entire
array—with a single cout statement, as follows:

cout << name;

Notice when you print an array, you do not include brackets
after the array name. You must be sure to reserve enough characters
in the array to hold the entire string. The following line,

char name[5]="Michael Jones”;

is incorrect because it reserves only five characters for the array,
whereas the name and its null zero require 14 characters. However,
C++ does give you an error message for this mistake (itlegal
initialization).

EXAMPLE

’ CAUTION: Always reserve enough array elements to hold the
i string, plus its null-terminating character. It is easy to forget the
null character, but don’t do it!

If your string contains 13 characters, it also must have a 14th for
the null zero or it will never be treated like a string. To help eliminate
this error, C++ gives you a shortcut. The following two character
array statements are the same:

char horse[9]="Stallion”;
and
char horse[]="Stallion”;

If you assign a value to a character array at the same time you declare
the array, C++ counts the string’s length, adds one for the null zero,
and reserves the array space for you.

If you do not assign a value to an array at the time it is declared,
you cannot declare it with empty brackets. The following statement,

char people[];

does not reserve any space for the array called people. Because you
did not assign a value to the array when you declared it, C++
assumes this array contains zero elements. Therefore, you have no
room to put values in this array later. Most compilers generate an
error if you attempt this.

Character Arrays
Versus Strings

In the previous section, you saw how to put a string in
a character array. Strings can exist in C++ only as string literals, or
as stored information in character arrays. At this point, you have
only to understand that strings must be stored in character arrays.
As you read through this book and become more familiar with
arrays and strings, however, you should become more comfortable
with their use.

Chapter 5 ¢ Character Arrays and Strings

NOTE: Strings must be stored in character arrays, but not all
character arrays contain strings.

Look at the two arrays shown in Figure 5.3. The first one, called
caral, is a character array, but it does not contain a string. Rather than
a string, it contains a list of several characters. The second array,
called cara2, contains a string because it has a null zero at its end.

Carad

=

—_
=
=

S o B = TR A Y P 1

ER 0 HEER

Zaraz

,_.
=3
TR

ERJTHEEE

+— Null zero

Figure 5.3. Two character arrays: caral contains characters, and cara2
contains a character string.

You could initialize these arrays with the following assignment
statements.

3

l

Iritrliz e
o b ent
of aray

'

C++ By

EXAMPLE

Declare the array cara1 with 10 individual characters.
Declare the array cara2 with the character string “Excellent”.

char caral[10]={®a’, “b”, “c¢”, *d*, <e”, “f*, “g”, “h”, “i’,
17
char cara2[10]="Excellent”;

If you want to put only individual characters in an array, you
must enclose the list of characters in braces, as shown. You could
initialize cara1 later in the program, using assignment statements, as
the following code section does.

char caral[10];
caral[0]="a";
caral[l]="b~";
caral[2]="c”;
caral[3]="d";
caral[4]="e”;
caral[5]="f";
caral[6]="g”";

caral[7]="h";

caral[8]="1";

caral[9]="]"; // Last element possible with subscript of nine.

Because the cara1 character array does not contain a null zero,
it does not contain a string of characters. It does contain characters
that can be stored in the array—and used individually—but they
cannot be treated in a program as if they were a string.

CAUTION: You cannot assign string values to character arrays
in a regular assignment statement, except when you first
declare the character arrays.

Because a character array is not a string variable (it can be used
only to hold a string), it cannot go on the left side of an equal (=) sign.
The program that follows is invalid:

Chapter 5 ¢ Character Arrays and Strings

#include <iostream.h>

main(Q)

{
char petname[20]; // Reserve space for the pet’s name.
petname = “Alfalfa”; // INVALID!
cout << petname; // The program will never get here.
return;

¥

Because the pet’s name was not assigned at the time the character
array was declared, it cannot be assigned a value later. The following
is allowed, however, because you can assign values individually to
a character array:

#include <iostream._h>

main(Q)

{
char petname[20]; // Reserve space for the pet’s name.
petname[0]="A"; // Assign values one element at a time.
petname[1]="1";
petname[2]="F";
petname[3]="a’;
petname[4]="1";
petname[5]="F";
petname[6]="a’;
petname[7]="\0"; // Needed to ensure this is a string!
cout <<petname; // Now the pet’s name prints properly.
return;

The petname character array now holds a string because the last
character is a null zero. How long is the string in petname? It is seven
characters long because the length of a string never includes the null
zZero.

You cannot assign more than 20 characters to this array because
its reserved space is only 20 characters. However, you can store any
string of 19 (leaving one for the null zero) or fewer characters to the
array. If you assign the “Alfalfa” string in the array as shown, and
then assign a null zero to petname[3] as in:

petname[3]="\0";

EXAMPLE

the string in petname is now only three characters long. You have, in
effect, shortened the string. There are still 20 characters reserved for
petname, but the data inside it is the string “a1¥ ending with a null
Zero.

There are many other ways to assign a value to a string. You can
use the strcpy () function, for example. This is a built-in function that
enables you to copy a string literal in a string. To copy the “Alfalfa”
pet name into the petname array, you type:

strcpy(petname, “Alfalfa™); // Copies Alfalfa into the array.

The strepy O The strcpyQ (“string copy”) function assumes that the first

function putsstring - y/a1ye jn the parentheses is a character array name, and that the

literals in string

arrays. second value is a valid string literal or another character array that
holds a string. You must be sure that the first character array in the
parentheses is long enough (in number of reserved elements) to hold
whatever string you copy into it.

NOTE: Place an #include <string.h> line before the mainQ
function in programs that use strcpy() or any other built-in
string functions mentioned in this book. Your compiler sup-
plies the string.h file to help the strcpy() function work prop-
erly. The #include files such as iostream.h and string.h will be
further explained as you progress through this book.

Other methods of initializing arrays are explored throughout
the rest of this book.

Examples

1. Suppose you want to keep track of your aunt’s name in a
program so you can print it. If your aunt’s name is Ruth Ann
Cooper, you have to reserve at least 16 elements—15 to hold
the name and one to hold the null character. The following
statement properly reserves a character array to hold her
name:

1

char aunt_name[16];

Chapter 5 ¢ Character Arrays and Strings

2. If you want to put your aunt’s name in the array at the same
time you reserve the array space, you could do it like this:

char aunt_name[16]="Ruth Ann Cooper”;

You could also leave out the array size and allow C++ to
count the number needed:

char aunt_name[]="Ruth Ann Cooper”;

3. Suppose you want to keep track of the names of three
friends. The longest name is 20 characters (including the null
zero). You simply have to reserve enough character-array
space to hold each friend’s name. The following code does
the trick:

char friendl1[20];
char friend2[20];
char friend3[20];

These array declarations should appear toward the top of
the block, along with any integer, floating-point, or character
variables you have to declare.

4. The next example asks the user for a first and last name. Use
the cin operator (the opposite of cout) to retrieve data from
the keyboard. Chapter 7, “Simple I/0,” more fully explains
the cout and cin operators. The program then prints the
user’s initials on-screen by printing the first character of each
name in the array. The program must print each array’s o
subscript because the first subscript of any array begins at 0,
not 1.

// Filename: CS5INIT.CPP

// Print the user’s initials.

#include <iostream.h>

main(Q)

{
char first[20]; // Holds the first name
char last[20]; // Holds the last name

cout << “What is your first name? \n”’;
cin >> first;

EXAMPLE

cout << “What is your last name? \n”’;
cin >> last;

// Print the initials

cout << “Your initials are “ << first[0] << “ *
<< last[0];

return O;

}

5. The following program takes your three friends’ character
arrays and assigns them string values by using the three
methods shown in this chapter. Notice the extra #include file
used with the string function strcpy().

// Filename: C5STR.CPP
// Store and initialize three character arrays for three

hibalizs _

a1 AT friends.

C oy Aring #include <iostream.h>

botr it #include <string.h>

+ main()

Caoply char ackors {

ko e o _

// Declare all arrays and initialize the first one.

i char friendl[20]="Jackie Paul Johnson”;
char friend2[20];

char friend3[20];

// Use a function to initialize the second array.
strcpy(friend2, “Julie L. Roberts”);

friend3[0]="A"; // Initialize the last,
friend3[1]="d*; // an element at a time.
friend3[2]="a";

friend3[3]="m";

friend3[4]=" *;

friend3[5]="G";

friend3[6]=".";

friend3[7]=" *;

friend3[8]="S";

friend3[9]="m";

friend3[10]="1";

Chapter 5 ¢ Character Arrays and Strings

friend3[11]="t";
friend3[12]="h";
friend3[13]="\0";

// Print all three names.
cout << friendl << “\n”’;
cout << friend2 << “\n”’;
cout << friend3 << “\n”;
return O;

}

The last method of initializing a character array with a
string—one element at a time—is not used as often as the
other methods.

Review Questions
The answers to the review questions are in Appendix B.

1. How would you declare a character array called my_name that
holds the following string literal?

“This is C++”
2. How long is the string in Question 1?

3. How many bytes of storage does the string in Question 1
take?

4. With what do all string literals end?

5. How many variables do the following statements declare,
and what are their types?

char name[25];
char address[25];

6. True or false: The following statement assigns a string literal
to a character array.

myname[]="Kim Langston”;

C++ By

EXAMPLE

7. True or false: The following declaration puts a string in the
character array called city.

char city[]={*M*, “i*, “a’, “m”, “i”’, “\0’};

8. True or false: The following declaration puts a string in the
character array called city.

char city[]={*M*, “i’, “a’, “m”, “i’};

Review Exercises

1. Write the C++ code to store your weight, height (in feet),
shoe size, and name with four variables. Declare the vari-
ables, then assign their values in the body of your program.

2. Rewrite the program in Exercise 1, adding proper printf()
statements to print the values. Use appropriate messages (by
printing string literals) to describe the printed values.

3. Write a program to store and print the names of your two
favorite television programs. Store these programs in two
character arrays. Initialize one of the strings (assign it the
first program’s name) at the time you declare the array.
Initialize the second value in the body of the program with
the strcpy() function.

4. Write a program that puts 10 different initials in 10 elements
of a single character array. Do not store a null zero. Print the
list backward, one initial on each line.

Summary

This has been a short, but powerful chapter. You learned about
character arrays that hold strings. Even though C++ has no string
variables, character arrays can hold string literals. After you put a
string in a character array, you can print or manipulate it as if it were
a string.

Chapter 5 ¢ Character Arrays and Strings

Starting with the next chapter, you begin to hone the C++ skills
you are building. Chapter 6, “Preprocessor Directives,” introduces
preprocessor directives, which are not actually part of the C++

language but help you work with your source code before your
program is compiled.

Preprocessor
Directives

As you might recall from Chapter 2, “What Is a Program?,” the C++
compiler routes your programs through a preprocessor before it
compiles them. The preprocessor can be called a “pre-compiler”
because it preprocesses and prepares your source code for compil-
ing before your compiler receives it.

Because this preprocess is so important to C++, you should
familiarize yourself with it before learning more specialized com-
mands in the language. Regular C++ commands do not affect the
preprocessor. You must supply special non-C++ commands, called
preprocessor directives, to control the preprocessor. These directives
enable you, for example, to modify your source code before the code
reaches the compiler. To teach you about the C++ preprocessor, this
chapter

¢ Defines preprocessor directives

¢ Introduces the #include preprocessor directive
¢ Introduces the #define preprocessor directive
+

Provides examples of both

Chapter 6 ¢ Preprocessor Directives

Almost every proper C++ program contains preprocessor di-
rectives. This chapter teaches you the two most common: #include
and #define.

Understanding Preprocessor
Directives

Preprocessor directives are commands that you supply to the
preprocessor. All preprocessor directives begin with a pound sign
(#). Never put a semicolon at the end of preprocessor directives,
because they are preprocessor commands and not C++ commands.
Preprocessor directives typically begin in the first column of your
source program. They can begin in any column, of course, but you
should try to be consistent with the standard practice and start them
in the first column wherever they appear. Figure 6.1 illustrates a
program that contains three preprocessor directives.

// Filename: C6PRE.CPP
// C++ program that demonstrates preprocessor directives.

[#include <iostream.h>
Preprocessor
directives #define AGE 28
|_#define MESSAGE “Hello, world”

main()
{
int i = 10, age; // 1 is assigned a value at declaration
// age is still UNDEFINED
age = 5; // Defines the variable, age, as five.
i = i1 * AGE; // AGE is not the same as the variable, age.
cout << i << “ * << age << “ “* << AGE << “\n”; // 280 5 28

cout << MESSAGE; // Prints “Hello world”.

return O;

Figure 6.1. Program containing three preprocessor directives.

Preprocessor Preprocessor directives cause your C++ preprocessor to change
directives your source code, but these changes last only as long as the compi-

temporarily change
your source code

lation. When you look at your source code again, the preprocessor
is finished with your file and its changes are no longer in the file.
Your preprocessor does not in any way compile your program or
change your actual C++ commands. This concept confuses some
beginning C++ students, but just remember that your program has
yet to be compiled when your preprocessor directives execute.

It has been said that a preprocessor is hothing more than a text-
editor on your program. This analogy holds true throughout this
chapter.

The #include Directive

The #include preprocessor directive merges a disk file into your
source program. Remember that a preprocessor directive does
nothing more than a word processing command does to your
program; word processors also are capable of file merging. The
format of the #include preprocessor directive follows:

#include <filename>
or

#include “filename”

In the #include directive, the filename must be an ASCI|I text file
(as your source file must be) located somewhere on a disk. To better
illustrate this rule, it might help to leave C++ for just a moment. The
following example shows the contents of two files on disk. One is
called OUTSIDE and the other is called INSIDE.

These are the contents of the OUTSIDE file:

Now is the time for all good men

#include <INSIDE>

to come to the aid of their country.

Chapter 6 ¢ Preprocessor Directives

The INSIDE file contains the following:

A quick brown fox jumped
over the lazy dog.

Assume you can run the OUTSIDE file through the C++
preprocessor, which finds the #include directive and replaces it with
the entire file called INSIDE. In other words, the C++ preprocessor
directive merges the INSIDE file into the OUTSIDE file—at the
#include location—and OUTSIDE expands to include the merged
text. After the preprocessing ends, OUTSIDE looks like this:

Now is the time for all good men

A quick brown fox jumped
over the lazy dog.

to come to the aid of their country.

The INSIDE file remains on disk in its original form. Only the
file containing the #inciude directive is changed. This change is only
temporary; that is, OUTSIDE is expanded by the included file only
for as long as it takes to compile the program.

A few real-life examples might help, because the OUTSIDE and
INSIDE files are not C++ programs. You might want to include a file
containing common code that you frequently use. Suppose you
print your name and address quite often. You can type the following
few lines of code in every program that prints your name and
address:

cout << “Kelly Jane Peterson\n”’;
cout << “Apartment #217\n”’;

cout << “4323 East Skelly Drive\n”;
cout << “New York, New York\n”;
cout << * 10012\n"’;

Instead of having to retype the same five lines again and again,
you type them once and save them in a file called MYADD.C. From
then on, you only have to type the single line:

#include <myadd.c>

EXAMPLE

This not only saves typing, but it also maintains consistency
and accuracy. (Sometimes this kind of repeated text is known as a
boilerplate.)

You usually can use angled brackets, <>, or double quotation
marks, <, around the included filename with the same results. The
angled brackets tell the preprocessor to look for the include file in a
default include directory, set up by your compiler. The double
quotation marks tell the preprocessor first to look for the include file
in the directory where the source code is stored, and then, to look for
it in the system’s include directory.

Most of the time, you do see angled brackets around the
included filename. If you want to include sections of code in other
programs, be sure to store that code in the system’s include directory
(if you use angled brackets).

The #include Even though #include works well for inserted source code,

directive is most there are other ways to include common source code that are more

g;t;';rffsga?err (e ©fficient. You learn about one technique, called writing external
functions, in Chapter 16, “Writing C++ Functions.”

This source code #include example serves well to explain what
the #include preprocessor directive does. Despite this fact, #include
seldom is used to include source code text, but is more often used to
include special system files called header files. These system files
help C++ interpret the many built-in functions that you use. Your
C++ compiler comes with its own header files. When you (or your
system administrator) installed your C++ compiler, these header
files were automatically stored on your hard drive in the system’s
include directory. Their filenames always end in .h to differentiate
them from regular C++ source code.

The most common header file is named iostream.h. This file
gives your C++ compiler needed information about the built-in cout
and cin operators, as well as other useful built-in routines that
perform input and output. The name “iostream.h” stands for input/
output stream header.

At this point, you don’t have to understand the iostream.h file.
You only have to place this file before main() in every program you
write. It is rare that a C++ program does not need the iostream.h file.
Even when the file is not needed, including it does no harm. Your
programs can work without iostream.h as long as they do not use

Chapter 6 ¢ Preprocessor Directives

an input or output operator defined there. Nevertheless, your
programs are more accurate and hidden errors come to the surface
much faster if you include this file.

Throughout this book, whenever a new built-in function is
described, the function’s matching header file is included. Because
almost every C++ program you write includes a cout to print to the
screen, almost every program contains the following line:

Eﬁi Include the built-in C++ header file called iostream.h.

#include <iostream.h>

In the last chapter, you saw the strcpy() function. Its header file
is called string.h. Therefore, if you write a program that contains
strcpy(), include its matching header file at the same time you
include <iostream.h>. These appear on separate lines, such as:

#include <iostream.h>
#include <string.h>

The order of your include files does not matter as long as you
include the files before the functions that need them. Most C++
programmers include all their needed header files before main().

These header files are simply text files. If you like, find a header
file such as stdio.h on your hard drive and look at it. The file might
seem complex at this point, but there is nothing “hidden’ about it.
Don’t change the header file in any way while looking at it. If you do,
you might have to reload your compiler to restore the file.

Examples

1. The following program is short. It includes the name-and-
address printing routine described earlier. After printing the
name and address, it ends.

// Filename: C6INC1.CPP
// 1llustrates the #include preprocessor directives.
#include <iostream.h>

EXAMPLE

main()

{

#include “myadd.c”
return O;

}

The double quotation marks are used because the file called
MYADD.C is stored in the same directory as the source file.
Remember that if you type this program into your computer
(after typing and saving the MYADD.C file) and then com-
pile your program, the MYADD.C file is included only as
long as it takes to compile the program. Your compiler does
not see this file. Your compiler acts as if you have typed the
following:

// Filename: C6INCL1.CPP

// 1llustrates the #include preprocessor directive.
#include <iostream.h>

main(Q)

{

cout(“Kelly Jane Peterson\n”;
cout(“Apartment #217\n”’;
cout(“4323 East Skelly Drive\n”;
cout(“New York, New York\n”;
cout(“ 10012\n"’;
return O;

}

This explains what is meant by a preprocessor: The changes
are made to your source code before it’s compiled. Your
original source code is restored as soon as the compile is
finished. When you look at your program again, it appears
as originally typed, with the #include statement.

2. The following program copies a message into a character
array and prints it to the screen. Because the cout and
strepy() built-in functions are used, both of their header files
are included.

Chapter 6 ¢ Preprocessor Directives

// Filename: C6INCL3.CPP
// Uses two header files.

#include <iostream.h>
#include <string.h>

main(Q)

{
char message[20];
strcpy(message, “This is fun!™);
cout << message;
return O;

The #define Directive

The #define preprocessor directive is used in C++ program-
ming, although not nearly as frequently as it is in C. Due to the
const keyword (in C++) that enables you to define variables as
constants, #define is not used as much in C++. Nevertheless, #define
is useful for compatibility to C programs you are converting to C++.
The #define directive might seem strange at first, but it is similar to
a search-and-replace command on a word processor. The format of
#define follows:

#define ARGUMENT1 argument2

The #define where ARGUMENT1 is a single word containing no spaces. Use the same
directive replaces f naming rules for the #define statement’s first argument as for vari-
€very occurrence 0 13 H H 1] :

a first argument with ables (_se_e Cha_p_ter 4, “Variables and Literals”). For the first argu-
a second argument. ment, it is traditional to use uppercase letters—one of the only uses

of uppercase in the entire C++ language. At least one space separates
ARGUMENT1 from argument2. The argument2 can be any character, word,
or phrase; it also can contain spaces or anything else you can type on
the keyboard. Because #define is a preprocessor directive and not a
C++ command, do not put a semicolon at the end of its expression.

The #define preprocessor directive replaces the occurrence
of ARGUMENT1 everywhere in your program with the contents of

The #define
directive creates
defined literals.

C++ By

EXAMPLE

argument2. IN Most cases, the #define directive should go before main()
(along with any #include directives). Look at the following #define
directive:

Define the aceLiviT literal to 21.
#define AGELIMIT 21

If your program includes one or more occurrences of the term
AGELIMIT, the preprocessor replaces every one of them with the
number 21. The compiler then reacts as if you actually had typed 21
rather than aceLimiT, because the preprocessor changes all occur-
rences of AceLimIT to 21 before your compiler reads the source code.
But, again, the change is only temporary. After your program is
compiled, you see it as you originally typed it, with #define and
AceLImIT still intact.

AGELIMIT iS not a variable, because variables are declared and
assigned values only at the time when your program is compiled
and run. The preprocessor changes your source file before the time
it is compiled.

You might wonder why you would ever have to go to this much
trouble. If you want 21 everywhere AGELIMIT OCCUrS, you could type
21 to begin with! But the advantage of using #define rather than
literals is that if the age limit ever changes (perhaps to 18), you have
to change only one line in the program, not every single occurrence
of the literal 21.

Because #define enables you easily to define and change liter-
als, the replaced arguments of the #define directive are sometimes
called defined literals. (C programmers say that #define “defines
constants,” but C++ programmers rarely use the word “constant”
unless they are discussing the use of const.) You can define any type
of literal, including string literals. The following program contains
a defined string literal that replaces a string in two places.

// Filename: C6DEF1.CPP
// Defines a string literal and uses it twice.

#include <iostream.h>
#define MYNAME “Phil Ward”

main(Q)

Chapter 6 ¢ Preprocessor Directives

{
char name[]=MYNAME;
cout << “My name is “ << name << ‘“\n”’; // Prints the array.
cout << “My name is “ << MYNAME << “\n”; // Prints the
// defined literal.
return O;
¥

The first argument of #define is in uppercase to distinguish it
from variable names in the program. Variables are usually typed in
lowercase. Although your preprocessor and compiler will not con-
fuse the two, other users who look at your program can more quickly
scan through and tell which items are defined literals and which are
not. They will know when they see an uppercase word (if you follow
the recommended standard for this first #define argument) to look at
the top of the program for its actual defined value.

The fact that defined literals are not variables is even more clear
in the following program. This program prints five values. Try to
guess what those five values are before you look at the answer
following the program.

// Filename: C6DEF2.CPP
// 1llustrates that #define literals are not variables.

#include <iostream.h>

#define X1 b+c

#define X2 X1 + X1

#define X3 X2 * ¢ + X1 - d

#define X4 2 * X1 + 3 * X2 + 4 * X3

main(Q)
{
int b = 2; // Declares and initializes four variables.
int c = 3;
int d = 4;
int e = X4;
// Prints the values.
cout << e << “, << X1 <<, << X2;
cout << “, “ << X3 << ¥, “ << X4 << \n”’;
return O;

EXAMPLE

The output from this program is
4 5 10 17 44

If you treated x1, x2, x3, and x4 as variables, you would not
receive the correct answers. x1 through x4 are not variables; they are
defined literals. Before your program is compiled, the preprocessor
reads the first line and changes every occurrence of x1 to b+c. This
occurs before the next #define is processed. Therefore, after the first
#define, the source code looks like this:

// Filename: C6DEF2.CPP
// 1llustrates that #define literals are not variables.

#include <iostream.h>

#define X2 b+c + b+c
#define X3 X2 * ¢ + b+c - d
#define X4 2 * b+c + 3 * X2 + 4 * X3

main(Q)
{
int b=2; // Declares and initializes four variables.
int c=3;
int d=4;
int e=X4;

// Prints the values.

cout << e << “, “ << b+tc << “, “ << X2;
COUL << “, “ << X3 << “, “ << X4 << “\n”:
return O;

After the first #define finishes, the second one takes over and
changes every occurrence of x2 to b+c + b+c. Your source code at that
point becomes:

// Filename: C6DEF2.CPP
// 1llustrates that #define literals are not variables.

#include <iostream.h>

Chapter 6 ¢ Preprocessor Directives

#define X3 b+c + b+c * ¢ + b+c - d
#define X4 2 * b+c + 3 * b+c + b+c + 4 * X3

main()
{
int b=2; // Declares and initializes four variables.
int c=3;
int d=4;
int e=X4;

// Prints the values.
cout << e << ““, “ << b+c << “, “ << b+c + b+c;
COUE << *, * << X3 << *, “ << X4 << “\n”:

return 0O;

After the second #define finishes, the third one takes over and
changes every occurrence of x3 to b+c + b+c * ¢ + b+c - d. YOUr source
code then becomes:

// Filename: C6DEF2.CPP
// 1llustrates that #define literals are not variables.

#include <iostream.h>

#define X4 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * ¢ + b+c - d

main()
{
int b=2; // Declares and initializes four variables.
int c=3;
int d=4;
int e=X4;

// Prints the values.
cout << e << ““, “ << b+c << “, “ << b+c + b+c;
cout << *, * << b+c + b+c * ¢ + b+c - d

<<t % << X4 << *\n”:

return O;

EXAMPLE

The source code is growing rapidly! After the third #define
finishes, the fourth and last one takes over and changes every occur-
rence of X4t02 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * ¢ +b+c - d
Your source code at this last point becomes:

// Filename: C6DEF2.CPP
// 1llustrates that #define literals are not variables.

#include <iostream.h>

main(Q)
{
int b=2; // Declares and initializes four variables.
int c=3;
int d=4;
int e=2 * b+c + 3 * b+c + b+c + 4 * b+c + b+tc * ¢ + b+c - d;

// Prints the values.

cout << e << “, “ << b+c << *, * << b+c + b+c;

cout << “, “ << b+c + b+c * ¢ + b+c - d
<< “, << 2 *pb+tc + 3 * b+tc + b+tc + 4 * b+c +
b+c * ¢ + b+c - d << *\n”’;

return O;

This is what your compiler actually reads. You did not type this
complete listing; you typed the original listing (shown first). The
preprocessor expanded your source code into this longer form, just
as if you had typed it this way.

This is an extreme example, but it serves to illustrate how
#define Works on your source code and doesn’t define any variables.
The #define behaves like a word processor’s search-and-replace
command. Due to #define’s behavior, you can even rewrite the C++
language!

If you are used to BASIC, you might be more comfortable
typing prINT rather than C++’s cout when you want to print on-
screen. If so, the following #define statement,

#define PRINT cout

enables you to print in C++ with these statements:

Chapter 6 ¢ Preprocessor Directives

PRINT << “This is a new printing technique\n”;
PRINT << “l1 could have used cout instead.\n;

This works because by the time your compiler reads the pro-
gram, it reads only the following:

cout << “This is a new printing technique\n”;
cout << “1 could have used cout instead.”\n;

In the next chapter, “Simple Input/Output,” you learn about
two functions sometimes used for input and output called printf()
and scanf(). You can just as easily redefine function names using
#define as you did with cout.

Also, remember that you cannot replace a defined literal if it
resides in another string literal. For example, you cannot use the
following #define statement:

#define AGE
to replace information in this cout:
cout << “AGE”;

because AGE is a string literal, and it prints literally just as it appears
inside the double quotation marks. The preprocessor can replace
only defined literals that do not appear in quotation marks.

Do Not Overdo #define

Many early C programmers enjoyed redefining parts of the
language to suit whatever they were used to in another lan-
guage. The cout to PRINT example was only one example of this.
You can redefine virtually any C++ statement or function to
“look™ any way you like.

There is a danger to this, however, so be wary of using #define
for this purpose. Your redefining the language becomes con-
fusing to others who modify your program later. Also, as you
become more familiar with C++, you will naturally use the true

EXAMPLE

C++ language more and more. When you are comfortable with
C++, older programs that you redefined will be confusing—
even to you!

If you are programming in C++, use the language conventions
that C++ provides. Shy away from trying to redefine com-
mands in the language. Think of the #define directive as a way
to define numeric and string literals. If those literals ever
change, you have to change only one line in your program.
“Just say no” to any temptation to redefine commands and
built-in functions. Better yet, modify any older C code that uses
#define, and replace the #define preprocessor directive with the
more useful const command.

Examples

& 1. Suppose you want to keep track of your company’s target
sales amount of $55,000.00. That target amount has not
] changed for the previous two years. Because it probably will
not change soon (sales are flat), you decide to start using a
defined literal to represent this target amount. Then, if target
sales do change, you just have to change the amount on the
#define line to:

#define TARGETSALES 55000.00

which defines a floating-point literal. You can then assign
TARGETSALES to floating-point variables and print its value, just
as if you had typed 55000.00 throughout your program, as
these lines show:

amt = TARGETSALES
cout << TARGETSALES;

2. If you find yourself defining the same literals in many
programs, file the literals on disk and include them. Then,
you don’t have to type your defined literals at the beginning

Chapter 6 ¢ Preprocessor Directives

of every program. If you store these literals in a file called
MYDEFS.C in your program’s directory, you can include the
file with the following #include statement:

#include “mydefs.c”

(To use angled brackets, you have to store the file in your
system’s include directory.)

3. Defined literals are appropriate for array sizes. For example,
suppose you declare an array for a customer’s name. When
you write the program, you know you don’t have a cus-
tomer whose name is longer than 22 characters (including
the null). Therefore, you can do this:

#define CNMLENGTH 22
When you define the array, you can use this:
char cust_name[CNMLENGTH]

Other statements that need the array size also can use
CNMLENGTH.

4. Many C++ programmers define a list of error messages.
Once they define the messages with an easy-to-remember
name, they can print those literals if an error occurs and still
maintain consistency in their programs. The following error
messages (or a similar form) often appear at the beginning of
C++ programs.

4 #define DISKERR “Your disk drive seems not to be working”
D":E_‘ﬁ"'ﬂ #define PRNTERR “Your printer is not responding”
+ #define AGEERR “You cannot enter an age that small”

#define NAMEERR “You must enter a full name”

Review Questions

The answers to the review questions are in Appendix B.

1. True or false: You can define variables with the preprocessor
directives.

EXAMPLE

2. Which preprocessor directive merges another file into your
program?

3. Which preprocessor directive defines literals throughout
your program?

4. True or false: You can define character, string, integer, and
floating-point literals with the #define directive.

5. Which happens first: your program is compiled or pre-
processed?

6. What C++ keyword is used to replace the #define prepro-
cessor directive?

7. When do you use the angled brackets in an #include, and
when do you use double quotation marks?

8. Which are easier to change: defined literals or literals that
you type throughout a program? Why?

9. Which header file should you include in almost every C++
program you write?

10. True or false: The #define in the following:
#define MESSAGE “Please press Enter to continue...”
changes this statement:
cout << “MESSAGE™;

11. What is the output from the following program?

// Filename: C6EXER,C

#include <iostream.h>
#define AMT1 at+a+a
#define AMT2 AMT1 - AMT1

main(Q)

{
int a=1;
cout << “Amount is “ << AMT2 << *“\n”’;
return O;

Chapter 6 ¢ Preprocessor Directives

Even if you get this right, you will appreciate the side effects
of #define. The const keyword (discussed in Chapter 4,
“Variables and Literals”) before a constant variable has none
of the side effects that #define has.

Review Exercises

1. Write a program that prints your name to the screen. Use a
defined literal for the name. Do not use a character array,
and don’t type your actual name inside the cout.

2. Suppose your boss wanted you to write a program that
produced an “exception report.” If the company’s sales are
less than $100,000.00 or more than $750,000.00, your boss
wants your program to print the appropriate message. You
learn how to produce these types of reports later in the book,
but for now just write the #define statements that define
these two floating-point literals.

3. Write the cout statements that print your name and birth
date to the screen. Store these statements in their own file.
Write a second program that includes the first file and
prints your name and birth date. Be sure also to include
<jostream.h>, because the included file contains cout
statements.

4. Write a program that defines the ten digits, 0 through 9, as
literals zero through ninNe. Add these ten defined digits and
print the result.

Summary

This chapter taught you the #include and #define preprocessor
directives. Despite the fact that these directives are not executed,
they temporarily change your source code by merging and defining
literals into your program.

EXAMPLE

The next chapter, “Simple Input/Output,” explains input and
output in more detail. There are ways to control precision when
using cin and cout, as well as built-in functions that format input
and output.

Simple
INnput/Output

You have already seen the cout operator. It prints values to the
screen. There is much more to cout than you have learned. Using cout
and the screen (the most common output device), you can print
information any way you want it. Your programs also become much
more powerful if you learn to receive input from the keyboard. cin
is an operator that mirrors the cout. Instead of sending output values
to the screen, cin accepts values that the user types at the keyboard.

The cout and cin operators offer the new C++ programmer
input and output operators they can use with relative ease. Both of
these operators have a limited scope, but they give you the ability to
send output from and receive input to your programs. There are
corresponding functions supplied with all C++ compilers called
printf() and scanf(). These functions are still used by C++ program-
mers due to their widespread use in regular C programs.

This chapter introduces you to

¢ The cout operator
¢ Control operators

¢ The cin operator

Chapter 7 & Simple Input/Output

¢ The printf() output function
¢ The scanf() input function

You will be surprised at how much more advanced your
programs can be after you learn these input/output operators.

The cout Operator

cout sends output The cout operator sends data to the standard output device. The
{o the screen. standard output device is usually the screen; you can, however,
redirect standard output to another device. If you are unfamiliar
with device redirection at the operating system level, don’t worry,
you learn more about it in this book. At this point, cout sends all
output to the screen.
The format of the cout is different from those of other C++
commands. The format for cout is

Frirk dabs
cout << data [<< data];

The data placeholder can be variables, literals, expressions, or
a combination of all three.

Printing Strings

To print a string constant, simply type the string constant after
the cout operator. For example, to print the string, The rain in Spain,
you would simply type this:

") Print the sentence “The rain in Spain” to the screen.
cout << “The rain in Spain”;

You must remember, however, that cout does not perform an
automatic carriage return. This means the screen’s cursor appears
directly after the last printed character and subsequent couts begin
thereafter.

To better understand this concept, try to predict the output
from the following three cout operators:

EXAMPLE

cout << “Line 17;
cout << “Line 27;
cout << “Line 37;

These operators produce the following output:

Line 1lLine 2Line 3

which is probably not what you intended. Therefore, you must
include the newline character, \n, whenever you want to move the
cursor to the next line. The following three cout operators produce
a three-line output:

cout << “Line 1\n”’;
cout << “Line 2\n”’;
cout << “Line 3\n”;

The output from these couts is

Line 1
Line 2
Line 3

The \n character sends the cursor to the next line no matter
where you insert it. The following three cout operators also produce
the correct three-line output:

cout << “Line 17;
cout << ‘“\nLine 2\n”’;
cout ““Line 37;

The second cout prints a newline before it prints anything else.
It then prints its string followed by another newline. The third string
prints on the third line.

You also can print strings stored in character arrays by typing
the array name inside the cout. If you were to store your name in an
array defined as:

char my_name[] = “Lyndon Harris”;
you could print the name with the following cout:

cout << my_name;

Chapter 7 & Simple Input/Output

The following section of code prints three string literals on
three different lines:

cout << “Nancy Carson\n’’;
cout << “1213 Oak Street\n”;
cout << “Fairbanks, Alaska\n”;

The cout is often used to label output. Before printing an age,
amount, salary, or any other numeric data, you should print a string
constant that tells the user what the number means. The following
cout tells the user that the next number printed is an age. Without this
cout, the user would not know what the number represented.

cout << “Here is the age that was found in our files:”;

You can print a blank line by printing two newline characters,
\n, next to each other after your string, as in:

cout << “Prepare the invoices...\n\n”;

Examples

1. The following program stores a few values in three vari-
ables, then prints the results:

// Filename: C7PRNT1.CPP
// Prints values in variables.

#include <iostream.h>

main(Q)

{
char first = “E”; // Store some character, integer,
char middle = “W”; // and floating-point variable.
char last = “C”;

int age = 32;

int dependents = 2;
float salary = 25000.00;
float bonus = 575.25;

// Prints the results.
cout << Ffirst << middle << last;

EXAMPLE

cout << age << dependents;
cout << salary << bonus;
return O;

}

2. The last program does not help the user. The output is not
labeled, and it prints on a single line. Here is the same
program with a few messages included and some newline
characters placed where needed:

// Filename: C7PRNT2.CPP
// Prints values in variables with appropriate labels.

#include <iostream.h>

main()

{
char first = “E~; // Store some character, integer,
char middle = “W~*; // and floating-point variable.

char last = “C”;

int age = 32;

int dependents = 2;
float salary = 25000.00;
float bonus = 575.25;

// Prints the results.
cout << “Here are the initials:\n”;

cout << Ffirst << middle << last <<*\n”’;

cout << “The age and number of dependents are\n’’;
cout << age << “ “ << dependents << “\n\n”’;
cout << “The salary and bonus are\n’;

cout << salary <<
return O;

<< bonus;

}

The output from this program appears below:

Here are the initials:

EWC

The age and number of dependents are
32 2

Chapter 7 & Simple Input/Output

The salary and bonus are
25000 575.25

The first floating-point values do not print with zeros, but
the number is correct. The next section shows you how to set
the number of leading and trailing zeros.

If you have to print a table of numbers, you can use the \t
tab character to do so. Place the tab character between each
of the printed numbers. The following program prints a list
of team names and number of hits for the first three weeks of
the season:

// Filename: C7TEAM.CPP
// Prints a table of team names and hits for three weeks.

#include <iostream.h>

main(Q)
{
cout << “Parrots\tRams\tKings\tTitans\tChargers\n”;
cout << “3\t5\t3\t1\tO\n”;
cout << “2\t5\tl1\tO\tl\n”;
cout << “2\t6\t4\t3\tO\n”’;
return O;

}

This program produces the table shown below. You can see
that even though the names are different widths, the num-
bers print correctly beneath them. The \t character forces the
next name or value to the next tab position (every eight
characters).

Parrots Rams Kings Titans Chargers
3 5 3 1 0
2 5 1 0 1

2 6 4 3 0

EXAMPLE

Control Operators

You have already seen the need for additional program-output
control. All floating-point numbers print with too many decimal
places for most applications. What if you want to print only dollars
and cents (two decimal places), or print an average with a single
decimal place?

You can modify the You can specify how many print positions to use in printing a
way numbers print. number. For example, the following cout prints the number 456,
using three positions (the length of the data):

cout << 456;

If the 456 were stored in an integer variable, it would still use
three positions to print because the number of digits printed is three.
However, you can specify how many positions to print. The follow-
ing cout prints the number 456 in five positions (with two leading
spaces):

cout << setw(5) << setfill(®) << 456;

You typically use the setw manipulator when you want to print
data in uniform columns. Be sure to include the iomanip.h header
file in any programs that use manipulators because iomanip.h
describes how the setw works to the compiler.

The following program shows you the importance of the width
number. Each cout output is described in the comment to its left.

// Filename: C7MOD1.CPP
// 1llustrates various integer width cout modifiers.

#include <iostream.h>
#include <iomanip.h>

main()

{ // The output appears below.
cout << 456 << 456 << 456 << ‘“\n”’; // Prints 456456456
cout << setw(5) << 456 << setw(5) << 456 << setw(b) <<

456 << “\n”’; // Prints 456 456 456
cout << setw(7) << 456 << setw(7) << 456 << setw(7) <<

456 << “ \n”’; // Prints 456 456 456
return O;

Chapter 7 & Simple Input/Output

When you use a setw manipulator inside a conversion charac-
ter, C++ right-justifies the number by the width you specify. When
you specify an eight-digit width, C++ prints a value inside those
eight digits, padding the number with leading blanks if the number
does not fill the whole width.

NOTE: If you do not specify a width large enough to hold the
number, C++ ignores your width request and prints the num-
ber in its entirety.

You can control the width of strings in the same manner with
the setw manipulator. If you don’t specify enough width to output
the full string, C++ ignores the width. The mailing list application in the
back of this book uses this technique to print names on mailing labels.

NOTE: setw() becomes more important when you print
floating-point numbers.

setprecision(2) prints a floating-point number with two deci-
mal places. If C++ has to round the fractional part, it does so. The
following cout:

cout << setw(6) << setprecision(2) << 134.568767;
produces the following output:
134.57

Without the setw Or setprecision manipulators, C++ would
have printed:

134.568767

TIP: When printing floating-point numbers, C++ always prints
the entire portion to the left of the decimal (to maintain as much
accuracy as possible) no matter how many positions you
specify. Therefore, many C++ programmers ignore the setw
manipulator for floating-point numbers and only specify the
DFECiSiOH, as in setprecision(2).

EXAMPLE

Examples

1. If you want to control the width of your data, use a setw
manipulator. The following program is a revision of the
C7TEAM.CPP shown earlier. Instead of using the tab charac-
ter, \t, which is limited to eight spaces, this program uses the
width specifier to set the tabs. It ensures that each column is
10 characters wide.

// Filename: C7TEAMMD.CPP
// Prints a table of team names and hits for three weeks
// using width-modifying conversion characters.

#include <iostream.h>
#include <iomanip.h>

main(Q)
{
cout << setw(1l0) << “Parrots” << setw(10) <<
“Rams” << setw(10) << “Kings” << setw(10) <<
“Titans” << setw(10) << “Chargers” << ‘“\n”’;
cout << setw(1l0) << 3 << setw(1l0) << 5 <<

setw(10) << 2 << setw(10) << 1 <<
setw(10) << 0 << “\n”’;

cout << setw(10) << 2 << setw(10) << 5 <<
setw(10) << 1 << setw(10) << 0 <<
setw(10) << 1 << “\n”’;

cout << setw(10) << 2 << setw(10) << 6 <<
setw(10) << 4 << setw(10) << 3 <<
setw(10) << 0 << “\n”’;

return O;

}

2. The following program is a payroll program. The output is
in “dollars and cents” because the dollar amounts print
properly to two decimal places.

// Filename: C7PAY1.CPP
// Computes and prints payroll data properly in dollars
// and cents.

Chapter 7 & Simple Input/Output

#include <iostream.h>
#include <iomanip.h>
Calulabe
qrrsiu mainQ)
{
Frirt char emp_name[] = “Larry Payton”;
e lbs char pay_date[] = “03/09/92”;
int hours_worked = 43;
@ float rate = 7.75; // Pay per hour
float tax_rate = .32; // Tax percentage rate

float gross_pay, taxes, net_pay;

// Computes the pay amount.
gross_pay = hours_worked * rate;
taxes = tax_rate * gross_pay;
net_pay = gross_pay - taxes;

// Prints the results.

cout << “As of: “ << pay_date << ‘“\n”’;
cout << emp_name << “ worked “ << hours_worked <<
“ hours\n”’;

cout << “and got paid “ << setw(2) << setprecision(2)
<< gross_pay << “\n”’;
cout << “After taxes of: “ << setw(6) << setprecision(2)
<< taxes << “\n”’;
cout << “his take-home pay was $” << setw(8) <<
setprecision(2) << net_pay << ‘“\n”’;
return O;

}

The output from this program follows. Remember that the
floating-point variables still hold the full precision (to six
decimal places), as they did in the previous program. The
modifying setw manipulators only affect how the variables
are output, not what is stored in them.

As of: 03/09/92

Larry Payton worked 43 hours
and got paid 333.25

After taxes of: 106.64

his take-home pay was $226.61

EXAMPLE

3. Most C++ programmers do not use the setw manipulator
when printing dollars and cents. Here is the payroll program
again that uses the shortcut floating-point width method.
Notice the previous three cout statements include no setw
manipulator. C++ automatically prints the full number to
the left of the decimal and prints only two places to the right.

// Filename: C7PAY2.CPP
// Computes and prints payroll data properly
// using the shortcut modifier.

#include <iostream.h>
#include <iomanip.h>

main(Q)

{
char emp_name[] = “Larry Payton”;
char pay_date[] = “03/09/92”;
int hours_worked = 43;
float rate = 7.75; // Pay per hour
float tax_rate = .32; // Tax percentage rate
float gross_pay, taxes, net_pay;

// Computes the pay amount.
gross_pay = hours_worked * rate;
taxes = tax_rate * gross_pay;
net_pay = gross_pay - taxes;

// Prints the results.

cout << “As of: “ << pay_date << ‘“\n”’;
cout << emp_nhame << “ worked “ << hours_worked <<
“ hours\n”’;
cout << “and got paid “ << setprecision(2) << gross_pay
<< “\n”’;
cout << “After taxes of: “ << setprecision(2) << taxes
<< “\n”’;

cout << “his take-home pay was “ << setprecision(2) <<
net_pay << ‘“\n”’;
return O;

Chapter 7 & Simple Input/Output

This program’s output is the same as the previous
program’s.

The cin Operator

You now understand how C++ represents data and variables,
and you know how to print the data. There is one additional part of
programming you have not seen: inputting data to your programs.

Until this point, you have not inputted data into a program. All
data you worked with was assigned to variables in the program.
However, this is not always the best way to transfer data to your
programs; you rarely know what your data is when you write your
programs. The data is known only when you run the programs (or
another user runs them).

The cin operator The cin operator is one way to input from the keyboard. When

stores keyboard your programs reach the line with a cin, the user can enter values

inputin variables. directly into variables. Your program can then process those vari-
ables and produce output. Figure 7.1 illustrates the difference be-
tween cout and cin.

Figure 7.1. The actions of cout and cin.

EXAMPLE

The cin Function Fills Variables with Values

There is a major difference between cin and the assignment
statements (such as i = 17;). Both fill variables with values.
However, the assignment statement assigned specific values to
variables at programming time. When you run a program with
assignment statements, you know from the program’s listing
exactly what values go into the variables because you wrote the
program specifically to store those values. Every time you run
the program, the results are exactly the same because the same
values are assigned to the same variables.

You have no idea, when you write programs that use cin, what
values will be assigned to the cin’s variables because their
values are not known until the program runs and the user
enters those values. This means you have a more flexible
program that can be used by a variety of people. Every time the
program is run, different results are created, depending on the
values typed at each cin in the program.

The cin has its drawbacks. Therefore, in the next few chapters
you will use cin until you learn more powerful (and flexible) input
methods. The cin operator looks much like cout. It contains one or
more variables that appear to the right of the operator name. The
format of the cin is

cin >> value [>> values];

The iostream.h header file contains the information C++ needs
to use cin, so include it when using cin.

NOTE: The cin operator uses the same manipulators (setw and
setprecision) as the cout operator.

As mentioned earlier, cin poses a few problems. The cin opera-
tor requires that your user type the input exactly as cin expects it.
Because you cannot control the user’s typing, this cannot be en-
sured. You might want the user to enter an integer value followed

Chapter 7 & Simple Input/Output

by a floating-point value and your cin operator call might expect it
too, but your user might decide to enter something else! If this
happens, there is not much you can do because the resulting input
is incorrect and your C++ program has no reliable method for testing
user accuracy. Before every cin, print a prompt that explains exactly
what you expect the user to type.
The ciin operator For the next few chapters, you can assume that the user knows
requires that the user o enter the proper values, but for your “real” programs, read on for
?ﬁi f:ggf;:wts better methods to receive input, starting with Chapter 21, “Device
possible to and Character Input/Output.”

guarantee!

Examples

1. If you wanted a program that computed a seven percent
sales tax, you could use the cin statement to figure the sales,
compute the tax, and print the results as the following
program shows:

// Filename: C7SLTX1.CPP
// Prompt for a sales amount and print the sales tax.

#include <iostream.h>
#include <iomanip.h>

main(Q)
{
float total_sale; // User’s sale amount goes here.
Frirk float stax;
a3 e
=3 -
// Display a message for the user.
‘Eﬂ:‘ cout << “What is the total amount of the sale? “;

// Receive the sales amount from user.
cin >> total_sale;

// Calculate sales tax.
stax = total_sale * .07;

EXAMPLE

cout << “The sales tax for “ << setprecision(2) <<
total_sale << “ is “ << setprecision (2) << stax;
return O;

}

Because the first cout does not contain a newline character,
\n, the user’s response to the prompt appears to the right of
the question mark.

2. When inputting keyboard strings into character arrays with
cin, you are limited to receiving one word at a time. The cin
does not enable you to type more than one word in a single
character array at a time. The following program asks the
user for his or her first and last name. The program has to
store those two names in two different character arrays
because cin cannot input both names at once. The program
then prints the names in reverse order.

// Filename: C7PHON1.CPP
// Program that requests the user’s name and prints it
// to the screen as it would appear in a phone book.

#include <iostream.h>
#include <iomanip.h>

main()

{
char first[20], last[20];

cout << “What is your Ffirst name? “;

cin >> first;

cout << “What is your last name? “;

cin >> last;

cout << “\n\n”’; // Prints two blank lines.

cout << “In a phone book, your name would look like this:\n”;
cout << last << “, “ << first;

return O;

Chapter 7 & Simple Input/Output

3. Suppose you want to write a program that does simple
addition for your seven-year-old daughter. The following
program prompts her for two numbers. The program then
waits for her to type an answer. When she gives her answer,
the program displays the correct result so she can see how
well she did.

// Filename: C7MATH.CPP

// Program to help children with simple addition.
// Prompt child for two values after printing

// a title message.

#include <iostream.h>

#include <iomanip.h>

main(Q)

{
int numl, num2, ans;
int her_ans;

cout << “*** Math Practice ***\n\n\n”’;
cout << “What is the first number? “;

cin >> numl;

cout << “What is the second number? “;
cin >> num2;

// Compute answer and give her a chance to wait for it.
ans = numl + num2;

cout << “\nWhat do you think is the answer? *;
cin >> her_ans; // Nothing is done with this.

// Prints answer after a blank line.

cout << “\n” << numl << “ plus “ << num2 << “ is “
<< ans << “\n\nHope you got it right!”;

return O;

EXAMPLE

printf() and scanfQ

Before C++, C programmers had to rely on function calls to
perform input and output. Two of those functions, printf() and
scanf(), are still used frequently in C++ programs, although cout and
cin have advantages over them. printf(Q) (like cout) prints values to
the screen and scanf() (like cin) inputs values from the keyboard.
printf() requires a controlling format string that describes the data
you want to print. Likewise, scanf() requires a controlling format
string that describes the data the program wants to receive from the
keyboard.

NOTE: cout is the C++ replacement to printf() and cin is the
C++ replacement to scanf().

Because you are concentrating on C++, this chapter only briefly
covers printf() and scanf(). Throughout this book, a handful of
programs use these functions to keep you familiar with their format.
printf() and scanf() are not obsolete in C++, but their use will
diminish dramatically when programmers move away from C and
to C++. cout and cin do not require controlling strings that describe
their data; cout and cin are intelligent enough to know how to treat
data. Both printf() and scanf() are limited—especially scanf()—but
they do enable your programs to send output and to receive input.

The printf(QO Function

The printf(Q printf() sends data to the standard output device, which is

function sends generally the screen. The format of printfQ) is different from those of

otputto the screen. regular C++ commands. The values that go inside the parentheses
vary, depending on the data you are printing. However, as a general
rule, the following printf() format holds true:

printf(control_string [, one or more values]);

Notice printf() always requires a control_string. This is a
string, or a character array containing a string, that determines how
the rest of the values (if any are listed) print. These values can be
variables, literals, expressions, or a combination of all three.

149

Chapter 7 & Simple Input/Output

TIP: Despite its name, printf() sends output to the screen and
not to the printer.

The easiest data to print with printf(Q are strings. To print a
string constant, you simply type that string constant inside the
printf() function. For example, to print the string The rain in Spain,
you would simply type the following:

Print the phrase “The rain in Spain” to the screen.
printf(“The rain in Spain™);

printfQ), like cout, does not perform an automatic carriage
return. Subsequent printf()S begin next to that last printed charac-
ter. If you want a carriage return, you must supply a newline
character, as so:

printf(“The rain in Spain\n™);

You can print strings stored in character arrays also by typing
the array name inside the printf(). For example, if you were to store
your name in an array defined as:

char my_name[] = “Lyndon Harris”;
you could print the name with this printf():
printf(my_name);

You must include the stdio.h header file when using printfQ
and scanf() because stdio.h determines how the input and output
functions work in the compiler. The following program assigns a
message in a character array, then prints that message.

// Filename: C7PS2.CPP
// Prints a string stored in a character array.
#include <stdio.h>
main()
{
char message[] = “Please turn on your printer”;
printf(message);
return O;

EXAMPLE

Conversion Characters

Inside most printf() control strings are conversion characters.
These special characters tell printf() exactly how the data (following
the characters) are to be interpreted. Table 7.1 shows a list of
common conversion characters. Because any type of data can go
inside the printf()’s parentheses, these conversion characters are
required any time you print more than a single string constant. If you
don’t want to print a string, the string constant must contain at least
one of the conversion characters.

Table 7.1. Common printf() conversion characters.

Conversion

Character Output

%s String of characters (until null zero is reached)
%e Character

%d Decimal integer

%F Floating-point numbers

%u Unsigned integer

%X Hexadecimal integer

%% Prints a percent sign (%)

Note: You can insertan I (lowercase 1) or L before the integer and floating-point conversion characters
(such as %0 d and %LF) to indicate that a long integer or long double floating-point is to be printed.

NOTE: Characters other than those shown in the table print
exactly as they appear in the control string.

When you want to print a numeric constant or variable, you
must include the proper conversion character inside the printf(Q)
control string. If i, j, and k are integer variables, you cannot print
them with the printf() that follows.

printf(i,j.k);

Chapter 7 & Simple Input/Output

Because printf() is a function and not a command, this printfQ
function has no way of knowing what type the variables are. The
results are unpredictable, and you might see garbage on your
screen—if anything appears at all.

When you print numbers, you must first print a control string
that includes the format of those humbers. The following printf()
prints a string. In the output from this line, a string appears with an

integer (»d) and a floating-point number (»f) printed inside that
string.

printf(“l am Betty, | am %d years old, and I make %f\n”,
35, 34050.25);

This produces the following output:
1 am Betty, 1 am 35 years old, and 1 make 34050.25

Figure 7.2 shows how C interprets the control string and the
variables that follow. Be sure you understand this example before
moving on. It is the foundation of the printf() function.

I o proacramns:

g .

prart ("I am Batty, I am #d years old, ard I mmke o \A",20, M0l 2c) ;

My el

1 arn Esctty, | A ZEycears ofd, and | iake 3406025

Figure 7.2. Control string in action.

You also can print integer and floating-point variables in the
same manner.

Examples

1. The following program stores a few values in three vari-
ables, then prints the results.

EXAMPLE

// Filename: C7PRNTF.CPP
// Prints values in variables with appropriate labels.
#include <stdio.h>

main(Q)

{
char first="E”; // Store some character, integer,
char middle="W"; // and floating-point variable.
char last="C”;
int age=32;

int dependents=2;
float salary=25000.00;
float bonus=575.25;

/* Prints the results. */

printf(“Here are the initials\n”);
printf(“%c%c%c\n\n”, First, middle, last);
printf(“The age and number of dependents are\n”);
printf(“%d %d\n\n”’, age, dependents);
printf(“The salary and bonus are\n”);

printf(“%f %f’, salary, bonus);

return O;

}

The output from this program is

Here are the initials
EWC

The age and number of dependents are
32 2

The salary and bonus are
25000.000000 575.250000

2. The floating-point values print with too many zeros, of
course, but the numbers are correct. You can limit the num-
ber of leading and trailing zeros that is printed by adding a
width specifier in the control string. For instance, the following
printf() prints the salary and bonus with two decimal places:

printf(“%.2f %.2f’, salary, bonus);

Chapter 7 & Simple Input/Output

Make sure your printed values match the control string
supplied with them. The printf() function cannot fix prob-
lems resulting from mismatched values and control strings.
Don’t try to print floating-point values with character-string
control codes. If you list five integer variables in a printfQ,
be sure to include five %d conversion characters in the
printfQ) as well.

Printing ASCII Values

There is one exception to the rule of printing with matching
conversion characters. If you want to print the ASCII value of
a character, you can print that character (whether it is a constant
or a variable) with the integer #d conversion character. Instead
of printing the character, printf() prints the matching ASCI|I
number for that character.

Conversely, if you print an integer with a wc conversion char-
acter, you see the character that matches that integer’s value
from the ASCII table.

The following printf(Qs illustrate this fact:

printf(“%c”, 65); // Prints the letter A.
printf(“%d”, “A’); // Prints the number 65.

The scanf() Function

The scanf() The scanf() function reads input from the keyboard. When

function stores your programs reach the line with a scanf(), the user can enter values
keyboard input to

variables.

directly into variables. Your program can then process the variables
and produce output.

The scanf() function looks much like printf(). It contains a
control string and one or more variables to the right of the control
string. The control string informs C++ exactly what the incoming
keyboard values look like, and what their types are. The format of
scanfQ) IS

scanf(control_string, one or more values);

EXAMPLE

The scanf() control_string uses almost the same conversion
characters as the printf() control_string, with two slight differences.
You should never include the newline character, \n, in a scanfQ)
control string. The scanf() function “knows” when the input is
finished when the user presses Enter. If you supply an additional
newline code, scanf() might not terminate properly. Also, always
put a beginning space inside every scanf() control string. This does
not affect the user’s input, but scanf() sometimes requires it to work
properly. Later examples in this chapter clarify this fact.
The scanf() As mentioned earlier, scanf() poses a few problems. The scanf()
fﬁ”CtiO” requires function requires that your user type the input exactly the way
;Citu’;ggly”sﬁr]gff control_string specifies. Because you cannot control your user’s
not always possible typing, this cannot always be ensured. For example, you might
to guarantee! want the user to enter an integer value followed by a floating-point
value (your scanf() control string might expect it too), but your user
might decide to enter something else! If this happens, there is not
much you can do. The resulting input is incorrect, but your C
program has no reliable method for testing user accuracy before
your program is run.

’ CAUTION: The user’s keyboard input values must match, in
i number and type, the control string contained in each scanf().

Another problem with scanf() is not as easy for beginners to
understand as the last. The scanf() function requires that you use
pointer variables, not regular variables, in its parentheses. Although
this sounds complicated, it doesn’t have to be. You should have no
problem with scanf()’s pointer requirements if you remember these
two simple rules:

1. Always put an ampersand (&) before variable names inside a
scanf().

2. Never put an ampersand (&) before an array name inside a
scanf().

Despite these strange scanf() rules, you can learn this function
quickly by looking at a few examples.

Chapter 7 & Simple Input/Output

Examples

1. If you want a program that computes a seven percent sales
tax, you could use the scanf() statement to receive the sales,
compute the tax, and print the results as the following
program shows.

// Filename: C7SLTXS.CPP

// Compute a sales amount and print the sales tax.
#include <stdio.h>

main(Q)

{

float total_sale; // User’s sale amount goes here.
float stax;

// Display a message for the user.
printf(“What is the total amount of the sale? *);

// Compute the sales amount from user.
scanf(*“ %f”’, &total_sale); // Don’t forget the beginning
// space and an &.

stax = total_sale * .07; // Calculate the sales tax.

printf(“The sales tax for %.2f is %.2Ff”’, total_sale, stax);
return O;

}

If you run this program, the program waits for you to enter a
value for the total sale. Remember to use the ampersand in
front of the total_sale variable when you enter it in the
scanf() function. After pressing the Enter key, the program
calculates the sales tax and prints the results.

If you entered 10.00 as the sale amount, you would receive
the following output :

The sales tax for 10.00 is 0.70

2. Use the string %s conversion character to input keyboard
strings into character arrays with scanf(). As with cin, you
are limited to inputting one word at a time, because you

EXAMPLE

cannot type more than one word into a single character array
with scanf(). The following program is similar to
C7PHONL.CPP except the scanf() function, rather than cin,
is used. It must store two names in two different character
arrays, because scanf() cannot input both names at once. The
program then prints the names in reverse order.

// Filename: C7PHON2.CPP
// Program that requests the user’s name and prints it
// to the screen as it would appear in a phone book.
#include <stdio.h>
main(Q)
{
char first[20], last[20];
printf(“What is your first name? “);
scanf(*“ %s”, First);
printf(“What is your last name? “);
scanf(*“ %s”, last);
printf(*“\n\n”’); // Prints two blank lines.
printf(“In a phone book, your name would look like”
“this:\n”);
printf(“%s, %s”, last, first);
return O;

}

3. How many values are entered with the following scanfQ,
and what are their types?

scanf(“ %d %d %f %s”, &i, &, &k, 1);

Review Questions

The answers to the Review Questions are in Appendix B.

1. What is the difference between cout and cin?

2. Why is a prompt message important before using cin for
input?

Chapter 7 & Simple Input/Output

3. How many values do you enter with the following cin?
cin >> i >> j >> k >> I;

4. Because they both assign values to variables, is there any
difference between assigning values to variables and using
cin to give them values?

5. True or false: The %s conversion character is usually not
required in printfQ control strings.

6. Which types of variables do not require the ampersand (&)
character in scanf() functions?

7. What is the output produced by the following cout?

cout << “The backslash \”\\\” character is special”;
8. What is the result of the following cout?

cout << setw(8) << setprecision(3) << 123.456789;

Review Exercises

1. Write a program that prompts the user for his or her name
e and weight. Store these values in separate variables and
print them on-screen.

2. Assume you are a college professor and have to average
grades for 10 students. Write a program that prompts you
for 10 different grades, then displays an average of them.

3. Modify the program in Exercise 2 to ask for each student’s
name as well as her grade. Print the grade list to the screen,
with each student’s name and grade in two columns. Make
sure the columns align by using a setw manipulator on the
grade. At the bottom, print the average of the grades. (Hint:
Store the 10 names and 10 grades in different variables with
different names.) This program is easy, but takes thirty or so
lines, plus appropriate comments and prompts. Later, you
learn ways to streamline this program.

EXAMPLE

4. This exercise tests your understanding of the backslash
conversion character: Write a program that uses cout opera-
tors to produce the following picture on-screen:

+

/*\
i
* i
x> i
N _* i
/7 NI /111N
/ I /7 * A\
/ I::::::I\ Fokk
| + + 1 *
(I N |
S e § / \
Summary

You now can print almost anything to the screen. By studying
the manipulators and how they behave, you can control your output
more thoroughly than ever before. Also, because you can receive
keyboard values, your programs are much more powerful. No
longer do you have to know your data values when you write the
program. You can ask the user to enter values into variables with cin.

You have the tools to begin writing programs that fit the data
processing model of INPUT->PROCESS->OUTPUT. This chapter
concludes the preliminary discussion of the C++ language. This part
of the book attempted to give you an overview of the language and
to teach you enough of the language elements so you can begin
writing helpful programs.

Chapter 8, “Using C++ Math Operators and Precedence,”
begins a new type of discussion. You learn how C++’s math and
relational operators work on data, and the importance of the prece-
dence table of operators.

Part I

Using C++ Operators

Using C++ Math
Operators and
Precedence

If you are dreading this chapter because you don’t like math—relax,
C++ does all your math for you! It is a misconception that you have
to be good at math to understand how to program computers. In
fact, programming practice assumes the opposite is true! Your
computer is your “slave,” to follow your instructions, and to do all
the calculations for you. This chapter explains how C++ computes
by introducing you to

Primary math operators

Order of operator precedence

+

+

¢ Assignment statements

¢ Mixed data type calculations
.

Type casting

Chapter 8 ¢ Using C++ Math Operators and Precedence

Many people who dislike math actually enjoy learning how the
computer handles it. After learning the math operators and a few
simple ways in which C++ uses them, you should feel comfortable
using calculations in your programs. Computers are fast, and they
can perform math operations much faster than you can!

C++’s Primary Math

Operators
A C++ math operator is a symbol used for adding, subtracting,
multiplying, dividing, and other operations. C++ operators are not

always mathematical in nature, but many are. Table 8.1 lists these
operator symbols and their primary meanings.

Table 8.1. C++ primary operators.

Symbol Meaning

* Multiplication

/ Division and Integer Division
% Modulus or Remainder

+ Addition

- Subtraction

Most of these operators work in the familiar way you expect
them to. Multiplication, addition, and subtraction produce the same
results (and the division operator usually does) as those produced
with a calculator. Table 8.2 illustrates four of these simple operators.

Table 8.2. Typical operator results.

Formula Result
4 * 2 8
64 / 4 16
80 - 15 65

12 + 9 21

EXAMPLE

Table 8.2 contains examples of binary operations performed with
the four operators. Don’t confuse binary operations with binary
numbers. When an operator is used between two literals, variables,
or a combination of both, it is called a binary operator because it
operates using two values. When you use these operators (when
assigning their results to variables, for example), it does not matter
in C++ whether you add spaces to the operators or not.

’ CAUTION: For multiplication, use the asterisk (*), not an x as

ir you might normally do. An x cannot be used as the multiplica-
tion sign because C++ uses x as a variable name. C++ interprets
x as the value of a variable called x.

The Unary Operators

A unary operator operates on, or affects, a single value. For
instance, you can assign a variable a positive or negative number by
using a unary + or —.

Examples

1. The following section of code assigns four variables a posi-
tive or a negative number. The plus and minus signs are all
] unary because they are not used between two values.
4 The variable a is assigned a negative 25 value.
ﬁ The variable b is assigned a positive 25 value.
The variable c is assigned a negative a value.

The variable d is assigned a positive b value.

= -25;// Assign “a’ a negative 25.

+25;// Assign “b” a positive 25 (+ is not needed).

= -a; // Assign “c”’ the negative of “a’ (-25).

= +b; // Assign “d” the positive of “b” (25, + not needed).

o 0 T 9
1

Chapter 8 ¢ Using C++ Math Operators and Precedence

2. You generally do not have to use the unary plus sign. C++
assumes a number or variable is positive, even if it has no
plus sign. The following four statements are equivalent to
the previous four, except they do not contain plus signs.

a = -25; // Assign “a’ a negative 25.
b = 25; // Assign “b” a positive 25.
c = -aj; // Assign “c’ the negative of “a’ (-25).
d = b; // Assign “d” the positive of “b” (25).

3. The unary negative comes in handy when you want to
negate a single number or variable. The negative of a nega-
tive is positive. Therefore, the following short program
assigns a negative number (using the unary -) to a variable,
then prints the negative of that same variable. Because it had
a negative number to begin with, the cout produces a posi-
tive result.

// Filename: C8NEG.CPP
// The negative of a variable that contains a negative value.
#include <iostream.h>

main(Q)
{
signed int temp=-12; // “signed’ is not needed because
// it is the default.
cout << -temp << “\n”; // Produces a 12 on-screen.

return O;

}

The variable declaration does not need the signed prefix,
because all integer variables are signed by default.

4. If you want to subtract the negative of a variable, make sure
you put a space before the unary minus sign. For example,
the following line:

new_temp + new_temp- -inversion_factor;

temporarily negates the inversion_factor and subtracts that
negated value from new_temp.

EXAMPLE

Division and Modulus

The division sign, 7, and the modulus operator, %, might behave
in ways unfamiliar to you. They’re as easy to use, however, as the
other operators you have just seen.

The modulus (%) The forward slash (/) is always used for division. However, it

Comp.”;es . produces an integer called divide if integer values (literals, variables,
;el\r::g:gners " or a combination of both) appear on both sides of the slash. If there

is a remainder, C++ discards it.

The percent sign (%) produces a modulus, or a remainder, of an
integer division. It requires that integers be on both sides of the
symbol, or it does not work.

Examples

1. Suppose you want to compute your weekly pay. The follow-
ing program asks for your yearly pay, divides it by 52, and
prints the results to two decimal places.

+ // Filename: C8DIV.CPP
m“mp';“ // Displays user’s weekly pay.
=alam #include <stdio.h>
+ mainQ)
{

float weekly, yearly;
printf(“What is your annual pay? “); // Prompt user.
scanf(“%f”’, &yearly);

weekly = yearly/52; // Computes the weekly pay.
printf(*\n\nYour weekly pay is $%.2F", weekly);
return O;

}

Because a floating-point number is used in the division, C++
produces a floating-point result. Here is a sample output
from such a program:

What is your annual pay? 38000.00
Your weekly pay is $730.77

Chapter 8 ¢ Using C++ Math Operators and Precedence

Because this program used scanf() and printf() (to keep you
familiar with both ways of performing input and output),
the stdio.h header file is included rather than iostream.h.

2. Integer division does not round its results. If you divide two
integers and the answer is not a whole number, C++ ignores
the fractional part. The following printf()s help show this.
The output that results from each printf() appears in the
comment to the right of each line.

printf(“%d \n”, 10/2); // 5 (no remainder)
printf(“%d \n”, 300/100); // 3 (no remainder)
printf(“%d \n”, 10/3); // 3 (discarded remainder)

printf(“%d \n”, 300/165); // 1 (discarded remainder)

The Order of Precedence

Understanding the math operators is the first of two steps toward
understanding C++ calculations. You must also understand the order of
precedence. The order of precedence (sometimes called the math hierarchy
or order of operators) determines exactly how C++ computes formulas.
The precedence of operators is exactly the same concept you learned in
high school algebra courses. (Don’t worry, this is the easy part of
algebra!) To see how the order of precedence works, try to determine
the result of the following simple calculation:

2+3*2

If you said 10, you are not alone; many people respond with 10.
Howvever, 10 is correct only if you interpret the formula from the left.
What if you calculated the multiplication first? If you took the value
of 3 ~ 2 and got an answer of 6, then added the 2, you receive an
answer of 8—which is exactly the same answer that C++ computes
(and happens to be the correct way)!

C++ always performs multiplication, division, and modulus
C++ performs

multiplication, first, then addition and subtraction. Table 8.3 shows the order of the
division, and operators you have seen so far. Of course, there are many more
modulus before levels to C++’s precedence table of operators than the ones shown in
:Sggg:lgzd Table 8.3. Unlike most computer languages, C++ has 20 levels of

precedence. Appendix D, “C++ Precedence Table,” contains the
complete precedence table. Notice in this appendix that multiplica-
tion, division, and modulus reside on level 8, one level higher than

EXAMPLE

level 9’s addition and subtraction. In the next few chapters, you learn
how to use the remainder of this precedence table in your C++
programs.

Table 8.3. Order of precedence for primary operators.

Order Operator

First Multiplication, division, modulus remainder (*, 7, %)

Second Addition, subtraction (+, -)

Examples

1. Itis easy to follow C++’s order of operators if you follow the
intermediate results one at a time. The three calculations in
Figure 8.1 show you how to do this.

6+2*3-4/2

3*4/2+3-1

12 /2 +3 -1

20/ 3 +5 % 2

N

6 +5%2
N

N

7

Figure 8.1. C++'s order of operators with lines indicating precedence.

169

Chapter 8 ¢ Using C++ Math Operators and Precedence

2. Looking back at the order of precedence table, you might
notice that multiplication, division, and modulus are on the
same level. This implies there is no hierarchy on that level. If
more than one of these operators appear in a calculation,
C++ performs the math from the left. The same is true of
addition and subtraction—C++ performs the operation on
the extreme left first.

Figure 8.2 illustrates an example showing this process.

E'.'jl.uhn 10/5*2-2+1
WT“’ 2 *2-2+1
2 - 2+1

2 o+ 1

3

Figure 8.2. C++'s order of operators from the left, with lines indicating
precedence.

Because the division appears to the left of the multiplication,
it is computed first.

You now should be able to follow the order of these C++
operators. You don’t have to worry about the math because C++
does the actual work. However, you should understand this order
of operators so you know how to structure your calculations. Now
that you have mastered this order, it’s time to learn how you can
override it with parentheses!

Using Parentheses

If you want to override the order of precedence, you can add
parentheses to the calculation. The parentheses actually reside on a
level above the multiplication, division, and modulus in the prece-
dence table. In other words, any calculation in parentheses—whether
it is addition, subtraction, division, or whatever—is always calcu-
lated before the rest of the line. The other calculations are then
performed in their normal operator order.

Parentheses override The first formula in this chapter, 2 + 3 * 2, produced an 8 because
the usual order of the multiplication was performed before addition. However, by
math. adding parentheses around the addition, as in ¢z + 3) * 2, the answer

becomes 10.

In the precedence table shown in Appendix D, “C++ Prece-
dence Table,” the parentheses reside on level 3. Because they are
higher than the other levels, the parentheses take precedence over
multiplication, division, and all other operators.

Examples

1. The calculations shown in Figure 8.3 illustrate how paren-
theses override the regular order of operators. These are the
same three formulas shown in the previous section, but their
results are calculated differently because the parentheses
override the normal order of operators.

6+2*(@3-4)/2
6 +2 * -1 / 2
6+—2\;2
6+ -1
5
3*4/2+@-1)
3*4/ 2+ 2

20/ (3+5) % 2
20/ 8 %2

2 % 2

0

Figure 8.3. Example of parentheses as the highest precedence level
with lines indicating precedence.

171

Chapter 8 ¢ Using C++ Math Operators and Precedence

2. If an expression contains parentheses-within-parentheses,
C++ evaluates the innermost parentheses first. The expres-
sions in Figure 8.4 illustrate this.

5% (5+ (6 -2) + 1)
N
5* (5 + 4 +1)
5% (9 +1)
5* 10

50

Figure 8.4. Precedence example of parentheses-within-parentheses
with lines indicating precedence.

3. The following program produces an incorrect result, even
though it looks as if it will work. See if you can spot the
error!

Comments to identify your program.

Include the header file iostream.h so cout works.

Declare the variables avg, grade1, grade2, and grade3 as floating-
point variables.

The variable avg becomes equal to grade3 divided by 3.0 plus
grade2 plus grade1.

Print to the screen The average is and the average of the three
grade variables.

Return to the operating system.

// Filename: C8AVG1l.CPP
// Compute the average of three grades.
#include <iostream.h>

main()
{
float avg, gradel, grade2, grade3;
gradel = 87.5;
grade2 = 92.4;
grade3 = 79.6;

EXAMPLE

avg = gradel + grade2 + grade3 / 3.0;
cout << “The average is “ << avg << ‘“\n”’;
return O;

}

The problem is that division is performed first. Therefore,
the third grade is divided by 3.0 first, then the other two
grades are added to that result. To correct this problem, you
simply have to add one set of parentheses, as shown in the
following:

// Filename: C8AVG2.CPP
// Compute the average of three grades.
#include <iostream.h>

main(Q)
{
float avg, gradel, grade2, grade3;
gradel = 87.5;
grade2 = 92.4;
grade3 = 79.6;

avg = (gradel + grade2 + grade3) / 3.0;
cout << “The average is “ << avg << ‘“\n”’;
return O;

TIP: Use plenty of parentheses in your C++ programs to clarify
the order of operators, even when you don’t have to override
their default order. Using parentheses makes the calculations
easier to understand later, when you might have to modify the
program.

Shorter Is Not Always Better

When you program computers for a living, it is much more
important to write programs that are easy to understand than
programs that are short or include tricky calculations.

173

Chapter 8 ¢ Using C++ Math Operators and Precedence

Maintainability is the computer industry’s word for the chang-
ing and updating of programs previously written in a simple
style. The business world is changing rapidly, and the pro-
grams companies have used for years must often be updated to
reflect this changing environment. Businesses do not always
have the resources to write programs from scratch, so they
usually modify the ones they have.

Years ago when computer hardware was much more expen-
sive, and when computer memories were much smaller, it was
important to write small programs, which often meant relying
on clever, individualized tricks and shortcuts. Unfortunately,
such programs are often difficult to revise, especially if the
original programmers leave and someone else (you!) must
modify the original code.

Companies are realizing the importance of spending time to
write programs that are easy to modify and that do not rely on
tricks, or “quick and dirty” routines that are hard to follow. You
can be a much more valuable programmer if you write clean
programs with ample white space, frequent remarks, and
straightforward code. Use parentheses in formulas if it makes
the formulas clearer, and use variables for storing results in
case you need the same answer later in the program. Break
long calculations into several smaller ones.

Throughout the remainder of this book, you can read tips on
writing maintainable programs. You and your colleagues will
appreciate these tips when you incorporate them in your own
C++ programs.

The Assignment Statements

In C++, the assignment operator, =, behaves differently from
what you might be used to in other languages. So far, you have used
it to assign values to variables, which is consistent with its use in
most other programming languages.

However, the assignment operator also can be used in other
ways, such as multiple assignment statements and compound as-
signments, as the following sections illustrate.

EXAMPLE

Multiple Assignments

If two or more equal signs appear in an expression, each
performs an assignment. This fact introduces a new aspect of the
precedence order you should understand. Consider the following
expression:

a=b=c=d=e=100;

This might at first seem confusing, especially if you know other
computer languages. To C++, the equal sign always means: Assign
the value on the right to the variable on the left. This right-to-left
order is described in Appendix D’s precedence table. The third
column in the table is labeled Associativity, which describes the
direction of the operation. The assignment operator associates from
the right, whereas some of the other C++ operators associate from
the left.

Because the assignment associates from the right, the previous
expression assigns 100 to the variable named e. This assignment
produces a value, 100, for the expression. In C++, all expressions
produce values, typically the result of assignments. Therefore, 100 is
assigned to the variable d. The value, 100, is assigned to c, then tob,
and finally to a. The old values of these variables are replaced by 100
after the statement finishes.

Because C++ does not automatically set variables to zero before
you use them, you might want to do so before you use the variables
with a single assignment statement. The following section of vari-
able declarations and initializations is performed using multiple
assignment statements.

main(Q)

{
int ctr, num_emp, num_dep;
float sales, salary, amount;

ctr=num_emp=num_dep=0;
sales=salary=amount=0;
// Rest of program follows.

In C++, you can include the assignment statement almost
anywhere in a program, even in another calculation. For example,
consider this statement:

175

Chapter 8 ¢ Using C++ Math Operators and Precedence

value =5 + (r =9 - ¢);

which is a perfectly legal C++ statement. The assignment operator
resides on the first level of the precedence table, and always pro-
duces a value. Because its associativity is from the right, the r is
assigned 9 - c because the equal sign on the extreme right is
evaluated first. The subexpression (r = 9 - ¢) produces a value (and
places that value in r), which is then added to s before storing the
answer in value.

Example

Because C++ does not initialize variables to zero before you use
them, you might want to include a multiple assignment operator to
do so before using the variables. The following section of code
ensures that all variables are initialized before the rest of the pro-
gram uses them.

_i8

main(Q)

{
int num_emp, dependents, age;
float salary, hr_rate, taxrate;

// Initialize all variables to zero.
num_emp=dependents=age=hours=0;

salary=hr_rate=taxrate=0.0;

// Rest of program follows.

Compound Assignments

Many times in programming, you might want to update the
value of a variable. In other words, you have to take a variable’s
current value, add or multiply that value by an expression, then
reassign it to the original variable. The following assignment state-
ment demonstrates this process:

salary=salary*1.2;

EXAMPLE

This expression multiplies the old value of salary by 1.2 (in
effect, raising the value in salary by 20 percent), then reassigns it to
salary. C++ provides several operators, called compound operators,
that you can use any time the same variable appears on both sides
of the equal sign. The compound operators are shown in Table 8.4.

Table 8.4. C++’'s compound operators.

Operator Example Equivalent

+= bonus+=500; bonus=bonus+500;
-= budget-=50; budget=budget-50;
= salary=1.2; salary=salary*1.2;
/= factor/=.50; Factor=Ffactor/.50;
%= daynum%=7; daynum=daynum7 ;

The compound operators are low in the precedence table. They
typically are evaluated last or near-last.

Examples

1. You have been storing your factory’s production amount
in a variable called prod_amt, and your supervisor has just
informed you that a new addition has to be applied to the
production value. You could code this update in a statement,
as follows:

prod_amt = prod_amt + 2.6; // Add 2.6 to current production.

Instead of using this formula, use C++’s compound addition
operator by coding it like this:

prod_amt += 2.6; // Add 2.6 to current production.

2. Suppose you are a high school teacher who wants to raise
your students’ grades. You gave a test that was too difficult,
and the grades were not what you expected. If you had
stored each of the student’s grades in variables named
gradel, grade2, grade3, and so on, you can update the grades
in a program with the following section of compound
assignments.

177

Chapter 8 ¢ Using C++ Math Operators and Precedence

gradel*=1.1; // Increase each student’s grade by 10.
percent.

grade2*=1_1;

grade3*=1.1;

// Rest of grade changes follow.

3. The precedence of the compound operators requires impor-
tant consideration when you decide how to code compound
assignments. Notice from Appendix D, “C++ Precedence
Table,” that the compound operators are on level 19, much
lower than the regular math operators. This means you must
be careful how you interpret them.

For example, suppose you want to update the value of a
sales variable with this formula:

4-factor+bonus

You can update the sales variable with the following
statement:

sales = *4 - factor + bonus;

This statement adds the quantity 4-factor+bonus t0 sales. Due
to operator precedence, this statement is not the same as the
following one:

sales = sales *4 - factor + bonus;

Because the »= operator is much lower in the precedence
table than = or -, it is performed last, and with right-to-left
associativity. Therefore, the following are equivalent, from a
precedence viewpoint:

sales *= 4 - factor + bonus;
and

sales = sales * (4 - factor + bonus);

Mixing Data Types
in Calculations

You can mix data types in C++. Adding an integer and a
floating-point value is mixing data types. C++ generally converts

EXAMPLE

the smaller of the two types into the other. For instance, if you add
a double to an integer, C++ first converts the integer into a double
value, then performs the calculation. This method produces the
most accurate result possible. The automatic conversion of data
types is only temporary; the converted value is back in its original
data type as soon as the expression is finished.

C++ attempts to If C++ converted two different data types to the smaller value’s
;g?avte;;éhtzstﬂ?"” type, the higher-precision value is truncated, or shortened, and
larger one in a accuracy is lost. For example, in the following short program, the
mixed data-type floating-point value of sales is added to an integer called bonus.
expression. Before C++ computes the answer, it converts bonus to floating-point,

which results in a floating-point answer.

// Filename: C8DATA.CPP

// Demonstrate mixed data type in an expression.
#include <stdio.h>

main(Q)

{
int bonus=50;
float salary=1400.50;
float total;

total=salary+bonus; // bonus becomes floating-point
// but only temporarily.

printf(“The total is %.2f’, total);

return O;

Type Casting

Most of the time, you don’t have to worry about C++’s auto-
matic conversion of data types. However, problems can occur if you
mix unsigned variables with variables of other data types. Due to
differences in computer architecture, unsigned variables do not
always convert to the larger data type. This can result in loss of
accuracy, and even incorrect results.

You can override C++’s default conversions by specifying your
own temporary type change. This process is called type casting.
When you type cast, you temporarily change a variable’s data type

179

Chapter 8 ¢ Using C++ Math Operators and Precedence

from its declared data type to a new one. There are two formats of
the type cast. They are

(data type) expression
and
data type(expression)

where data type can be any valid C++ data type, such as int or float,
and the expression can be a variable, literal, or an expression that
combines both. The following code temporarily type casts the
integer variable age into a double floating-point variable, so it can be
multiplied by the double floating-point factor. Both formats of the
type cast are illustrated.

= The variable age_factor is assigned the value of the variable age (now
treated like a double floating-point variable) multiplied by the variable
factor.

age_factor = (double)age * factor; // Temporarily change age
// to double.

The second way of type casting adds the parentheses around
the variable rather than the data type, as so:

age_factor = double(age) * factor; // Temporarily change age
// to double.

NOTE: Type casting by adding the parentheses around the
expression and not the data type is new to C++. C programmers
do not have the option—they must put the data type in paren-
theses. The second method “feels” like a function call and
seems to be more natural for this language. Therefore, becom-
ing familiar with the second method will clarify your code.

EXAMPLE

Examples

1. Suppose you want to verify the interest calculation used by
your bank on a loan. The interest rate is 15.5 percent, stored
as .155 in a floating-point variable. The amount of interest
you owe is computed by multiplying the interest rate by the
amount of the loan balance, then multiplying that by the
number of days in the year since the loan originated. The
following program finds the daily interest rate by dividing
the annual interest rate by 365, the number of days in a year.
C++ must convert the integer 365 to a floating-point literal
automatically, because it is used in combination with a
floating-point variable.

// Filename: C8INT1.CPP

// Calculate interest on a loan.

#include <stdio.h>

main(Q)

{
int days=45; // Days since loan origination.
float principle = 3500.00; // Original loan amount
float interest_rate=0.155; // Annual interest rate
float daily_interest; // Daily interest rate

daily_interest=interest_rate/365; // Compute floating-
// point value.

// Because days is int, it too is converted to float.
daily_interest = principle * daily_interest * days;
principle+=daily_interest;//Update principle with interest.
printf(“The balance you owe is %.2f\n”, principle);

return O;

}

The output of this program follows:

The balance you owe is 3566.88

Chapter 8 ¢ Using C++ Math Operators and Precedence

2. Instead of having C++ perform the conversion, you might
want to type cast all mixed expressions to ensure they
convert to your liking. Here is the same program as in the
first example, except type casts are used to convert the
integer literals to floating-points before they are used.

// Filename: C8INT2.CPP
// Calculate interest on a loan using type casting.
#include <stdio.h>
main(Q)
{
int days=45; // Days since loan origination.
float principle = 3500.00; // Original loan amount
float interest_rate=0.155; // Annual interest rate
float daily_interest; // Daily interest rate

daily_interest=interest_rate/float(365); // Type cast days
// to float.

// Because days is integer, convert it to float also.
daily_interest = principle * daily_interest * float(days);
principle+=daily_interest;// Update principle with interest.
printf(“The balance you owe is %.2Ff”, principle);

return O;

}

The output from this program is exactly the same as the
previous one.

Review Questions
The answers to the review questions are in Appendix B.
1. What is the result for each of the following expressions?

a l1+2*4/2

b. @+2)*472

C.1+2* (472

EXAMPLE

2. What is the result for each of the following expressions?

a 9% 2 + 1
b. @+ @0 - @+ 2))

3. Convert each of the following formulas into its C++ assign-
ment equivalents.

3+3
a a=——
4+ 4
b. x=(a - b)*(a - ¢)2
a2
C. f=—
b3
(B -x2) (4*2-1)
d d-= -

x - 9) x3

4. Write a short program that prints the area of a circle, when
its radius equals 4 and equals 3.14159. (Hint; The area of a
circle is computed by = ~ radius?.)

5. Write the assignment and printf() statements that print the
remainder of 100/3.

Review Exercises

1. Write a program that prints each of the first eight powers
of 2 (21, 22, 23,...28). Please write comments and include
your name at the top of the program. Print string literals
that describe each answer printed. The first two lines of
your output should look like this:

2 raised to the first power is 2
2 raised to the second power is 4

Chapter 8 ¢ Using C++ Math Operators and Precedence

2. Change C8PAY.CPP so it computes and prints a bonus of 15
percent of the gross pay. Taxes are not to be taken out of the
bonus. After printing the four variables, gross_pay, tax_rate,
bonus, and gross_pay, print a check on-screen that looks like
a printed check. Add string literals so it prints the check-
holder and put your name as the payer at the bottom of the
check.

3. Store the weights and ages of three people in variables. Print
a table, with titles, of the weights and ages. At the bottom of
the table, print the averages.

4. Assume that a video store employee works 50 hours. He is
paid $4.50 for the first 40 hours, time-and-a-half (1.5 times
the regular pay rate) for the first five hours over 40, and
double-time pay for all hours over 45. Assuming a 28 per-
cent tax rate, write a program that prints his gross pay, taxes,
and net pay to the screen. Label each amount with appropri-
ate titles (using string literals) and add appropriate com-
ments in the program.

Summary

You now understand C++’s primary math operators and the
importance of the precedence table. Parentheses group operations
so they can override the default precedence levels. Unlike some
other programming languages, every operator in C++ has a mean-
ing, no matter where it appears in an expression. This fact enables
you to use the assignment operator (the equal sign) in the middle of
other expressions.

When you perform math with C++, you also must be aware of
how C++ interprets data types, especially when you mix them in the
same expression. Of course, you can temporarily type cast a variable
or literal so you can override its default data type.

This chapter has introduced you to a part of the book concerned
with C++ operators. The following two chapters (Chapter 9, “Rela-
tional Operators,” and Chapter 10, “Logical Operators”) extend this
introduction to include relational and logical operators. They enable
you to compare data and compute accordingly.

Relational
Operators

Sometimes you won’t want every statement in your C++ program to
execute every time the program runs. So far, every program in this
book has executed from the top and has continued, line-by-line,
until the last statement completes. Depending on your application,
you might not always want this to happen.

Programs that don’t always execute by rote are known as data-
driven programs. In data-driven programs, the data dictates what
the program does. You would not want the computer to print every
employee’s paychecks for every pay period, for example, because
some employees might be on vacation, or they might be paid on
commission and not have made a sale during that period. Printing
paychecks with zero dollars is ridiculous. You want the computer to
print checks only for employees who have worked.

This chapter shows you how to create data-driven programs.
These programs do not execute the same way every time. This is
possible through the use of relational operators that conditionally
control other statements. Relational operators first “look” at the
literals and variables in the program, then operate according to what
they “find.” This might sound like difficult programming, but it is
actually straightforward and intuitive.

Chapter 9 ¢ Relational Operators

This chapter introduces you to
¢ Relational operators
¢ The if statement
¢ The else statement

Not only does this chapter introduce these comparison com-
mands, but it prepares you for much more powerful programs,
possible once you learn the relational operators.

Defining Relational Operators

Relational operators In addition to the math operators you learned in Chapter 8,

compare data. “Using C++ Math Operators and Precedence,” there are also opera-
tors that you use for data comparisons. They are called relational
operators, and their task is to compare data. They enable you to
determine whether two variables are equal, not equal, and which
one is less than the other. Table 9.1 lists each relational operator and
its meaning.

Table 9.1. The relational operators.

Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

1= Not equal to

The six relational operators form the foundation of data com-
parison in C++ programming. They always appear with two literals,
variables, expressions (or some combination of these), one on each
side of the operator. These relational operators are useful and you
should know them as well as you know the +, -, *, 7, and » mathemati-
cal operators.

C++ By

EXAMPLE

NOTE: Unlike many programming languages, C++ uses a
double equal sign (==) as a test for equality. The single equal
sign (=) is reserved for assignment of values.

Examples

1. Assume that a program initializes four variables as follows:

int a=5;
int b=10;
int c=15;
int d=5;

The following statements are then True:
aisequal tod, SO a ==
bislessthanc,sob < ¢
cisgreaterthana, soc > a

b is greater than or equal to a, SO b >= a
d is less than or equal tob, SO d <= b
bisnotequaltoc,sob 1= c

These are not C++ statements; they are statements of com-
parison (relational logic) between values in the variables.
Relational logic is easy.

Relational logic always produces a True or False result. In
C++, unlike some other programming languages, you can
directly use the True or False result of relational operators
inside other expressions. You will soon learn how to do this;
but for now, you have to understand only that the following
True and False evaluations are correct:

¢ A True relational result evaluates to 1.

¢ A False relational result evaluates to 0.

Chapter 9 ¢ Relational Operators

Each of the statements presented earlier in this example
evaluates to a 1, or True, result.

2. If you assume the same values as stated for the previous
example’s four variables, each of the value’s statements is
False (0):

a==b
b>c

al=d

b >=—c

c<=b

Study these statements to see why each is False and evalu-
ates to 0. The variables a and d, for example, are exactly
equal to the same value (5), so neither is greater or less than
the other.

You use relational logic in everyday life. Think of the follow-
ing statements:

“The generic butter costs less than the name brand.”
“My child is younger than Johnny.”

“Our salaries are equal.”

“The dogs are not the same age.”

Each of these statements can be either True or False. There is
no other possible answer.

Watch the Signs!

Many people say they are “not math-inclined” or “not logical,”
and you might be one of them. But, as mentioned in Chapter 8,
you do not have to be good in math to be a good computer
programmer. Neither should you be frightened by the term

EXAMPLE

“relational logic,” because you just saw how you use it in every-
day life. Nevertheless, symbols confuse some people.

The two primary relational operators, less than (<) and greater
than (), are easy to remember. You probably learned this
concept in school, but might have forgotten it. Actually, their
signs tell you what they mean.

The arrow points to the lesser of the two values. Notice how, in
the previous Example 1, the arrow (the point of the< or >)
always points to the lesser number. The larger, open part of the
arrow points to the larger number.

The relation is False if the arrow is pointing the wrong way. In
other words, 4 > 9 is False because the operator symbol is
pointing to the 9, which is not the lesser number. In English this
statement says, “4 is greater than 9,” which is clearly false.

The if Statement

You incorporate relational operators in C++ programs with the
if statement. Such an expression is called a decision statement because
it tests a relationship—using the relational operators—and, based
on the test’s result, makes a decision about which statement to
execute next.

The if statement appears as follows:

Tt if (condition)
4 rdabion
{ block of one or more C++ statements }

The condition includes any relational comparison, and it must
be enclosed in parentheses. You saw several relational comparisons
earlier, such as a==d, c<d, and so on. The block of one or more C++
statements IS any C++ statement, such as an assignment or printf(),
enclosed in braces. The block of the if, sometimes called the body of
the if statement, is usually indented a few spaces for readability.
This enables you to see, at a glance, exactly what executes if condition
is True.

Chapter 9 ¢ Relational Operators

If only one statement follows the if, the braces are not required
(but it is always good to include them). The block executes only if
condition IS True. If condition is False, C++ ignores the block and
simply executes the next appropriate statement in the program that
follows the if statement.

The i statement Basically, you can read an if statement in the following way: “If

makes a decision. the condition is True, perform the block of statements inside the
braces. Otherwise, the condition must be False; so do not execute
that block, but continue executing the remainder of the program as
though this if statement did not exist.”

The if statement is used to make a decision. The block of
statements following the if executes if the decision (the result of the
relation) is True, but the block does not execute otherwise. As with
relational logic, you also use if logic in everyday life. Consider the
statements that follow.

“If the day is warm, | will go swimming.”

“If I make enough money, we will build a new house.”
“If the light is green, go.”

“If the light is red, stop.”

Each of these statements is conditional. That is, if and only if the
condition is true do you perform the activity.

’ CAUTION: Do not type a semicolon after the parentheses of
& the relational test. Semicolons appear after each statement
inside the block.

Expressions as the Condition

C++ interprets any nonzero value as True, and zero always as
False. This enables you to insert regular nonconditional expres-
sions in the if logic. To understand this concept, consider the
following section of code:

EXAMPLE

mainQ)

{
int age=21; // Declares and assigns age as 21.
it (age=85)
{ cout << “You have lived through a lot!”; }

// Remaining program code goes here.

At first, it might seem as though the printf() does not execute,
but it does! Because the code line used a regular assignment
operator (=) (not a relational operator, ==), C++ performs the
assignment of 85 to age. This, as with all assignments you saw
in Chapter 8, “Using C++ Math Operators and Precedence,”
produces a value for the expression of 8s. Because 85 is honzero,
C++ interprets the if condition as True and then performs the
body of the if statement.

Confusing the relational equality test (==) with the regular
assignment operator (=) is a common error in C++ programs,
and the nonzero True test makes this bug even more difficult to
find.

The designers of C++ didn’t intend for this to confuse you.
They want you to take advantage of this feature whenever you
can. Instead of putting an assignment before an if and testing
the result of that assignment, you can combine the assignment
and if into a single statement.

Test your understanding of this by considering this: Would
C++ interpret the following condition as True or False?

if (10 == 10 == 10)...

Be careful! At first glance, it seems True; but C++ interprets it
as False! Because the == operator associates from the left, the
program compares the first 10 to the second. Because they are
equal, the result is 1 (for True) and the 1 is then compared to the
third 10—which results in a o (for False)!

Chapter 9 ¢ Relational Operators

Examples
1. The following are examples of valid C++ if statements.

3 If (the variable sales is greater than 5000), then the variable bonus
- becomes equal to 500.

if (sales > 5000)
{ bonus = 500; }

If this is part of a C++ program, the value inside the variable
sales determines what happens next. If sales contains more
than 5000, the next statement that executes is the one inside
the block that initializes bonus. If, however, sales contains
5000 Or less, the block does not execute, and the line follow-
ing the if’s block executes.

B If (the variable age is less than or equal to 21) then print You are a
minor. to the screen and go to a new line, print what is your

grade? to the screen, and accept an integer from the keyboard.

if (age <= 21)
{ cout << *“You are a minor.\n”’;
cout << “What is your grade? *
cin >> grade; }

If the value in age is less than or equal to 21, the lines of code
within the block execute next. Otherwise, C++ skips the
entire block and continues with the remaining program.

) If (the variable balance is greater than the variable 1ow_balance),
then print past due! to the screen and move the cursor to a new
line.

if (balance > low_balance)
{cout << “Past duel\n”; }

If the value in balance is more than that in 1ow_balance, execu-
tion of the program continues at the block and the message
“Past due!” prints on-screen. You can compare two variables
to each other (as in this example), or a variable to a literal (as
in the previous examples), or a literal to a literal (although
this is rarely done), or a literal to any expression in place of
any variable or literal. The following if statement shows an
expression included in the if.

C++ By

EXAMPLE

If (the variable pay multiplied by the variable tax_rate equals the
variable minimum), then the variable 1ow_salary is assigned 1400.60.

IT (pay * tax_rate == minimum)
{ low_salary = 1400.60; }

The precedence table of operators in Appendix D, “C++
Precedence Table,” includes the relational operators. They
are at levels 11 and 12, lower than the other primary math
operators. When you use expressions such as the one shown
in this example, you can make these expressions much more
readable by enclosing them in parentheses (even though
C++ does not require it). Here is a rewrite of the previous if
statement with ample parentheses:

If (the variable pay (multiplied by the variable tax_rate) equals the
variable minimum), then the variable 1ow_salary is assigned 1400.60.

IT ((pay * tax_rate) == minimum)
{ low_salary = 1400.60; }

. The following is a simple program that computes a
salesperson’s pay. The salesperson receives a flat rate of
$4.10 per hour. In addition, if sales are more than $8,500, the
salesperson also receives an additional $500 as a bonus. This
is an introductory example of conditional logic, which
depends on a relation between two values, sales and $8500.

// Filename: C9PAY1.CPP
// Calculates a salesperson’s pay based on his or her sales.
#include <iostream.h>
#include <stdio.h>
main(Q)
{
char sal_name[20];
int hours;
float total_sales, bonus, pay;

cout << “\n\n”’; // Print two blank lines.
cout << “Payroll Calculation\n”;
CoUt << o \n”’;

Chapter 9 ¢ Relational Operators

// Ask the user for needed values.

cout << “What is salesperson’s last name? “;

cin >> sal_name;

cout << “How many hours did the salesperson work? “;
cin >> hours;

cout << “What were the total sales? “;

cin >> total_sales;

bonus = 0; // Initially, there is no bonus.

// Compute the base pay.
pay = 4.10 * (float)hours; // Type casts the hours.

// Add bonus only if sales were high.
if (total_sales > 8500.00)
{ bonus = 500.00; }

printf(“%s made $%.2Ff \n”, sal_name, pay);
printf(“and got a bonus of $%.2f”, bonus);

return O;

}

This program uses cout, cin, and printf() for its input and
output. You can mix them. Include the appropriate header
files if you do (stdio.h and iostream.h).

The following output shows the result of running this
program twice, each time with different input values. Notice
that the program does two different things: It computes a
bonus for one employee, but doesn’t for the other. The $500
bonus is a direct result of the if statement. The assignment
of $500 t0 bonus executes only if the value in total_sales is
more than s$ss00.

Payroll Calculation

What is salesperson’s last name? Harrison
How many hours did the salesperson work? 40
What were the total sales? 6050.64

Harrison made $164.00

and got a bonus of $0.00

EXAMPLE

Payroll Calculation

What is salesperson’s last name? Robertson
How many hours did the salesperson work? 40
What were the total sales? 9800

Robertson made $164.00

and got a bonus of $500.00

3. When programming the way users input data, it is wise to
program data validation on the values they type. If they enter
a bad value (for instance, a hegative number when the input
cannot be negative), you can inform them of the problem
and ask them to reenter the data.

Not all data can be validated, of course, but most of it can be
checked for reasonableness. For example, if you write a
student record-keeping program, to track each student’s
name, address, age, and other pertinent data, you can check
whether the age falls in a reasonable range. If the user enters
213 for the age, you know the value is incorrect. If the user
enters -4 for the age, you know this value is also incorrect.
Not all erroneous input for age can be checked, however. If
the user is 21, for instance, and types 22, your program has
no way of knowing whether this is correct, because 22 falls
in a reasonable age range for students.

The following program is a routine that requests an age, and
makes sure it is more than 10. This is certainly not a fool-
proof test (because the user can still enter incorrect ages), but
it takes care of extremely low values. If the user enters a bad
age, the program asks for it again inside the if statement.

// Filename: C9AGE.CPP

// Program that ensures age values are reasonable.
#include <stdio.h>

mainQ)

{

int age;

printf(“\nWhat is the student’s age? “);
scanf(“ %d”, &age); // With scanf(), remember the &

195

Chapter 9 ¢ Relational Operators

if (age < 10)
{ printf(“%c”, “\x077); // BEEP
printf(“*** The age cannot be less than 10 ***\n”);
printf(“Try again...\n\n”);
printf(“What is the student’s age? “);
scanf(*“ %d”, &age);
T

printf(“Thank you. You entered a valid age.”);
return O;

}

This routine can also be a section of a longer program. You
learn later how to prompt repeatedly for a value until a valid
input is given. This program takes advantage of the bell
(ASCII 7) to warn the user that a bad age was entered.
Because the \a character is an escape sequence for the alarm
(see Chapter 4, “Variables and Literals” for more informa-
tion on escape sequences), \a can replace the \xo7 in this
program.

If the entered age is less than 10, the user receives an error
message. The program beeps and warns the user about the
bad age before asking for it again.

The following shows the result of running this program.
Notice that the program “knows,” due to the if statement,
whether age is more than 1o.

What is the student’s age? 3
*** The age cannot be less than 10 ***
Try again. ..

What is the student’s age? 21
Thank you. You entered a valid age.

4. Unlike many languages, C++ does not include a square math
operator. Remember that you “square” a number by multi-
plying it times itself (3=3, for example). Because many com-
puters do not allow for integers to hold more than the square
of 180, the following program uses if statements to make
sure the number fits as an integer.

EXAMPLE

The program takes a value from the user and prints its
square—unless it is more than 180. The message * square is
not allowed for numbers over 180 * appears on-screen if the
user types a huge number.

// Filename: C9SQR1.CPP

// Print the square of the input value
// if the input value is less than 180.
#include <iostream.h>

main()

{

int num, square;

cout << “\n\n”’; // Print two blank lines.
cout << “What number do you want to see the square of? “;
cin >> num;

if (num <= 180)
{ square = num * num;
cout << “The square of “ << num << “ is “ <<
square << “\n”’;

}

if (num > 180)

{ cout << “\x077; // BEEP
cout << “\n* Square is not allowed for numbers over 180 *7;
cout << “\nRun this program again trying a smaller value.”;

}

cout << “\nThank you for requesting square roots.\n”’;
return O;

}

The following output shows a couple of sample runs with
this program. Notice that both conditions work: If the user
enters a number less than 180, the calculated square appears,
but if the user enters a larger number, an error message
appears.

Chapter 9 ¢ Relational Operators

What number do you want to see the square of? 45

The square of 45 is 2025
Thank you for requesting square roots.

What number do you want to see the square of? 212

* Square is not allowed for numbers over 180 *
Run this program again trying a smaller value.
Thank you for requesting square roots.

You can improve this program with the else statement,
which you learn later in this chapter. This code includes a
redundant check of the user’s input. The variable num must
be checked once to print the square if the input number is
less than or equal to 180, and checked again for the error
message if it is greater than 180.

5. The value of 1 and 0 for True and False, respectively, can
help save you an extra programming step, which you are not
necessarily able to save in other languages. To understand
this, examine the following section of code:

commission = 0; // Initialize commission

if (sales > 10000)
{ commission = 500.00; }

pay = net_pay + commission; // Commission is 0 unless
// high sales.

You can make this program more efficient by combining the
if's relational test because you know that if returns 1 or O:

pay = net_pay + (commission = (sales > 10000) * 500.00);

This single line does what it took the previous four lines to
do. Because the assignment on the extreme right has prece-
dence, it is computed first. The program compares the
variable sales to 10000. If it is more than 10000, a True result
of 1 returns. The program then multiplies 1 by 500.00 and
stores the result in commission. If, however, the sales were not

EXAMPLE

more than 10000, a 0 results and the program receives o from
multiplying o by 500.0o.

Whichever value (500.00 or o) the program assigns to commis-
sion is then added to net_pay and stored in pay.

The else Statement

The else statement never appears in a program without an if
statement. This section introduces the else statement by showing
you the popular if-else combination statement. Its format is

if (condition)

{ A block of 1 or more C++ statements }
else

{ A block of 1 or more C++ statements }

The first part of the if-else is identical to the if statement. If
condition is True, the block of C++ statements following the if
executes. However, if condition is False, the block of C++ statements
following the else executes instead. Whereas the simple if statement
determines what happens only when the condition is True, the if-
else also determines what happens if the condition is False. No
matter what the outcome is, the statement following the if-else
executes next.

The following describes the nature of the if-else:

¢ If the condition test is True, the entire block of statements
following the if executes.

¢ If the condition test is False, the entire block of statements
following the else executes.

NOTE: You can also compare characters, in addition to num-
bers. When you compare characters, C++ uses the ASCII table
to determine which character is “less than’ the other (lower in
the ASCII table). But you cannot compare character strings or
arrays of character strings directly with relational operators.

iRele)

Chapter 9 ¢ Relational Operators

Examples

1. The following program asks the user for a number. It then
prints whether or not the number is greater than zero, using
the if-else statement.

// Filename: COIFEL1.CPP

// Demonstrates if-else by printing whether an
// input value is greater than zero or not.
#include <iostream.h>

main(Q)

{

int num;

cout << “What is your number? *;
cin >> num; // Get the user’s number.

if (nhum > 0)
{ cout << “More than O\n”; }
else
{ cout << “Less or equal to O\n”; }

// No matter what the number was, the following executes.
cout << “\n\nThanks for your time!\n”’;
return O;

}

There is no need to test for both possibilities when you use
an else. The if tests whether the number is greater than zero,
and the e1se automatically handles all other possibilities.

2. The following program asks the user for his or her first
name, then stores it in a character array. The program checks
the first character of the array to see whether it falls in the
first half of the alphabet. If it does, an appropriate message is
displayed.

// Filename: C9IFEL2.CPP

// Tests the user’s first initial and prints a message.
#include <iostream.h>

main()

{

EXAMPLE

char last[20]; // Holds the last name.
cout << “What is your last name? “;
cin >> last;

// Test the initial
if (last[0] <= “P”)
{ cout << “Your name is early in the alphabet.\n”;}
else
{ cout << “You have to wait a while for “
<< “YOUR name to be called!\n”;}
return O;

}

Notice that because the program is comparing a character
array element to a character literal, you must enclose the
character literal inside single quotation marks. The data type
on each side of each relational operator must match.

3. The following program is a more complete payroll routine
than the other one. It uses the if statement to illustrate how
to compute overtime pay. The logic goes something like this:

If employees work 40 hours or fewer, they are paid regular
pay (their hourly rate times the number of hours worked). If
employees work between 40 and 50 hours, they receive one-
and-a-half times their hourly rate for those hours over 40, in
addition to their regular pay for the first 40. All hours over
50 are paid at double the regular rate.

// Filename: C9PAY2._CPP
// Compute the full overtime pay possibilities.
#include <iostream._h>
#include <stdio.h>
main(Q)
{
int hours;
float dt, ht, rp, rate, pay;

cout << “\n\nHow many hours were worked? *;
cin >> hours;

cout << “\nWhat is the regular hourly pay? “;
cin >> rate;

Chapter 9 ¢ Relational Operators

// Compute pay here
// Double-time possibility
if (hours > 50)
{dt = 2.0 * rate * (float)(hours - 50);
ht = 1.5 * rate * 10.0;} // Time + 1/2 for 10 hours.
else

{ dt = 0.0; }// Either none or double for hours over 50.

// Time and a half.
if (hours > 40)
{ ht = 1.5 * rate * (float) (hours - 40); }

// Regular Pay
if (hours >= 40)
{rp =40 * rate; }
else
{ rp = (Float)hours * rate; }

pay = dt + ht + rp; // Add three components of payroll.
printf(‘\nThe pay is %.2f’, pay);

return O;

}

4. The block of statements following the if can contain any
valid C++ statement—even another if statement! This
sometimes is handy, as the following example shows.

You can even use this program to award employees for their
years of service to your company. In this example, you are
giving a gold watch to those with more than 20 years of
service, a paperweight to those with more than 10 years, and
a pat on the back to everyone else!

// Filename: C9SERV.CPP
// Prints a message depending on years of service.
#include <iostream._h>
mainQ)
{
int yrs;
cout << “How many years of service? “;
cin >> yrs; // Determine the years they have worked.

EXAMPLE

if (yrs > 20)
{ cout << “Give a gold watch\n”; }
else
{ if (yrs > 10)
{ cout << “Give a paper weight\n”; }
else
{ cout << “Give a pat on the back\n; }
b

return O;

}

Don’t rely on the if within an if to handle too many condi-
tions, because more than three or four conditions can add
confusion. You might mess up your logic, such as: “If this is
True, and if this is also True, then do something; but if not
that, but something else is True, then...” (and so on). The
switch Statement that you learn about in a later chapter
handles these types of multiple if selections much better
than a long if within an if statement does.

Review Questions
The answers to the review questions are in Appendix B.
1. Which operator tests for equality?

2. State whether each of these relational tests is True or False:

a. 4>=5
b. 4==14
C. 165 >= 165
d. o 1=25

3. True or false: c++ is fun prints on-screen when the following
statement executes.

Chapter 9 ¢ Relational Operators

if (54 <= 54)
{ printf(“C++ is fun”); }

4, What is the difference between an if and an if-else state-
ment?

5. Does the following printf() execute?

if (31=41=1)
{ printf(“This will print”); }

6. Using the ASCII table (see Appendix C, “ASCII Table”), state
whether these character relational tests are True or False:

Review Exercises

1. Write a weather-calculator program that asks for a list of the
previous five days’ temperatures, then prints Brrrr! every
time a temperature falls below freezing.

2. Write a program that asks for a number and then prints the
square and cube (the number multiplied by itself three
times) of the number you input, if that number is more than
1. Otherwise, the program does not print anything.

3. In a program, ask the user for two numbers. Print a message
telling how the first one relates to the second. In other
words, if the user enters 5 and 7, your program prints “s is
less than 7.”

4. Write a program that prompts the user for an employee’s
pre-tax salary and prints the appropriate taxes. The taxes are
10 percent if the employee makes less than $10,000; 15
percent if the employee earns $10,000 up to, but not includ-
ing, $20,000; and 20 percent if the employee earns $20,000 or
more.

EXAMPLE

Summary

You now have the tools to write powerful data-checking pro-
grams. This chapter showed you how to compare literals, variables,
and combinations of both by using the relational operators. The if
and the if-else statements rely on such data comparisons to deter-
mine which code to execute next. You can now conditionally execute
statements in your programs.

The next chapter takes this one step further by combining
relational operators to create logical operators (sometimes called
compound conditions). These logical operators further improve your
program’s capability to make selections based on data comparisons.

Logical Operators

C++’s logical operators enable you to combine relational operators
into more powerful data-testing statements. The logical operators
are sometimes called compound relational operators. As C++’s prece-
dence table shows, relational operators take precedence over logical
operators when you combine them. The precedence table plays an
important role in these types of operators, as this chapter empha-
sizes.
This chapter introduces you to

¢ The logical operators
¢ How logical operators are used
¢ How logical operators take precedence

This chapter concludes your study of the conditional testing
that C++ enables you to perform, and it illustrates many examples
of if statements in programs that work on compound conditional
tests.

Defining Logical Operators

There may be times when you have to test more than one set of
variables. You can combine more than one relational test into a
compound relational test by using C++’s logical operators, as shown in
Table 10.1.

207

Chapter 10 & Logical Operators

Table 10.1. Logical operators.

Operator Meaning
&& AND

1 OR

! NOT

The first two logical operators, && and ||, never appear by
themselves. They typically go between two or more relational tests.

Logical operators Table 10.2 shows you how each logical operator works. These
zgfﬁ)'fj::i:;erotfn , tablesare called truth tables because they show you how to achieve
remﬁmal testg True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table
(Both sides must be True)

True AND True = True
True AND False = False
False =~ AND True = False
False AND False = False

The OR (1) truth table
(One or the other side must be True)

True OR True = True
True OR False = True
False OR True =True
False OR False = False

The NOT (1) truth table
(Causes an opposite relation)

NOT True = False
NOT False = True

C++ By

EXAMPLE

Logical Operators and

Their Uses

o

The |] is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(1) operator:

The True and False on each side of the operators represent a
relational if test. The following statements, for example, are valid if
tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((@a <b) & (c > d))
{ cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, ¢ must
be greater than d for the printf() to execute. The if statement still
requires parentheses around its complete conditional test. Consider
this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))
{ bonus=500; }

The sales must be more than 5000, or the hrs_worked must be
more than 81, before the assignment executes.

if (I(sales < 2500))
{ bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This
illustrates an important programming tip: Use 1 sparingly. Or, as
some professionals so wisely put it: “Do not use 1 or your programs
will not be r(unclear).” It is much clearer to rewrite the previous
example by turning it into a positive relational test:

ifT (sales >= 2500)
{ bonus 500; }

But the 1 operator is sometimes helpful, especially when testing
for end-of-file conditions for disk files, as you learn in Chapter 30,
“Sequential Files.” Most the time, however, you can avoid using 1 by
using the reverse logic shown in the following:

Chapter 10 & Logical Operators

1(varl == var2) is the same as (varl 1= var2)
I(varl <= var2) iS the same as (varl > var2)
1(varl >= var2) IS the same as (varl < var2)
1(varl != var2) is the same as (varl == var2)
1(varl > var2) is the same as (varl <= var2)
1(varl < var2) is the same as (varl >= var2)

Notice that the overall format of the if statement is retained
when you use logical operators, but the relational test expands to
include more than one relation. You even can have three or more, as
in the following statement:

if ((@=B)& @="FH] A=m [] I(k<2)) ...

This is a little too much, however, and good programming
practice dictates using at most two relational tests inside a single if
statement. If you have to combine more than two, use more than one
if statement to do so.

As with other relational operators, you also use the following
logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go
to Italy this summer.”

“If you take the trash out or clean your room, you can watch
TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at
the bit level. For example, take the if test:

if (a==6)...

to determine the truth of the relation, (a==6). The computer
takes a binary 6, or 00000110, and compares it, bit-by-bit, to
the variable a. If a contains 7, a binary 00000111, the result of
this equal test is False, because the right bit (called the least-
significant bit) is different.

EXAMPLE

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you
combine multiple relational tests with one of the logical operators,
C++ does not always interpret the full expression. This ultimately
makes your programs run faster, but there are dangers! For ex-
ample, if your program is given the conditional test:

if ((5>4) || (sales < 15) && (15 1= 15))...

C++ only evaluates the first condition, (s > 4), and realizes it does
not have to look further. Because (5 > 4) is True and because || (OR)
anything that follows it is still True, C++ does not bother with the
rest of the expression. The same holds true for the following state-
ment:

if ((7 < 3) & (age > 15) && (initial == “D*))...

Here, C++ evaluates only the first condition, which is False.
Because the && (AND) anything else that follows it is also False, C++
does not interpret the expression to the right of (z < 3). Most of the
time, this doesn’t pose a problem, but be aware that the following
expression might not fulfill your expectations:

if ((5>4) || (hum = 0))...

The (num = 0) assignment never executes, because C++ has to
interpret only (5 > 4) to determine whether the entire expression is
True or False. Due to this danger, do not include assignment
expressions in the same condition as a logical test. The following
single if condition:

if ((sales > old_sales) || (inventory_flag = “Y?))...

should be broken into two statements, such as:

inventory_flag) = “Y”;
if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the <y~ value, no matter how
the (sales > old_sales) expression tests.

Chapter 10 & Logical Operators

1

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken
every 10 years, in each year that is evenly divisible by 10.
The following short program asks for a year, and then tells
the user if it is a year of the summer Olympics, a year of the
census, or both. It uses relational operators, logical opera-
tors, and the modulus operator to determine this output.

// Filename: C1OYEAR.CPP
// Determines if it is Summer Olympics year,
// U.S. Census year, or both.
#include <iostream.h>
main()
{
int year;
// Ask for a year
cout << “What is a year for the test? “
cin >> year;

// Test the year
it (((year % 4)==0) && ((year % 10)==0))
{ cout << “Both Olympics and U.S. Census!”;
return 0; } // Quit program, return to operating
// system.
it ((year % 4)==0)
{ cout << “Summer Olympics only”; }
else
{ if ((year % 10)==0)
{ cout << “U.S. Census only”; }
3

return O;

}

. Now that you know about compound relations, you can

write an age-checking program like the one called
C9AGE.CPP presented in Chapter 9, “Relational Operators.”
That program ensured the age would be above 10. This is
another way you can validate input for reasonableness.

EXAMPLE

The following program includes a logical operator in its if to
determine whether the age is greater than 10 and less than
100. If either of these is the case, the program concludes that
the user did not enter a valid age.

// Filename: C1O0AGE.CPP

// Program that helps ensure age values are reasonable.
#include <iostream.h>

main()

{

int age;

cout << “What is your age? “
cin >> age;
it ((age < 10) || (age > 100))
{ cout << “ \x07 \x07 \n”; // Beep twice
cout << “*** The age must be between 10 and”
“100 ***\n”; }
else
{ cout << “You entered a valid age.”; }
return O;

}

3. The following program could be used by a video store to
calculate a discount, based on the number of rentals people
transact as well as their customer status. Customers are
classified either r for Regular or s for Special. Special custom-
ers have been members of the rental club for more than one
year. They automatically receive a 50-cent discount on all
rentals. The store also holds “value days” several times a
year. On value days, all customers receive the 50-cent dis-
count. Special customers do not receive an additional 50
cents off during value days, because every day is a discount
for them.

The program asks for each customer’s status and whether or
not it is a value day. It then uses the || relation to test for the
discount. Even before you started learning C++, you would
probably have looked at this problem with the following
idea in mind.

Chapter 10 & Logical Operators

“If a customer is Special or if it is a value day, deduct 50
cents from the rental.”

That’s basically the idea of the if decision in the following
program. Even though Special customers do not receive an
additional discount on value days, there is one final if test
for them that prints an extra message at the bottom of the
screen’s indicated billing.

// Filename: C10VIDEO.CPP
// Program that computes video rental amounts and gives
// appropriate discounts based on the day or customer status.
#include <iostream._h>
#include <stdio.h>
mainQ)
{
float tape_charge, discount, rental_amt;
char first_name[15];
char last_name[15];
int num_tapes;
char val_day, sp_stat;

cout << “\n\n *** Video Rental Computation ***\n”;
cout << —mmmmmm \n”’;
// Underline title

tape_charge = 2.00;
// Before-discount tape fee-per tape.

// Receive input data.

cout << “\nWhat is customer’s first name? “;
cin >> first_name;

cout << “What is customer’s last name? “;
cin >> last_name;

cout << “\nHow many tapes are being rented? “;
cin >> num_tapes;

cout << “lIs this a Value day (Y/N)? “;
cin >> val_day;

cout << “Is this a Special Status customer (Y/N)? “;
cin >> sp_stat;
// Calculate rental amount.

EXAMPLE

discount = 0.0; // Increase discount if they are eligible.
if ((val_day == “Y”) || (sp_stat == “Y”))
{ discount = 0.5;
rental_amt=(num_tapes*tape_charge)
(discount*num_tapes); }

// Print the bill.
cout << “\n\n** Rental Club **\n\n”;
cout << first_name << “ “ << last_name << “ rented “
<< num_tapes << “ tapes\n”’;
printf(“The total was %.2f\n”, rental_amt);
printf(“The discount was %.2Ff per tape\n”, discount);
// Print extra message for Special Status customers.
if (sp_stat == “Y?)
{ cout << “\nThank them for being a Special “
<< “Status customer\n’;}
return O;

}

The output of this program appears below. Notice that
Special customers have the extra message at the bottom of
the screen. This program, due to its if statements, performs
differently depending on the data entered. No discount is
applied for Regular customers on nonvalue days.

*** VVideo Rental Computation ***

What is customer’s first name? Jerry
What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y
** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 & Logical Operators

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,
“Using C++ Math Operators and Precedence,” did not include the
logical operators. To be complete, you should be familiar with the
entire order of precedence, as presented in Appendix D, “C++
Precedence Table.”

You might wonder why the relational and logical operators are
included in a precedence table. The following statement helps show
you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impaossible to
determine how such a statement would execute. According to the
precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-
cations are performed first, followed by the relations < and >. The &&
is performed last because it is lowest in the precedence order of
operators.

To avoid such ambiguous problems, be sure to use ample
parentheses—even if the default precedence order is your intention.
It is also wise to resist combining too many expressions inside a
single if relational test.

Notice that || (OR) has lower precedence than & (AND).
Therefore, the following if tests are equivalent:

if ((First_initial=="A") && (last_initial=="6") || (id==321)) ...
if (((First_initial=="A") && (last_initial=="G")) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence
table makes them identical.

C++ By

EXAMPLE

Review Questions

The answers to the review questions are in Appendix B.
1. What are the three logical operators?

2. The following compound relational tests produce True or
False comparisons. Determine which are True and which are
False.

a. ! (True || False)
b. (True && False) && (False || True)
C. I (True && False)
d. True |1 (False && False) || False

3. Given the statement:;

int =12, j=10, k=5;

What are the results (True or False) of the following state-
ments? (Hint: Remember that C++ interprets any nonzero
statement as True.)

a ie&&j
b. 12 - i] k
C.ji1=ke&il=k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of
the 11.)

// Filename: C10LOGO.CPP
// Logical operator test
#include <iostream._h>
mainQ)

{
int ¥, g;

g=>5;
f = 8;
if ((g =25 || (f=35))

Chapter 10 & Logical Operators

{ cout << “g is “ << g << “ and f got changed to “ << f; }
return O;

}

5. Using the precedence table, determine whether the follow-
ing statements produce a True or False result. After this, you
should appreciate the abundant use of parentheses!

A 5==4+1] 7*21=12-18.5==8/2
b.s+91=6-1]1110%21=5+0
C.17-1>15+180+21=1==11]] 4 1=1
d. 409 * 0 1=1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (10)
{ cout << “C++ By Example \n”; }

Review Exercises

1. Write a program (by using a single compound if state-
ment) to determine whether the user enters an odd positive
number.

2. Write a program that asks the user for two initials. Print a
message telling the user if the first initial falls alphabetically
before the second.

3. Write a number-guessing game. Assign a value to a variable
called number at the top of the program. Give a prompt that
asks for five guesses. Receive the user’s five guesses with a
single scanf() for practice with scanf(). Determine whether
any of the guesses match the number and print an appropriate
message if one does.

4. Write a tax-calculation routine, as follows: A family pays no
tax if its income is less than $5,000. It pays a 10 percent tax if
its income is $5,000 to $9,999, inclusive. It pays a 20 percent
tax if the income is $10,000 to $19,999, inclusive. Otherwise,
it pays a 30 percent tax.

EXAMPLE

Summary

This chapter extended the if statement to include the &s, ||, and
1 logical operators. These operators enable you to combine several
relational tests into a single test. C++ does not always have to
look at every relational operator when you combine them in an ex-
pression.

This chapter concludes the explanation of the if statement. The
next chapter explains the remaining regular C++ operators. As you
saw in this chapter, the precedence table is still important to the C++
language. Whenever you are evaluating expressions, keep the pre-
cedence table in the back of your mind (or at your fingertips) at all
times!

Additional C++
Operators

C++ has several other operators you should learn besides those you
learned in Chapters 9 and 10. In fact, C++ has more operators than
most programming languages. Unless you become familiar with
them, you might think C++ programs are cryptic and difficult to
follow. C++’s heavy reliance on its operators and operator prece-
dence produces the efficiency that enables your programs to run
more smoothly and quickly.
This chapter teaches you the following:

The »: conditional operator
The ++ increment operator
The — decrement operator
The sizeof Operator

The (,) comma operator

* & & o oo o

The Bitwise Operators (&, |, and »)

Chapter 11 & Additional C++ Operators

Most the operators described in this chapter are unlike those
found in any other programming language. Even if you have
programmed in other languages for many years, you still will be
surprised by the power of these C++ operators.

The Conditional Operator

The conditional The conditional operator is C++’s only ternary operator, requir-
operator is a ternary ing three operands (as opposed to the unary’s single-and the binary’s
operator. double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is
a two-part symbol, 2:, with a format as follows:

conditional_expression ? expressionl : expression2;

The conditional_expression iS any expression in C++ that results
in a True (nonzero) or False (zero) answer. If the result of
conditional_expression IS True, expressionl executes. Otherwise, if
the result of conditional _expression iS False, expression2 executes.
Only one of the expressions following the question mark ever
executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-
lon. Figure 11.1 illustrates the conditional operator more clearly.

roondtioml ¥ aondboral
SOPPSSSON B SPIa N is

THoe &= E
cnpite cxeabs
s i
- Wl

Cord bl copresson™ Sxphession] @ splesNons ;

¥ oazbes = 2000 N aplas e et

Exampha: wooeztbe = B000 Oy
ol T
bris this
+ +

(St = B000) T Bsori s = D00 Boni b =3

Figure 11.1. Format of the conditional operator.

EXAMPLE

If you require simple if-else logic, the conditional operator
usually provides a more direct and succinct method, although you
should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the
section of code that follows.

if (a > b)

{ ans = 10; }
else

{ ans = 25; }

You can easily rewrite this kind of if-else code by using a single
conditional operator.

3 If the variable a is greater than the variable b, make the variable ans
= equal to 10; otherwise, make ans equal to 25.

a>b ? (ans = 10) : (ans = 25);

Although parentheses are not required around
conditional_expression t0 make it work, they usually improve read-
ability. This statement’s readability is improved by using parenthe-
ses, as follows:

(a >b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the
value being assigned—this statement could be even more succinct,
without loss of readability, by assigning ans the answer to the left of
the conditional:

ans = (a > b) ? (10) - (25);

This expression says: If a is greater than b, assign 10 to ans;
otherwise, assign 25 to ans. Almost any if-else statement can be
rewritten as a conditional, and vice versa. You should practice
converting one to the other to familiarize yourself with the condi-
tional operator’s purpose.

NOTE: Any valid if C++ statement also can be a
conditional_expression, including all relational and logical op-
erators as well as any of their possible combinations.

Chapter 11 & Additional C++ Operators

Examples

1. Suppose you are looking over your early C++ programs, and
you notice the following section of code.
1

if (production > target)
{ target *= 1.10; }
else
{ target *= .90; }

You should realize that such a simple if-else statement can
be rewritten using a conditional operator, and that more
efficient code results. You can therefore change it to the
following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find
the minimum value between two variables. This is some-
times called a minimum routine. The statement to do this is

minimum = (varl < var2) ? varl : var2;

If var1 is less than varz, the value of vari is assigned to mini-
mum. If var2 is less, the value of varz is assigned to minimum. If
the variables are equal, the value of var2 is assigned to
minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:
maximum = (varl > var2) ? varl : var2;

4. Taking the previous examples a step further, you can also
test for the sign of a variable. The following conditional
expression assigns —1 to the variable called sign if testvar is
less than 0; O to sign if testvar is zero; and +1 to sign if testvar
is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a -1,
but the second part of the expression can be confusing. This
works well due to C++’s 1 and 0 (for True and False, respec-
tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

EXAMPLE

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)
or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional
operator. It might also help you understand if you write the
statement using typical if-else logic. Here is the same
problem written with a typical if-else statement:

if (testvar < 0)
{ sign = -1; }
else
{ sign = (testvar > 0); } // testvar can only be
// 0 or more here.

The Increment and
Decrement Operators

The ++ operator C++ offers two unique operators that add or subtract 1 to or
adds 1 to a variable. from variables. These are the increment and decrement operators: ++
The — operator and —. Table 11.1 shows how these operators relate to other types of

subtracts 1 from a

variable. expressions you have seen. Notice that the ++ and — can appear on

either side of the modified variable. If the ++ or — appears on the left,
it is known as a prefix operator. If the operator appears on the right,
it is a postfix operator.

Table 11.1. The ++ and — operators.

Operator Example Description Equivalent Statements
++ i+ postfix i=i+1; i+=1;
++ ++i; prefix i=1+1; 0 +=1;
— i—; postfix i=i-1; i-=1;
— —i; prefix i=i-1; i-=1;

Any time you have to add 1 or subtract 1 from a variable, you
can use these two operators. As Table 11.1 shows, if you have to
increment or decrement only a single variable, these operators
enable you to do so.

225

Chapter 11 & Additional C++ Operators

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,
efficient methods for adding 1 to a variable and subtracting 1
from a variable. You often have to do this during counting or
processing loops, as discussed in Chapter 12, “The white Loop”
and beyond.

These two operators compile directly into their assembly lan-
guage equivalents. Almost all computers include, at their
lowest binary machine-language commands, increment and
decrement instructions. If you use C++’s increment and decre-
ment operators, you ensure that they compile to these low-level
equivalents.

If, however, you code expressions to add or subtract 1 (as you
do in other programming languages), such as the expression
i = i - 1,youdo not actually ensure that C++ compiles
this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are
incrementing or decrementing single variables on lines by them-
selves. However, when you combine these two operators with other
operators in a single expression, you must be aware of their differ-
ences. Consider the following program section. Here, all variables
are integers because the increment and decrement operators work
only on integer variables.

ﬁ Make a equal to 6. Increment a, subtract 1 from it, then assign the result
- to b.

a = 6;
b:++a—l;

What are the values of a and b after these two statements finish?
The value of a is easy to determine: it is incremented in the second
statement, so it is 7. However, b is either 5 or 6 depending on when
the variable a increments. To determine when a increments, consider
the following rule:

EXAMPLE

¢ If avariable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the
variable’s value is used in the remainder of the expression.

¢ If avariable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the
variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,
its value is first incremented to 7, then 1 is subtracted from 7, and the
result (6) is assigned to b. If a postfix increment is used, as in

a = 6;
b =a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment
to 7 until after its value is used in the expression. The precedence
table in Appendix D, “C++ Precedence Table,” shows that prefix
operators contain much higher precedence than almost every other
operator, especially low-precedence postfix increments and decre-
ments.

TIP: If the order of prefix and postfix confuses you, break
your expressions into two lines of code and type the increment
or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the
previous example as follows:

There is now no doubt as to when a is incremented: a incre-
ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider
the following statement.

x = p + (((ant++)));

Chapter 11 & Additional C++ Operators

There are too many unneeded parentheses here, but even the
redundant parentheses are not enough to increment amt before
adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

’ CAUTION: Do not attempt to increment or decrement an
i expression. You can apply these operators only to variables.
The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. Asyou should with all other C++ operators, keep the prece-
dence table in mind when you evaluate expressions that
increment and decrement. Figures 11.2 and 11.3 show you
some examples that illustrate these operators.

_BS

2. The precedence table takes on even more meaning when you
see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,
what you know about C++’s relational efficiencies—what is
the value of the ans in the following section of code?

int i=1, j=20, k=-1, 1=0, m=1, n=0, o=2, p=1;
ans = 1 || J— && k++ || ++1 && ++m |] n— & o || p—;

This, at first, seems to be extremely complicated. Neverthe-
less, you can simply glance at it and determine the value of
ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores
the right side of the || if the left value is True (any nonzero
value is True). Because any nonzero value is True, C++ does

EXAMPLE

not evaluate the values on the right. Therefore, C++ per-
forms this expression as shown:

ans = 1 || J— && k++ || ++1 && ++m || n— & o || p—;

1 (TRUE)

ans = 0, then i increments by 1 to its final value of 2.

int i=1;
int j=2;

ans = 1, then k decrements by 1 to its final value of 2.

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

Chapter 11 & Additional C++ Operators

int i=0;
int j=-1;
int k=0;
int m=1

ans = i++ && ++j || k || m++;

i++ && 0 || k || m++

0 K m++

0 I m++

1

ans = 1, then i increments by 1 to its final value of 1,
and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression
as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++
ignores the other expressions, only ans is changed by this
expression. The other variables, j through p, are never
incremented or decremented, even though several of them
contain increment and decrement operators. If you use rela-
tional operators, be aware of this problem and break out all
increment and decrement operators into statements by them-
selves, placing them on lines before the relational statements
that use their values.

The sizeof Operator

There is another operator in C++ that does not look like an
operator at all. 1t looks like a built-in function, but it is called the

EXAMPLE

sizeof operator. In fact, if you think of sizeof as a function call, you
might not become confused because it works in a similar way. The
format of sizeof follows:

L sizeof data
Db miree
NI of or
daba
+ sizeof(data type)

The sizeof Operator is unary, because it operates on a single
value. This operator produces a result that represents the size, in
bytes, of the data Or data type specified. Because most data types and
variables require different amounts of internal storage on different
computers, the sizeof operator enables programs to maintain con-
sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the
sizeof argument, whether that argument is data Or data type.
Because you must use parentheses around data type arguments
and you can use them around data arguments, it doesn’t hurt to
always use them.

The sizeof The sizeof operator is sometimes called a compile-time operator.
Operator returns its At compile time, rather than runtime, the compiler replaces each
E;gt:g‘emss'ze'” occurrence of sizeof in your program with an unsigned integer
' value. Because sizeof is used more in advanced C++ programming,
this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the
number of bytes you originally reserved for that array. Data inside
the array have nothing to do with its returned sizeof value—even if
it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-
point variables for your computer. You can determine
this by entering the keyword float in parentheses—after
sizeof—as shown in the following program.

Chapter 11 & Additional C++ Operators

// Filename: C11SI1ZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main(Q)

{
cout << “The size of floating-point variables on \n”;
cout << “this computer is “ << sizeof(float) << “\n”’;
return O;

}

This program might produce different results on different
computers. You can use any valid data type as the sizeof
argument. On most PCs, this program probably produces
this output:

The size of floating-point variables on
this computer is: 4

The Comma Operator

Another C++ operator, sometimes called a sequence point, works
a little differently. This is the comma operator (,), which does not
directly operate on data, but produces a left-to-right evaluation of
expressions. This operator enables you to put more than one expres-
sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when
you learned how to declare and initialize variables. In the following
section of code, the comma separates statements. Because the comma
associates from the left, the first variable, i, is declared and initial-
ized before the second variable.

main()
{
int =10, j=25;
// Remainder of the program follows.

EXAMPLE

However, the comma is not a sequence point when it is used
inside function parentheses. Then it is said to separate arguments,
but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, &, i++, ++i);

Many results are possible from such a statement. The commas
serve only to separate arguments of the printf(), and do not generate
the left-to-right sequence that they otherwise do when they aren’t
used in functions. With the statement shown here, you are not
ensured of any order! The postfix i++ might possibly be performed
before the prefix ++i, even though the precedence table does not
require this. Here, the order of evaluation depends on how your
compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators
in function calls because you cannot predict the order in which
they execute.

Examples

1. You can put more than one expression on a line, using the
comma as a sequence point. The following program does
this.

// Filename: C11COM1.CPP
// lllustrates the sequence point.
#include <iostream.h>
mainQ)
{
int num, sq, cube;
num = 5;

// Calculate the square and cube of the number.
sq = (num * num), cube = (num * num * num);

cout << “The square of “ << num << “ is “ << sq <<
“ and the cube is “ << cube;
return O;

Chapter 11 & Additional C++ Operators

This is not necessarily recommended, however, because it
doesn’t add anything to the program and actually decreases
its readability. In this example, the square and cube are
probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider
the following section of code.

i =10
j= (i =12, i + 8);

When this code finishes executing, j has the value of 20—
even though this is not necessarily clear. In the first state-
ment, i is assigned 10. In the second statement, the comma
causes i to be assigned a value of 12, then j is assigned the
value of i + 8, or 20.

3. In the following section of code, ans is assigned the value
of 12, because the assignment before the comma is per-
formed first. Despite this right-to-left associativity of the
assignment operator, the comma’s sequence point forces
the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and
ans also contains 12,

Bitwise Operators

The bitwise operators manipulate internal representations of
data and not just “values in variables” as the other operators do.
These bitwise operators require an understanding of Appendix A’s
binary numbering system, as well as a computer’s memory. This
section introduces the bitwise operators. The bitwise operators are
used for advanced programming techniques and are generally used
in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the
bitwise operators. Nevertheless, understanding them can help you
improve a program’s efficiency and enable you to operate at a more
advanced level than many other programming languages allow.

EXAMPLE

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in
Table 11.2. These operators work on the binary representations of
integer data. This enables systems programmers to manipulate
internal bits in memory and in variables. The bitwise operators are
not just for systems programmers, however. Application program-
mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND
| Bitwise inclusive OR
n Bitwise exclusive OR

~ Bitwise 1’s complement

Bitwise operators Each of the bitwise operators makes a bit-by-bit comparison of
make bit-by-bit internal data. Bitwise operators apply only to character and integer
f&gﬂ:'gg{‘; of variables and constants, and not to floating-point data. Because
' binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are
compared to each other to produce the desired result for each
bitwise operator.

Before you study the examples, you should understand Table
11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’'s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.
Bitwise AND (&)

0&0=0
0&1=0
1&0=0

1&1=1

continues

Chapter 11 & Additional C++ Operators

Table 11.3. Continued.

Bitwise inclusive OR (])

0]Jjo=0
ol1=1
11]0=1
1]11=1

Bitwise exclusive OR (»)

o~0=0
onr1=1
170=1
171=0

Bitwise 1’s complement (-)

~0 =1

~1=0

In bitwise truth tables, you can replace the 1 and 0 with True
and False, respectively, if it helps you to understand the result better.
For the bitwise AND (&) truth table, both bits being compared by the
& operator must be True for the result to be True. In other words,
“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might
be able to relate the bitwise operators to the regular logical
operators, & and ||, that you use for if comparisons.

For bitwise ~, one The | bitwise operator is sometimes called the bitwise inclusive
side or the other— OR operator. If one side of the | operator is 1 (True)—or if both sides
but notboh—must 506 1__the result is 1 (True).
The ~ operator is called bitwise exclusive OR. It means that either
side of the ~ operator must be 1 (True) for the result to be 1 (True), but
both sides cannot be 1 (True) at the same time.

be 1.

EXAMPLE

The ~ operator, called bitwise 1's complement, reverses each bit to
its opposite value.

NOTE: Bitwise 1’'s complement does not negate a number. As
Appendix A, “Memory Addressing, Binary, and Hexadecimal
Review,” shows, most computers use a 2’s complement to
negate numbers. The bitwise 1's complement reverses the bit
pattern of numbers, but it doesn’t add the additional 1 as the 2’s
complement requires.

You can test and change individual bits inside variables to
check for patterns of data. The following examples help to illustrate
each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you
receive a result of 8. Figure 11.4 shows you why this is so.
When the binary values of 9 (1001) and 14 (1110) are com-
pared on a bitwise & basis, the resulting bit pattern is 8
(1000).

(=

(14
()

P
=3 Y
=3 Y

1
+
5
o
o

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as
followvs.

N Make result equal to the binary value of 9 (1001) ANDed to the
. binary value of 14 (1110).

result = 9 & 14;

Chapter 11 & Additional C++ Operators

The result variable holds 8, which is the result of the bitwise
& The 9 (binary 1001) or 14 (binary 1110)—or both—also can
be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and
14, you get 15. When the binary values of 9 (1001) and 14
(1110) are compared on a bitwise | basis, the resulting bit
pattern is 15 (1111). result’s bits are 1 (True) in every posi-
tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as
follows:

result = 9 | 14;

The result variable holds 15, which is the result of the
bitwise |. The 9 or 14 (or both) also can be stored in
variables.

3. The bitwise ~ applied to 9 and 14 produces 7. Bitwise ~ sets
the resulting bits to 1 if one number or the other’s bit is 1, but
not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as
follows:

result = 9 N 14;

The result variable holds 7 (binary 0111), which is the result
of the bitwise ~. The 9 or 14 (or both) also can be stored in
variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise
operator because you can apply it to only a single value at
any one time. The bitwise ~ applied to 9 results in 6, as
shown in Figure 11.5.

=1 00 1=
o1 1 0 &

Figure 11.5. Performing bitwise ~ on the number 9.

EXAMPLE
In a C++ program, you can code this bitwise operation like
this:
result = ~9;

The result variable holds 6, which is the result of the bit-
wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform
tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an
odd or even number (assuming integers are being input).
You can use the modulus operator (%) to determine whether
the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-
der is 1, the number is odd.

The bitwise operators are more efficient than other operators
because they directly compare bit patterns without using
any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and
odd if its bit pattern ends in 1, you also can test for odd or
even numbers by applying the bitwise & to the data and to a
binary 1. This is more efficient than using the modulus
operator. The following program informs users if their input
value is odd or even using this technique.

X\ Identify the file and include the input/output header file. This
= program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is O, tell the user that the
number is even.

4 // Filename: C110DEV.CPP
;;;: // Uses a bitwise & to determine whether a
o // number is odd or even.
+ #include <iostream.h>
main(Q)

{

Chapter 11 & Additional C++ Operators

int input; /7 Will hold user’s number
cout << “What number do you want me to test? “
cin >> input;

if (input & 1) // True if result is 1;
// otherwise it is false (0)
{ cout << “The number “ << input << *“ is odd\n”; }
else
{ cout << “The number “ << input << *“ is even\n”; }
return O;

}

6. The only difference between the bit patterns for uppercase
and lowercase characters is bit number 5 (the third bit from
the left, as shown in Appendix A, “Memory Addressing,
Binary, and Hexadecimal Review”). For lowercase letters, bit
5isal. For uppercase letters, bit 5 is a 0. Figure 11.6 shows
how A and B differ from a and b by a single bit.

Only bit 6 ASCI A i OT00000T e 41, Seedirnd 5]
is different ASCI 2 @ 01700007 (hax £1, decmal 57)
only bit 6 ASCI B i3 07000070 R 42, dedimnl EE)
is different ASCI b 01700010 [ha B2, deciml 55

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCI! letters.

To convert a character to uppercase, you have to turn off
(change to a 0) bit number 5. You can apply a bitwise & to the
input character and 223 (which is 11011111 in binary) to turn
off bit 5 and convert any input character to its uppercase
equivalent. If the number is already in uppercase, this
bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it
masks (just as masking tape masks areas not to be painted)
bit 5 so it becomes 0, if it is not already. The following
program does this to ensure that users typed uppercase
characters when they were asked for their initials.

EXAMPLE

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream._h>

main(Q)

{
char first, middle, last; // Will hold user’s initials
int bitmask=223; // 11011111 in binary

cout << “What is your first initial? “;
cin >> first;

cout << “What is your middle initial? “;
cin >> middle;

cout << “What is your last initial? “;
cin >> last;

// Ensure that initials are in uppercase.

first = first & bitmask; // Turn off bit 5 if
middle = middle & bitmask; // it is not already
last = last & bitmask; // turned off.
cout << “Your initials are “ << First << “ * <<

middle << * “ << last;
return O;

}

The following output shows what happens when two of the
initials are typed with lowercase letters. The program con-
verts them to uppercase before printing them again. Al-
though there are other ways to convert to lowercase, none
are as efficient as using the & bitwise operator.

What is your first initial? g
What is your middle initial? M
What is your last initial? p
Your initials are: G M P

Chapter 11 & Additional C++ Operators

Review Questions

The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator
replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else
statement.

ans = (a==b) 2 c +2 :c+ 3;

4. True or false: The following statements produce the same
results.

var++;
and
var = var + 1;

5. Why is using the increment and decrement operators more
efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;
printf(“You are now %d, and will be %d in one year”,
age, aget+t);

8. What is the output of the following program section?

char name[20] = “Mike”;
cout << “The size of name is “ << sizeof(hame) << “\n”’;

9. What is the result of each of the following bitwise True-False
expressions?

a.1720&1&11]0
b.16181¢&1
C.1~r1~171

d -a ~o

C++ By

EXAMPLE

Review Exercises

1. Write a program that prints the numerals from 1 to 10. Use
ten different couts and only one variable called result to hold
the value before each cout. Use the increment operator to
add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single
printf() that includes a conditional operator, print on-screen
the following if the input age is over 21,

You are not a minor.
or print this otherwise:
You are still a minor.

This printf() might be long, but it helps to illustrate how the
conditional operator can work in statements where if-else
logic does not.

3. Use the conditional operator—and no if-else Statements—to
write the following tax-calculation routine: A family pays no
tax if its annual salary is less than $5,000. It pays a 10 percent
tax if the salary range begins at $5,000 and ends at $9,999. It
pays a 20 percent tax if the salary range begins at $10,000
and ends at $19,999. Otherwise, the family pays a 30 percent
tax.

4. Write a program that converts an uppercase letter to a
lowercase letter by applying a bitmask and one of the bit-
wise logical operators. If the character is already in lower-
case, do not change it.

Summary

Now you have learned almost every operator in the C++
language. As explained in this chapter, conditional, increment, and
decrement are three operators that enable C++ to stand apart from
many other programming languages. You must always be aware of
the precedence table whenever you use these, as you must with all
operators.

Chapter 11 & Additional C++ Operators

The sizeof and sequence point operators act unlike most others.
The sizeof is a compile operator, and it works in a manner similar to
the #define preprocessor directive because they are both replaced by
their values at compile time. The sequence point enables you to have
multiple statements on the same line—or in a single expression.
Reserve the sequence point for declaring variables only because it
can be unclear when it’'s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now
that you can compute just about any result you will ever need, it is
time to discover how to gain more control over your programs. The
next few chapters introduce control loops that give you repetitive
power in C++.

The whille Loop

The repetitive capabilities of computers make them good tools for
processing large amounts of information. Chapters 12-15 introduce
you to C++ constructs, which are the control and looping commands
of programming languages. C++ constructs include powerful, but
succinct and efficient, looping commands similar to those of other
languages you already know.

The while loops enable your programs to repeat a series of
statements, over and over, as long as a certain condition is always
met. Computers do not get “bored” while performing the same tasks
repeatedly. This is one reason why they are so important in business
data processing.

This chapter teaches you the following:

The white loop

The concept of loops

The do-white loop

Differences between if and while loops
The exit(function

The break statement

®* & & ¢ o o o

Counters and totals

Chapter 12 & The while Loop

After completing this chapter, you should understand the first
of several methods C++ provides for repeating program sections.
This chapter’s discussion of loops includes one of the most impor-
tant uses for looping: creating counter and total variables.

The while Statement

The white statement is one of several C++ construct statements.
Each construct (from construction) is a programming language state-
ment—or a series of statements—that controls looping. The while,
like other such statements, is a looping statement that controls the
execution of a series of other statements. Looping statements cause
parts of a program to execute repeatedly, as long as a certain
condition is being met.

The format of the while statement is

'
I':,.T while (test expression)
{ block of one or more C++ statements; }
Exeade
T es dArbamnants
The parentheses around test expression are required. As long
as test expression IS True (nonzero), the block of one or more C++
statements executes repeatedly until test expression becomes False
(evaluates to zero). Braces are required before and after the body of
the while loop, unless you want to execute only one statement. Each
statement in the body of the while loop requires an ending semi-
colon.
The body of a The placeholder test expression usually contains relational,
while loop and possibly logical, operators. These operators provide the True-
:ﬁgﬁgsa;et‘;‘:ted'y False condition checked in test expression. If test expression is False
expression is True. when the program reaches the white loop for the first time, the body

of the white loop does not execute at all. Regardless of whether the
body of the while loop executes no times, one time, or many times,
the statements following the white loop’s closing brace execute if test
expression becomes False.

Because test expression determines when the loop finishes, the
body of the while loop must change the variables used in test
expression. Otherwise, test expression never changes and the while
loop repeats forever. This is known as an infinite loop, and you should
avoid it.

EXAMPLE

TIP: If the body of the while loop contains only one statement,
the braces surrounding it are not required. It is a good habit to
enclose all white loop statements in braces, however, because if
you have to add statements to the body of the while loop later,
your braces are already there.

The Concept of Loops

You use the loop concept in everyday life. Any time you have
to repeat the same procedure, you are performing a loop—ijust as
your computer does with the while statement. Suppose you are
wrapping holiday gifts. The following statements represent the
looping steps (in whi1e format) that you follow while gift-wrapping.

= while (there are still unwrapped gifts)
{ Get the next gift;

Cut the wrapping paper;

Wrap the gift;

Put a bow on the gift;

Fill out a name card for the gift;

Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this
procedure (loop) repeatedly until every gift is wrapped. For an
example that is more easily computerized, suppose you want to total
all the checks you wrote in the previous month. You could perform
the following loop.

= while (there are still checks from the last month to be totaled)
{ Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,
but that single statement must be performed until you have added
each one of the previous month’s checks. When this loop ends (when
no more checks from the previous month remain to be totaled), you
have the result.

The body of a while loop can contain one or more C++ state-
ments, including additional white loops. Your programs will be

247

Chapter 12 & The while Loop

more readable if you indent the body of a while loop a few spaces to
the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these
] programs display an error message and ask the user to enter
another value, which is an acceptable procedure.

Now that you understand the white loop construct, however,
you should put the error message inside a loop. In this way,
users see the message continually until they type proper
input values, rather than once.

The following program is short, but it demonstrates a while
loop that ensures valid keyboard input. It asks users
whether they want to continue. You can incorporate this
program into a larger one that requires user permission to
continue. Put a prompt, such as the one presented here, at
the bottom of a text screen. The text remains on-screen until
the user tells the program to continue executing.

3 Identify the file and include the necessary header file. In this
%iz} program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part
// of a larger program.

#include <iostream._h>

mainQ)

{

char ans;

cout << “Do you want to continue (Y/N)? “
cin >> ans; // Get user’s answer

EXAMPLE

while ((ans = “Y?) && (ans != “N?))
{ cout << “\nYou must type a Y or an N\n”; // Warn
// and ask
cout << “Do you want to continue (Y/N)?”; // again.
cin >> ans;
} // Body of while loop ends here.

return O;

}

Notice that the two cin functions do the same thing. You
must use an initial cin, outside the while loop, to provide an
answer for the while loop to check. If users type something
other than Y or N, the program prints an error message, asks
for another answer, then checks the new answer. This vali-
dation method is preferred over one where the reader only
has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.
This is why the loop might never execute. If the test is
initially False, the loop does not execute even once. The
output from this program is shown as follows. The program
repeats indefinitely, until the relational test is True (as soon
as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N
Do you want to continue (Y/N)? c

You must type a Y or an N
Do you want to continue (Y/N)? s

You must type a Y or an N
Do you want to continue (Y/N)? 5

You must type a Y or an N
Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while
loop. See if you can find the problem.

Chapter 12 & The while Loop

// Filename: C12WHBAD.CPP
// Bad use of a while loop.
#include <iostream._h>
main(Q)
{

int a=10, b=20;

while (a > 5)

{ cout << "a is “ << a << *“, and b Is “ << b << “\n”;
b =20+ a; }
return O;

}

This white loop is an example of an infinite loop. It is vital
that at least one statement inside the while changes a variable
in the test expression (in this example, the variable a); other-
wise, the condition is always True. Because the variable a
does not change inside the white loop, this program will
never end.

TIP: If you inadvertently write an infinite loop, you must stop
the program yourself. If you use a PC, this typically means
pressing Ctrl-Break. If you are using a UNIX-based system,
your system administrator might have to stop your program’s
execution.

3. The following program asks users for a first name, then uses
awhile loop to count the number of characters in the name.
This is a string length program; it counts characters until it
reaches the null zero. Remember that the length of a string
equals the number of characters in the string, not including
the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.
#include <iostream.h>

main()

{

char name[15]; // Will hold user’s first name

EXAMPLE

int count=0; // Will hold total characters in name

// Get the user’s first name
cout << “What is your first name? “;
cin >> name;

while (name[count] > 0) // Loop until null zero reached.
{ count++; } // Add 1 to the count.

cout << “Your name has “ << count << “ characters”;
return O;

}

The loop continues as long as the value of the next character
in the name array is greater than zero. Because the last charac-
ter in the array is a null zero, the test is False on the name’s
last character and the statement following the body of the
loop continues.

NOTE: A built-in string function called strien() determines
the length of strings. You learn about this function in Chap-
ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as
efficient as it could be. Because a while loop fails when its test
expression is zero, there is no need for the greater-than test.
By changing the test expression as the following program
shows, you can improve the efficiency of the string length
count.

// Filename: C12WHIL3.CPP
// Counts the number of letters in the user’s first name.
#include <iostream.h>

mainQ)

{
char name[15]; /7 Will hold user’s first name
int count=0; // Will hold total characters in name

// Get the user’s first name

Chapter 12 & The while Loop
cout << “What is your first name? “;
cin >> name;

while (name[count]) // Loop until null zero is reached.
{ count++; } // Add 1 to the count.

cout << “Your name has “ << count << “ characters”;
return O;

The do-while Loop

The body of the The do-while statement controls the do-while loop, which is
do-while loop similar to the while loop except the relational test occurs at the end
z’r(]icet_“es atleast (rather than beginning) of the loop. This ensures the body of the loop
executes at least once. The do-whi le tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do
{ block of one or more C++ statements; }
while (test expression)

test expression Must be enclosed in parentheses, just as it must
in a while statement.

Examples

1. The following program is just like the first one you saw with
the white loop (C12WHIL1.CPP), except the do-while is used.
Notice the placement of test expression. Because this expres-
sion concludes the loop, user input does not have to appear
before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part
// of a larger program.

EXAMPLE

#include <iostream.h>

main(Q)
{
char ans;
do
{ cout << “\nYou must type a Y or an N\n”’; // Warn
// and ask
cout << “Do you want to continue (Y/N) ?”; // again.
cin >> ans; } // Body of while loop

// ends here.
while ((ans = “Y?) && (ans != “N%));

return O;

}

2. Suppose you are entering sales amounts into the computer
to calculate extended totals. You want the computer to print
the quantity sold, part number, and extended total (quantity
times the price per unit), as the following program does.

‘ // Filename: C12INV1.CPP
L // Gets inventory information from user and prints
irmerbon) // an inventory detail listing with extended totals.
AreLrt #include <iostream.h>
+ #include <iomanip.h>
main()
{

int part_no, quantity;
float cost, ext_cost;

cout << “*** Inventory Computation ***\n\n”; // Title

// Get inventory information.
do
{ cout << “What is the next part number (-999 to end)? “;
cin >> part_no;
if (part_no !'= -999)
{ cout << “How many were bought? “;
cin >> quantity;
cout << “What is the unit price of this item? “;

Chapter 12 & The while Loop

cin >> cost;

ext_cost = cost * quantity;

cout << “\n” << quantity << “ of # “ << part_no <<
“ will cost “ << setprecision(2) <<

ext_cost;
cout << “\n\n\n”’; // Print two blank lines.
b
} while (part_no = -999); // Loop only if part

// number is not -999.

cout << “End of inventory computation\n”;
return O;

}

Here is the output from this program:

*** Jnventory Computation ***

What is the next part number (-999 to end)? 213
How many were bought? 12
What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92
How many were bought? 53
What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999
End of inventory computation

The do-while loop controls the entry of the customer sales
information. Notice the “trigger” that ends the loop. If the
user enters —999 for the part number, the do-while loop quits
because no part numbered —-999 exists in the inventory.

However, this program can be improved in several ways.
The invoice can be printed to the printer rather than the

EXAMPLE

screen. You learn how to direct your output to a printer in
Chapter 21, “Device and Character Input/Output.” Also, the
inventory total (the total amount of the entire order) can be
computed. You learn how to total such data in the “Counters
and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with
loop constructs. The while and do-whi e loops repeat a section of code
multiple times, depending on the condition being tested. The if
statement may or may not execute a section of code; if it does, it
executes that section only once.

Use an if statement when you want to conditionally execute a
section of code once, and use awhile Or do-while loop if you want to
execute a section more than once. Figure 12.1 shows differences
between the if statement and the two while loops.

if foordit dorml teat)

i
14 Body of if state -y Body executes only

once if test is true.

¥ I Test at top of loop.
wWhile (ovddfaonal el

i
1% Body of while stateronts &)
}

da Body loops continuously
: as long as test is true.

J# Body of do.while statement s =)
T owhile (m':--:l.il.‘.i-:h.':-:l bty

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

255

Chapter 12 & The while Loop

The exit(Q) Function and break
Statement

C++ provides the exit() function as a way to leave a program
early (before its natural finish). The format of exit() is

Exi exit(status);

where status is an optional integer variable or literal. If you are
familiar with your operating system’s return codes, status enables
you to test the results of C++ programs. In DOS, status is sent to the
operating system’s errorlevel environment variable, where it can be
tested by batch files.
The exit() Many times, something happens in a program that requires the
function providesan program’s termination. It might be a major problem, such as a disk
;?g'gyrgﬁ']”rom YU drive error. Perhaps users indicate that they want to quit the
' program—you can tell this by giving your users a special value to
type with cin or scanf(). You can isolate the exit() function on a line
by itself, or anywhere else that a C++ statement or function can
appear. Typically, exitQ) is placed in the body of an if statement to
end the program early, depending on the result of some relational
test.
Always include the stdlib.h header file when you use exit().
This file describes the operation of exit() to your program. When-
ever you use a function in a program, you should know its corre-
sponding #include header file, which is usually listed in the compiler’s
reference manual.
The break Instead of exiting an entire program, however, you can use the

Statemtelm ends the break Statement to exit the current loop. The format of break is
current loop.

break;

E“;;‘“ The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a
while Or do-while loop, used to leave the loop early. The following
examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If
you have awhile loop in another white loop, break exits only the
internal loop.

EXAMPLE

Examples

1. Here is a simple program that shows you how the exitQ
function works. This program looks as though it prints
several messages on-screen, but it doesn’t. Because exit()
appears early in the code, this program quits immediately
after main()’s opening brace.

// C12EXIT1.CPP
// Quits early due to exit() function.
#include <iostream._h>

#include <stdlib.h> // Required for exit().
mainQ)
{

exit(0); // Forces program to end here.

cout << “C++ programming is fun.\n”;

cout << “I like learning C++ by example!\n”;

cout << “C++ is a powerful language that is “ <<
“not difficult to learn.”;

return O;

}

2. The break statement is not intended to be as strong a pro-
gram exit as the exit() function. Whereas exit() ends the
entire program, break quits only the loop that is currently
active. In other words, break is usually placed inside a while
or do-while loop to “simulate” a finished loop. The statement
following the loop executes after a break occurs, but the
program does not quit as it does with exit(Q.

The following program appears to print c++ is funt until the
user enters N to stop it. The message prints only once, how-
ever, because the break statement forces an early exit from
the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.
#include <iostream.h>

main()

Chapter 12 & The while Loop

{
char user_ans;
do
{ cout << “C++ is fun! \n”;
break; // Causes early exit.
cout << “Do you want to see the message again (N/Y)? “;
cin >> user_ans;
} while (user_ans == “Y?);
cout << “That’s all for now\n”;
return O;
3

This program always produces the following output:

C++ is fun!
That’s all for now

You can tell from this program’s output that the break state-
ment does not allow the do-white loop to reach its natural
conclusion, but causes it to finish early. The final cout prints
because only the current loop—and not the entire pro-
gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an
if statement. This makes it a conditional break, which occurs
only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw
earlier (C12INV1.CPP). Even though the users enter —999
when they want to quit the program, an additional if test is
needed inside the do-while. The =999 ends the do-while loop,
but the body of the do-while still needs an if test, so the
remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s
input, as shown in the following program, the do-white will
not need the if test. The break quits the do-while as soon as
the user signals the end of the inventory by entering —999 as
the part number.

EXAMPLE

// Filename: C12INV2.CPP
// Gets inventory information from user and prints
// an inventory detail listing with extended totals.
#include <iostream.h>
#include <iomanip.h>
main(Q)
{
int part_no, quantity;
float cost, ext_cost;

cout << “*** Inventory Computation ***\n\n”’; // Title

// Get inventory information
do
{ cout << “What is the next part number (-999 to end)? “;
cin >> part_no;
if (part_no == -999)
{ break; } // Exit the loop if
// no more part numbers.
cout << “How many were bought? “;
cin >> quantity;
cout << “What is the unit price of this item? “;
cin >> cost;
cout << “\n” << guantity << “ of # “ << part_no <<
“ will cost “ << setprecision(2) << cost*quantity;
cout << “\n\n\n”’; // Print two blank lines.
} while (part_no != -999); // Loop only if part
// number is not -999.

cout << “End of inventory computation\n’;
return O;

}

4. You can use the following program to control the two other
programs. This program illustrates how C++ can pass in-
formation to DOS with exit(). This is your first example of a
menu program. Similar to a restaurant menu, a C++ menu
program lists possible user choices. The users decide what
they want the computer to do from the menu’s available
options. The mailing list application in Appendix F, “The
Mailing List Application,” uses a menu for its user options.

259

Chapter 12 & The while Loop

This program returns either a 1 or a 2 to its operating system,
depending on the user’s selection. It is then up to the oper-
ating system to test the exit value and run the proper
program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().-
#include <iostream.h>

#include <stdlib.h>

main()

{

int ans;

do
{ cout << “Do you want to:\n\n”’;
cout << “\tl. Run the word processor \n\n”;
cout << “\t2. Run the database program \n\n”’;
cout << “What is your selection? “;
cin >> ans;
} while ((ans = 1) && (ans != 2)); // Ensures user
// enters 1 or 2.
exit(ans); // Return value to operating system.
return O; // Return does not ever execute due to exit().

Counters and Totals

Counting is important for many applications. You might have
to know how many customers you have or how many people scored
over a certain average in your class. You might want to count how
many checks you wrote in the previous month with your computer-
ized checkbook system.

Before you develop C++ routines to count occurrences, think of
how you count in your own mind. If you were adding a total number
of something, such as the stamps in your stamp collection or the

C++ By

EXAMPLE

number of wedding invitations you sent out, you would probably
do the following:

" Start at 0, and add 1 for each item being counted. When you are finished,
= you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a
variable and add 1 to it every time you process another data value.
The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints
“Computers are fun!” 0n-screen 10 times. You can write a
] program that has 10 cout statements, but that would not be
efficient. It would also be too cumbersome to have 5000 cout
statements, if you wanted to print that same message 5000
times.

By adding a while loop and a counter that stops after a
certain total is reached, you can control this printing, as the
following program shows.

// Filename: C12CNT1.CPP
// Program to print a message 10 times.
#include <iostream.h>

main(Q)
{
int ctr = 0; // Holds the number of times printed.
do
{ cout << ““Computers are fun!\n”;
ctr++; // Add one to the count,
// after each cout.
} while (ctr < 10); // Print again if fewer
// than 10 times.
return O;

Chapter 12 & The while Loop

The output from this program is shown as follows. Notice
that the message prints exactly 10 times.

Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!
Computers are fun!

The heart of the counting process in this program is the

1 statement that follows.
Irerenn et
Hre oo rler ctr++;
! You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is
incremented each time the do-while loops. Because the only
operation performed on this line is the increment of ctr, the
prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-
able, but also performed the loop a specific number of times.
This is a common method of conditionally executing parts of
a program for a fixed number of times.

The following program is a password program. A password
is stored in an integer variable. The user must correctly enter
the matching password in three attempts. If the user does
not type the correct password in that time, the program
ends. This is a common method that dial-up computers use.
They enable a caller to try the password a fixed number of
times, then hang up the phone if that limit is exceeded. This
helps deter people from trying hundreds of different pass-
words at any one sitting.

If users guess the correct password in three tries, they see the
secret message.

EXAMPLE

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main(Q)

{
int stored_pass = 11862;
int num_tries = 0; // Counter for password attempts.
int user_pass;

while (num_tries < 3) // Loop only three
// times.
{ cout << “What is the password (You get 3 tries...)? “;
cin >> user_pass;
num_tries++; // Add 1 to counter.
if (user_pass == stored_pass)
{ cout << “You entered the correct password.\n’;
cout << “The cash safe is behind the picture “ <<
“of the ship.\n”;
exit(0);
¥
else
{ cout << “You entered the wrong password.\n’’;
if (num_tries == 3)
{ cout << “Sorry, you get no more chances”; }
else
{ cout << “You get “ << (3-num_tries) <<
“ more tries...\n”;}
¥
} // End of while loop.
exit(0);
return O;

}

This program gives users three chances in case they type
some mistakes. After three unsuccessful attempts, the pro-
gram quits without displaying the secret message.

Chapter 12 & The while Loop

3. The following program is a letter-guessing game. It includes
a message telling users how many tries they made before
guessing the correct letter. A counter counts the number of
these tries.

// Filename: C12GUES.CPP
// Letter-guessing game.
#include <iostream.h>
main()
{
int tries = 0;
char comp_ans, user_guess;

// Save the computer’s letter

comp_ans = “T7; // Change to a different
// letter if desired.

cout << “lI am thinking of a letter...”;

do

{ cout << “What is your guess? “;
cin >> user_guess;
tries++; // Add 1 to the guess-counting variable.
iT (user_guess > comp_ans)
{ cout << “Your guess was too high\n”’;
cout << “\nTry again...”;
}
iT (user_guess < comp_ans)
{ cout << “Your guess was too low\n”’;
cout << “\nTry again...”;
}
} while (user_guess != comp_ans); // Quit when a
// match is found.

// They got it right, let them know.
cout << “*** Congratulations! You got it right! \n”;
cout << “It took you only “ << tries <<
‘ tries to guess.”;
return O;

EXAMPLE

Here is the output of this program:

1 am thinking of a letter...What is your guess? E
Your guess was too low

Try again..._.What is your guess? X
Your guess was too high

Try again..._What is your guess? H
Your guess was too low

Try again..._What is your guess? O
Your guess was too low

Try again..._What is your guess? U
Your guess was too high

Try again..._What is your guess? Y
Your guess was too high

Try again..._What is your guess? T
*** Congratulations! You got it right!
It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead
of adding 1 to the counter variable, you add a value to the total
variable. For instance, if you want to find the total dollar amount of
checks you wrote during December, you can start at nothing (0) and
add the amount of every check written in December. Instead of
building a count, you are building a total.

When you want C++ to add values, just initialize a total
variable to zero, then add each value to the total until you have
included all the values.

Chapter 12 & The while Loop

Examples

1. Suppose you want to write a program that adds your grades
for a class you are taking. The teacher has informed you that
you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until
you type —-1. The -1 is a signal that you are finished entering
grades and now want to see the total. This program also
prints a congratulatory message if you have enough points
for an A.

// Filename: C12GRAD1.CPP
// Adds grades and determines whether you earned an A.
#include <iostream.h>
include <iomanip.h>
main()
{
float total_grade=0.0;
float grade; // Holds individual grades.

do
{ cout << “What is your grade? (-1 to end) “;

cin >> grade;

if (grade >= 0.0)

{ total_grade += grade; } // Add to total.
} while (grade >= 0.0); // Quit when -1 entered.

// Control begins here if no more grades.
cout << “\n\nYou made a total of “ << setprecision(l) <<
total_grade << “ points\n”’;
if (total_grade >= 450.00)
{ cout << “** You made an A!!”; }

return 0O;

}

Notice that the -1 response is not added to the total number
of points. This program checks for the -1 before adding to
total_grade. Here is the output from this program:

EXAMPLE

What is your grade? (-1 to end) 87.6
What is your grade? (-1 to end) 92.4
What is your grade? (-1 to end) 78.7
What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-
calculating program. It not only totals the points, but also
computes their average.

To calculate the average grade, the program must first
determine how many grades were entered. This is a subtle
problem because the number of grades to be entered is
unknown in advance. Therefore, every time the user enters a
valid grade (not -1), the program must add 1 to a counter as
well as add that grade to the total variable. This is a combi-
nation counting and totaling routine, which is common in
many programs.

// Filename: C12GRAD2.CPP
// Adds up grades, computes average,
// and determines whether you earned an A.
#include <iostream.h>
#include <iomanip.h>
main(Q)
{
float total_grade=0.0;
float grade_avg = 0.0;
float grade;
int grade_ctr = 0;

do
{ cout << “What is your grade? (-1 to end) “;
cin >> grade;
if (grade >= 0.0)
{ total_grade += grade; // Add to total.
grade_ctr ++; } // Add to count.
} while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 & The while Loop

// Control begins here if no more grades.
grade_avg = (total_grade / grade_ctr); // Compute
// average.
cout << “\nYou made a total of “ << setprecision(l) <<
total_grade << “ points.\n”’;
cout << “Your average was “ << grade_avg << ‘“\n”’;
if (total_grade >= 450.0)
{ cout << “** You made an A!!l”; }
return O;

}

Below is the output of this program. Congratulations! You
are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8
What is your grade? (-1 to end) 98.7
What is your grade? (-1 to end) 67.8
What is your grade? (-1 to end) 92.4
What is your grade? (-1 to end) -1

You made a total of 326.68 points.
Your average was 81.7

Review Questions

The answers to the review questions are in Appendix B.

1. What is the difference between the white loop and the
do-while loop?

2. What is the difference between a total variable and a counter
variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of
while and do-while loops.

EXAMPLE

5. What is wrong with the following code?

while (sales > 50)
cout << “Your sales are very good this month.\n’;
cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;
do
{ printf(“Careful \n”);
at++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of
code?

a=1;
while (a < 4)
{ cout << “This is the outer loop\n”;

a++;
while (a <= 25)
{ break;
cout << “This prints 25 times\n”; }
T

Review Exercises

1. Write a program with a do-while loop that prints the numer-
als from 10 to 20 (inclusive), with a blank line between each
number.

2. Write a weather-calculator program that asks for a list of the
previous 10 days’ temperatures, computes the average, and
prints the results. You have to compute the total as the input
occurs, then divide that total by 10 to find the average. Use a
while loop for the 10 repetitions.

Chapter 12 & The while Loop

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-
cise 2, but generalize it so it computes the average of any
number of days’ temperatures. (Hint: You have to count the
number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-
screen. Don’t print the first 31 characters because they are
nonprintable. Print the codes numbered 32 through 255 by
storing their numbers in integer variables and printing their
ASCII values using printf() and the «wc format code.

Summary

This chapter showed you two ways to produce a C++ loop: the
while loop and the do-white loop. These two variations of while loops
differ in where they test their test condition statements. The while
tests at the beginning of its loop, and the do-while tests at the end.
Therefore, the body of a do-while lOOp always executes at least once.
You also learned that the exit() function and break statement add
flexibility to the white loops. The exit(function terminates the
program, and the break Statement terminates only the current loop.

This chapter explained two of the most important applications
of loops: counters and totals. Your computer can be a wonderful tool
for adding and counting, due to the repetitive capabilities offered
with white loops.

The next chapter extends your knowledge of loops by showing
you how to create a determinate loop, called the for loop. This feature
is useful when you want a section of code to loop for a specified
number of times.

Learn programming
By Example with Que!

By Example C By Example
The%_ﬁ;‘;WnymLmHuwww Greg Perry

Thisisthe best way to learn C outside
the classroom! Short chapters help
beginners learn the language one
small step at atime.

Version 1.0

$21.95 USA
0-88022-813-X, 650 pp., 7%/s 9Y/4

QBasIC BORLAND TURBO VISUAL
S Escante, C++3 PASCAL 6 BASIC

By Example By Example By Example
'nxe"’mw:ytnﬂawh The Easiest Way to Learn How o Progmm! The Eastest Way to Learn How to Program!
- e

QBasic By Example Turbo C++ By Example Turbo Pascal by Example Visual Basic By Example

Version 1.0 Version 3 Version 6 Version 1
$21.95 USA $21.95 USA $21.95 USA $21.95 USA

0-88022-811-3, 650 pp., 7¥/s X 9% 0-88022-812-1, 650 pp., 7¥/s X 9%+ 0-88022-908-X, 650 pp., 7%/s X 9% 0-88022-904-7, 650 pp., 7%/e X 9a

Qm To Order, Call: (800) 428-5331
OR (317) 573-2500

Arrays of
Structures

This chapter builds on the previous one by showing you how to
create many structures for your data. After creating an array of
structures, you can store many occurrences of your data values.

Arrays of structures are good for storing a complete employee
file, inventory file, or any other set of data that fits in the structure
format. Whereas arrays provide a handy way to store several values
that are the same type, arrays of structures store several values of
different types together, grouped as structures.

This chapter introduces the following concepts:

Creating arrays of structures
Initializing arrays of structures

Referencing elements from a structure array

* & o o

Arrays as members

Many C++ programmers use arrays of structures as a prelude
to storing their data in a disk file. You can input and calculate your
disk data in arrays of structures, and then store those structures in
memory. Arrays of structures also provide a means of holding data
you read from the disk.

Chapter 29 & Arrays of Structures

Declaring Arrays
of Structures

It is easy to declare an array of structures. Specify the number
of reserved structures inside array brackets when you declare the
structure variable. Consider the following structure definition:

struct stores
{ int employees;
int registers;
double sales;
} storel, store2, store3, store4, store5;

This structure should not be difficult for you to understand
because there are no new commands used in the structure declara-
tion. This structure declaration creates five structure variables.
Figure 29.1 shows how C++ stores these five structures in memory.
Each of the structure variables has three members—two integers
followed by a double floating-point value.

Stors 1 Hhars 2

S L0 s S Loy &

registara rag istara

20 1o FLAE |
Shore 3 Stare 4

=11 a) ERASE S Loy &

registara rag istara

2 1aa anla |
Store £

=11 a) ERASE

registara

2 1aa

Figure 29.1. The structure of Store 1, Store 2, Store 3, Store 4, and

Store 5.

EXAMPLE

If the fourth store increased its employee count by three, you
could update the store’s employee number with the following
assignment statement:

stored4.employees += 3; // Add three to this store’s
// employee count.

Suppose the fifth store just opened and you want to initialize its
members with data. If the stores are a chain and the new store is
similar to one of the others, you can begin initializing the store’s data
by assigning each of its members the same data as another store’s,

like this:
store5 = store2; // Define initial values for
// the members of store5.
Arrays of structures Such structure declarations are fine for a small number of
lmake W°fkb'”9 W'fth structures, but if the stores were a national chain, five structure
Sietre v bles variables would not be enough. Suppose there were 1000 stores. You
manageable. would not want to create 1000 different store variables and work

with each one individually. It would be much easier to create an
array of store structures.
Consider the following structure declaration:

struct stores
{ int employees;
int registers;
double sales;
} store[1000];

In one quick declaration, this code creates 1000 store structures,
each one containing three members. Figure 29.2 shows how these
structure variables appear in memory. Notice the name of each
individual structure variable: store[0], store[1], store[2], and SO on.

’ CAUTION: Be careful that your computer does not run out
i of memory when you create a large number of structures.
Arrays of structures quickly consume valuable memory. You
might have to create fewer structures, storing more data in disk
files and less data in memory.

Chapter 29 & Arrays of Structures

amay =t ors
store [0] —
store [11—| P
stors [2] —
atarg [3] —

= .wﬂ-".“
e %

) — s
T — e

Figure 29.2. An array of the store structures.

The element store[2] is an array element. This array element,
unlike the others you have seen, is a structure variable. Therefore, it
contains three members, each of which you can reference with the
dot operator.

The dot operator works the same way for structure array
elements as it does for regular structure variables. If the number of
employees for the fifth store (store[4]) increased by three, you could
update the structure variable like this:

store[4] -employees += 3; // Add three to this store’s
// employee count.

You can assign complete structures to one another also by
using array notation. To assign all the members of the 20th store to
the 45th store, you would do this:

EXAMPLE

store[44] = store[19]; // Copy all members from the
// 20th store to the 45th.

The rules of arrays are still in force here. Each element of the
array called store is the same data type. The data type of store is the
structure stores. As with any array, each element must be the same
data type; you cannot mix data types in the same array. This array’s
data type happens to be a structure you created containing three
members. The data type for store[316] is the same for store[981] and
store[74].

The name of the array, store, is a pointer constant to the starting
element of the array, store[0]. Therefore, you can use pointer nota-
tion to reference the stores. To assign store[60] the same value as
store[23], you can reference the two elements like this:

*(store+60) = *(store+23);
You also can mix array and pointer notation, such as
store[60] = *(store+23);

and receive the same results.
You can increase the sales of store[s] by 40 percent using

L pointer or subscript notation as well, as in
[==
Al store[8] .-sales = (*(store+8)).sales * 1.40;
by 40 pT ok . .
1 The extra pair of parentheses are required because the dot

operator has precedence over the dereferencing symbol in C++’s
hierarchy of operators (see Appendix D, “C++ Precedence Table™).
Of course, in this case, the code is not helped by the pointer notation.
The following is a much clearer way to increase the sales by 40
percent:

store[8].-sales *= 1.40;

The following examples build an inventory data-entry system
for a mail-order firm using an array of structures. There is very little
new you have to know when working with arrays of structures. To
become comfortable with the arrays of structure notation, concen-
trate on the notation used when accessing arrays of structures and
their members.

Chapter 29 & Arrays of Structures

Keep Your Array Notation Straight
You would never access the member sales like this:
store.sales[8] = 3234.54; // Invalid

Array subscripts follow only array elements. sales is not an
array; it was declared as being a double floating-point number.
store Can never be used without a subscript (unless you are
using pointer notation).

Here is a corrected version of the previous assignment state-
ment:

store[8] -sales=3234.54; // Correctly assigns
// the value.

Examples

1. Suppose you work for a mail-order company that sells disk
drives. You are given the task of writing a tracking program
for the 125 different drives you sell. You must keep track of
the following information:

Storage capacity in megabytes
Access time in milliseconds
Vendor code (A, B, C, or D)
Cost

Price

Because there are 125 different disk drives in the inventory,
the data fits nicely into an array of structures. Each array
element is a structure containing the five members described
in the list.

The following structure definition defines the inventory:

struct inventory

{

EXAMPLE

long int storage;
int access_time;
char vendor_code;
double code;
double price;
} drive[125]; // Defines 125 occurrences of the structure.

2. When working with a large array of structures, your first
concern should be how the data inputs into the array ele-
ments. The best method of data-entry depends on the
application.

For example, if you are converting from an older computer-
ized inventory system, you have to write a conversion
program that reads the inventory file in its native format and
saves it to a new file in the format required by your C++
programs. This is no easy task. It demands that you have
extensive knowledge of the system from which you are
converting.

If you are writing a computerized inventory system for the
first time, your job is a little easier because you do not have
to convert the old files. You still must realize that someone
has to type the data into the computer. You must write a
data-entry program that receives each inventory item from
the keyboard and saves it to a disk file. You should give the
user a chance to edit inventory data to correct any data he or
she originally might have typed incorrectly.

One of the reasons disk files are introduced in the last half of
the book is that disk-file formats and structures share a
common bond. When you store data in a structure, or more
often, in an array of structures, you can easily write that data
to a disk file using straightforward disk /0 commands.

The following program takes the array of disk drive struc-
tures shown in the previous example and adds a data-entry
function so the user can enter data into the array of struc-
tures. The program is menu-driven. The user has a choice,
when starting the program, to add data, print data on-
screen, or exit the program. Because you have yet to see disk
I/0 commandes, the data in the array of structures goes away

611

Chapter 29 & Arrays of Structures

when the program ends. As mentioned earlier, saving those
structures to disk is an easy task after you learn C++’s disk
I/0 commands. For now, concentrate on the manipulation
of the structures.

This program is longer than many you previously have seen
in this book, but if you have followed the discussions of
structures and the dot operator, you should have little
trouble following the code.

H Identify the program and include the necessary header files. Define a
structure that describes the format of each inventory item. Create an
array of structures called disk.

Display a menu that gives the user the choice of entering new
inventory data, displaying the data on-screen, or quitting the pro-
gram. If the user wants to enter new inventory items, prompt the user
for each item and store the data into the array of structures. If the user
wants to see the inventory, loop through each inventory item in the
array, displaying each one on-screen.

// Filename: C29DSINV.CPP

// Data-entry program for a disk drive company.
#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

#include <stdio.h>

struct inventory // Global structure definition.
{

long int storage;

int access_time;

char vendor_code;

float cost;

float price;
3} // No structure variables defined globally.

void disp_menu(void);
struct inventory enter_data();

void see_data(inventory disk[125], int num_items);

void main(Q)

EXAMPLE

{
inventory disk[125]; // Local array of structures.
int ans;
int num_items=0; // Number of total items
// in the inventory.
do
{
do
{ disp_menu(Q); // Display menu of user choices.
cin >> ans; // Get user’s request.
3} while ((ans<1) || (ans>3));
switch (ans)
{ case (1): { disk[num_items] = enter_data(); // Enter
// disk data.
num_items++; // Increment number of items.
break; }
case (2): { see_data(disk, num_items); // Display
// disk data.
break; }
default : { break; }
3
} while (ans!=3); // Quit program
// when user is done.
return;
h
void disp_menu(void)
{
cout << “\n\n*** Disk Drive Inventory System ***\n\n”’;
cout << “Do you want to:\n\n’’;
cout << “\tl. Enter new item in inventory\n\n”;
cout << “\t2. See inventory data\n\n’;
cout << “\t3. Exit the program\n\n”;
cout << “What is your choice? “;
return;
h

inventory enter_data()

Chapter 29 & Arrays of Structures

{
inventory disk_item; // Local variable to fill
// with input.
cout << “\n\nWhat is the next drive’s storage in bytes? “;
cin >> disk_item.storage;
cout << “What is the drive’s access time in ms? “;
cin >> disk_item.access_time;
cout << “What is the drive’s vendor code (A, B, C, or D)? “;
fflush(stdin); // Discard input buffer
// before accepting character.
disk_item.vendor_code = getchar();
getchar(); // Discard carriage return
cout << “What is the drive’s cost? “;
cin >> disk_item.cost;
cout << “What is the drive’s price? “;
cin >> disk_item.price;
return (disk_item);
h
void see_data(inventory disk[125], int num_items)
{
int ctr;
cout << “\n\nHere is the inventory listing:\n\n”;
for (ctr=0;ctr<num_items;ctr++)
{
cout << “Storage: “ << disk[ctr].storage << ‘“\t”;
cout << “Access time: “ << disk[ctr].access_time << “\n”’;
cout << “Vendor code: “ << disk[ctr].vendor_code << “\t”;
cout << setprecision(2);
cout << “Cost: $” << disk[ctr].cost << “\t”;
cout << “Price: $” << disk[ctr].price << ‘“\n”’;
3
return;
3

Figure 29.3 shows an item being entered into the inventory
file. Figure 29.4 shows the inventory listing being displayed
to the screen. There are many features and error-checking
functions you can add, but this program is the foundation of
a more comprehensive inventory system. You can easily

EXAMPLE

adapt it to a different type of inventory, a video tape collec-
tion, a coin collection, or any other tracking system by
changing the structure definition and the member names
throughout the program.

#%x% Disk Drive Inventory System e
Do you want to:
1. Enter new item in inventory
2. Bee inventory data
3. Exit the program
What is your choice? 1
What is the next drive’'s storage in bytes? 120888
What is the drive's access time in ms? 17
What is the drive’'s vendor code (A, B, C, or D)? A

What is the drive’'s cost? 121.56
What is the drive's price? 2408.88

Figure 29.3. Entering inventory information.

Arrays as Members

Members of structures can be arrays. Array members pose no
new problems, but you have to be careful when you access indi-
vidual array elements. Keeping track of arrays of structures that
contain array members might seem like a great deal of work on your
part, but there is nothing to it.

Consider the following structure definition. This statement
declares an array of 100 structures, each structure holding payroll
information for a company. Two of the members, name and depart-
ment, are arrays.

struct payroll
{ char name[25]; // Employee name array.

615

Chapter 29 & Arrays of Structures

int dependents;

char department[10]; // Department name array.
float salary;
} employee[100]; // An array of 100 employees.

What is youwr choice? 2

Here is the inventory listing:
Storage: 128888 Access time: 17
Vendor code: A Cost: $121.56 Price: 5248.88
Storage: 328888 Access time: 21
Vendor code: D Cost: $238.85 Price: $489.57
Storage: ZB8BBB Access time: 19
Vendor code: C Cost: $218.84 Price: $398.67
##%% Disk Drive Inventory Suystem e
Do you want to:

1. Enter new item in inventory

2. Bee inventory data

3. Exit the program

What is youwr choice? 3

Figure 29.4. Displaying the inventory data.

Figure 29.5 shows what these structures look like. The first and
third members are arrays. name is an array of 25 characters, and
department iS an array of 10 characters.

Suppose you must save the 25th employee’s initial in a charac-
ter variable. Assuming initial is already declared as a character
variable, the following statement assigns the employee’s initial to
the varible initial:

initial = employee[24].name[0];

The double subscripts might look confusing, but the dot opera-
tor requires a structure variable on its left (employee[24]) and a
member on its right (name’s first array element). Being able to refer to
member arrays makes the processing of character data in structures
simple.

EXAMPLE

enp Logas [@]

dependent 2

departrent

salary

enp Loges [1]

dependent 2

departrent

salary

enp loges [£]

dependent 2

departrent

salary

enployes [53]

FrRie

dependent 2

departrent

salary

Figure 29.5. The payroll data.

Chapter 29 & Arrays of Structures

Examples

1. Suppose an employee got married and wanted her name
changed in the payroll file. (She happens to be the 45th
employee in the array of structures.) Given the payroll
structure described in the previous section, this would
assign a new name to her structure:

strcpy(employee[44] -name, “Mary Larson”); // Assign
// a new name.

When you refer to a structure variable using the dot opera-
tor, you can use regular commands and functions to process
the data in the structure members.

2. A bookstore wants to catalog its inventory of books. The
following program creates an array of 100 structures. Each
structure contains several types of variables, including
arrays. This program is the data-entry portion of a larger
inventory system. Study the references to the members to
see how member-arrays are used.

// Filename: C29BOOK.CPP

// Bookstore data-entry program.
#include <iostream.h>

#include <stdio.h>

#include <ctype.h>

struct inventory

{ char title[25]; // Book’s title.
char pub_date[19]; // Publication date.
char author[20]; // Author’s name.
int num; // Number in stock.
int on_order; // Number on order.
float retail; // Retail price.

};

void mainQ)

{
inventory book[100];
int total=0; // Total books in inventory.
int ans;

EXAMPLE

do // This program enters data into the structures.
{ cout << “Book #” << (total+l) << “:\n”, (total+l);
cout << “What is the title? “;
gets(book[total].title);
cout << “What is the publication date? “;
gets(book[total].pub_date);
cout << “Who is the author? “;
gets(book[total].author);
cout << “How many books of this title are there? “;
cin >> book[total].num;
cout << “How many are on order? *;
cin >> book[total].on_order;
cout << “What is the retail price? “;
cin >> book[total].retail;
fflush(stdin);
cout << “\nAre there more books? (Y/N) “;
ans=getchar();

fflush(stdin); // Discard carriage return.
ans=toupper(ans); // Convert to uppercase.
if (ans=="Y7)

{ total++;

continue; }
} while (ans=="Y");
return;

}

You need much more to make this a usable inventory pro-
gram. An exercise at the end of this chapter recommends
ways you can improve on this program by adding a printing
routine and a title and author search. One of the first things
you should do is put the data-entry routine in a separate
function to make the code more modular. Because this
example is so short, and because the program performs only
one task (data-entry), there was no advantage to putting the
data-entry task in a separate function.

3. Here is a comprehensive example of the steps you might go
through to write a C++ program. You should begin to
understand the C++ language enough to start writing some
advanced programs.

Chapter 29 & Arrays of Structures

Assume you have been hired by a local bookstore to write a
magazine inventory system. You have to track the following:

Magazine title (at most, 25 characters)
Publisher (at most, 20 characters)
Month (1, 2, 3,...12)

Publication year

Number of copies in stock

Number of copies on order

Price of magazine (dollars and cents)

Suppose there is a projected maximum of 1000 magazine
titles the store will ever carry. This means you need 1000
occurrences of the structure, not 1000 magazines total. Here
is a good structure definition for such an inventory:

struct mag_info

{ char title[25];
char pub[25];
int month;
int year;
int stock_copies;
int order_copies;
float price;

} mags[1000]; // Define 1000 occurrences.

Because this program consists of more than one function, it
is best to declare the structure globally, and the structure
variables locally in the functions that need them.

This program needs three basic functions: a main() control-
ling function, a data-entry function, and a data printing
function. You can add much more, but this is a good start for
an inventory system. To keep the length of this example
reasonable, assume the user wants to enter several maga-
zines, then print them. (To make the program more “us-
able,” you should add a menu so the user can control when
she or he adds and prints the information, and should add
more error-checking and editing capabilities.)

EXAMPLE

Here is an example of the complete data-entry and printing
program with prototypes. The arrays of structures are
passed between the functions from mainQ).

// Filename: C29MAG.CPP

// Magazine inventory program for adding and displaying
// a bookstore’s magazines.

#include <iostream.h>

#include <ctype.h>

#include <stdio.h>

inthe amay

struct mag_info
{ char title[25];

char pub[25];
int month;
int year;
int stock copies;
int order_copies;
float price;

};

mag_info Ffill_mags(struct mag_info mag);
void print_mags(struct mag_info mags[], int mag_ctr);

void main()

{
mag_info mags[1000];
int mag_ctr=0; // Number of magazine titles.
char ans;
do
{ // Assumes there is

// at least one magazine filled.

mags[mag_ctr] = fill_mags(mags[mag_ctr]);
cout << “Do you want to enter another magazine? “;
fflush(stdin);
ans = getchar();
fflush(stdin); // Discards carriage return.
if (toupper(ans) == “Y?)

{ mag_ctr++; }

} while (toupper(ans) == “Y?);

print_mags(mags, mag_ctr);

Chapter 29 & Arrays of Structures

return; // Returns to operating system.
3
void print_mags(mag_info mags[], int mag_ctr)
{
int i;
for (i=0; i<=mag_ctr; i++)
{ cout << “\n\nMagazine “ << i+l << “:\n”;// Adjusts for
// subscript.
cout << “\nTitle: “ << mags[i]-title << “\n”’;
cout << “\tPublisher: “ << mags[i]-pub << *“\n”;
cout << “\tPub. Month: “ << mags[i]-month << ‘“\n”;
cout << “\tPub. Year: “ << mags[i]-year << ‘“\n”’;
cout << “\tIn-stock: “ << mags[i]-stock_copies << ‘“\n”’;
cout << “\tOn order: “ << mags[i]-order_copies << ‘“\n”’;
cout << “\tPrice: “ << mags[i]-price << ‘“\n”;
b
return;
3

mag_info Ffill_mags(mag_info mag)

{
puts(“\n\nWhat is the title? “);
gets(mag-title);
puts(“Who is the publisher? “);
gets(mag.pub);
puts(“What is the month (1, 2, ..., 12)? “);
cin >> mag.month;
puts(“What is the year? “);
cin >> mag.year;
puts(“How many copies in stock? “);
cin >> mag.stock _copies;
puts(“How many copies on order? “);
cin >> mag.order_copies;
puts(““How much is the magazine? “);
cin >> mag.price;
return (mag);

C++ By
EXAMPLE

Review Questions

The answers to the review questions are in Appendix B.

1. True or false: Each element in an array of structures must be
the same type.

2. What is the advantage of creating an array of structures
rather than using individual variable names for each struc-
ture variable?

3. Given the following structure declaration:

struct item
{ char part_no[8];
char descr[20];
float price;
int in_stock;
} inventory[100];

a. How would you assign a price of 12.33 to the 33rd item’s
in-stock quantity?

b. How would you assign the first character of the 12th
item’s part number the value of X?

¢. How would you assign the 97th inventory item the same
values as the 63rd?

4. Given the following structure declaration:

struct item
{ char desc[20];
int num;
float cost;
} inventory[25];

a. What is wrong with the following statement?
item[1l].cost = 92.32;
b. What is wrong with the following statement?

strcpy(inventory.desc, “Widgets™);

Chapter 29 & Arrays of Structures

¢. What is wrong with the following statement?

inventory.cost[10] = 32.12;

Review Exercises

1. Write a program that stores an array of friends’ names,
phone numbers, and addresses and prints them two ways:
with their name, address, and phone number, or with only
their name and phone number for a phone listing.

_BiS

2. Add a sort function to the program in Exercise 1 so you can
print your friends’ names in alphabetical order. (Hint: You
have to make the member holding the names a character
pointer.)

3. Expand on the book data-entry program, C29BOOK.CPP,
by adding features to make it more usable (such as search
book by author, by title, and print an inventory of books on
order).

Summary

You have mastered structures and arrays of structures. Many
useful inventory and tracking programs can be written using struc-
tures. By being able to create arrays of structures, you can now create
several occurrences of data.

The next step in the process of learning C++ is to save these
structures and other data to disk files. The next two chapters explore
the concepts of disk file processing.

Sequential Files

So far, every example in this book has processed data that resided
inside the program listing or came from the keyboard. You assigned
constants and variables to other variables and created new data
values from expressions. The programs also received input with ciin,
gets(), and the character input functions.

The data created by the user and assigned to variables with
assignment statements is sufficient for some applications. With the
large volumes of data most real-world applications must process,
however, you need a better way of storing that data. For all but the
smallest computer programs, disk files offer the solution.

After storing data on the disk, the computer helps you enter,
find, change, and delete the data. The computer and C++ are simply
tools to help you manage and process data. This chapter focuses on
disk- and file-processing concepts and teaches you the first of two
methods of disk access, sequential file access.

This chapter introduces you to the following concepts:

An overview of disk files
The types of files
Processing data on the disk
Sequential file access

File 1/0 functions

* & & o o

Chapter 30 & Sequential Files

After this chapter, you will be ready to tackle the more ad-
vanced random-file-access methods covered in the next chapter. If
you have programmed computerized data files with another pro-
gramming language, you might be surprised at how C++ borrows
from other programming languages, especially BASIC, when work-
ing with disk files. If you are new to disk-file processing, disk files
are simple to create and to read.

Why Use a Disk?

The typical computer system has much less memory storage
than hard disk storage. Your disk drive holds much more data than
can fit in your computer’s RAM. This is the primary reason for using
the disk for storing your data. The disk memory, because it is
nonvolatile, also lasts longer; when you turn your computer off, the
disk memory is not erased, whereas RAM is erased. Also, when your
data changes, you (or more important, your users) do not have to
edit the program and look for a set of assignment statements.
Instead, the users run previously written programs that make
changes to the disk data.

Disks hold more This makes programming more difficult at first because pro-
data than computer grams have to be written to change the data on the disk.
Nonprogrammers, however, can then use the programs and modify
the data without knowing C++.

The capacity of your disk makes it a perfect place to store your
data as well as your programs. Think about what would happen if
all data had to be stored with a program’s assignment statements.
What if the Social Security Office in Washington, D.C., asked you to
write a C++ program to compute, average, filter, sort, and print each
person’s name and address in his or her files? Would you want your
program to include millions of assignment statements? Not only
would you not want the program to hold that much data, but it could
not do so because only relatively small amounts of data fitin a
program before you run out of RAM.

memory.

EXAMPLE

By storing data on your disk, you are much less limited because
you have more storage. Your disk can hold as much data as you have
disk capacity. Also, if your program requirements grow, you can
usually increase your disk space, whereas you cannot always add
more RAM to your computer.

NOTE: C++ cannot access the special extended or expanded
memory some computers have.

When working with disk files, C++ does not have to access
much RAM because C++ reads data from your disk drive and
processes the data only parts at a time. Not all your disk data has to
reside in RAM for C++ to process it. C++ reads some data, processes
it, and then reads some more. If C++ requires disk data a second
time, it rereads that place on the disk.

Types of Disk File Access

Your programs can access files two ways: through sequential
access or random access. Your application determines the method
you should choose. The access mode of a file determines how you
read, write, change, and delete data from the file. Some of your files
can be accessed in both ways, sequentially and randomly as long as
your programs are written properly and the data lends itself to both
types of file access.

A sequential file has to be accessed in the same order the file
was written. This is analogous to cassette tapes: You play music in
the same order it was recorded. (You can quickly fast-forward or
rewind over songs you do not want to listen to, but the order of the
songs dictates what you do to play the song you want.) It is difficult,
and sometimes impossible, to insert data in the middle of a sequen-
tial file. How easy is it to insert a new song in the middle of two other
songs on a tape? The only way to truly add or delete records from the
middle of a sequential file is to create a completely new file that
combines both old and new records.

It might seem that sequential files are limiting, but it turns
out that many applications lend themselves to sequential-file
processing.

627

Chapter 30 & Sequential Files

Unlike sequential files, you can access random-access files in
any order you want. Think of data in a random-access file as you
would songs on a compact disc or record; you can go directly to any
song you want without having to play or fast-forward over the other
songs. If you want to play the first song, the sixth song, and then the
fourth song, you can do so. The order of play has nothing to do with
the order in which the songs were originally recorded. Random-file
access sometimes takes more programming but rewards your effort
with a more flexible file-access method. Chapter 31 discusses how to
program for random-access files.

Sequential File Concepts

There are three operations you can perform on sequential disk
files. You can

¢ Create disk files
+ Add to disk files
¢ Read from disk files

Your application determines what you must do. If you are
creating a disk file for the first time, you must create the file and write
the initial data to it. Suppose you wanted to create a customer data
file. You would create a new file and write your current customers
to that file. The customer data might originally be in arrays, arrays
of structures, pointed to with pointers, or placed in regular variables
by the user.

Over time, as your customer base grows, you can add new
customers to the file (called appending to the file). When you add to
the end of a file, you append to that file. As your customers enter
your store, you would read their information from the customer
data file.

Customer disk processing is an example of one disadvantage
of sequential files, however. Suppose a customer moves and wants
you to change his or her address in your files. Sequential-access files
do not lend themselves well to changing data stored in them. It is
also difficult to remove information from sequential files. Random
files, described in the next chapter, provide a much easier approach

EXAMPLE

to changing and removing data. The primary approach to changing
or removing data from a sequential-access file is to create a new one,
from the old one, with the updated data. Because of the updating
ease provided with random-access files, this chapter concentrates
on creating, reading, and adding to sequential files.

Opening and Closing Files

Before you can create, write to, or read from a disk file, you
must open the file. This is analogous to opening a filing cabinet
before working with a file stored in the cabinet. Once you are done
with a cabinet’s file, you close the file drawer. You also must close
a disk file when you finish with it.

When you open a disk file, you only have to inform C++ of the
filename and what you want to do (write to, add to, or read from).
C++ and your operating system work together to make sure the disk
is ready and to create an entry in your file directory (if you are
creating a file) for the filename. When you close a file, C++ writes any
remaining data to the file, releases the file from the program, and
updates the file directory to reflect the file’s new size.

’ CAUTION: You must ensure that the FiLEs= statement in your

& CONFIG.SYS file is large enough to hold the maximum num-
ber of disk files you have open, with one left for your C++
program. If you are unsure how to do this, check your DOS
reference manual or a beginner’s book about DOS.

To open a file, you must call the open() function. To close afile,
call the crose® function. Here is the format of these two function

calls:
L file_ptr.open(file_name, access);
v and
e
+ Ffile_ptr.close();

file_ptr is a special type of pointer that only points to files, not
data variables.

Chapter 30 & Sequential Files

Your operating system handles the exact location of your data
in the disk file. You don’t want to worry about the exact track and
sector number of your data on the disk. Therefore, you let file_ptr
point to the data you are reading and writing. Your program only
has to generically manage file_ptr, whereas C++ and your operat-
ing system take care of locating the actual physical data.

file_name IS a string (or a character pointer that points to a
string) containing a valid filename for your computer. file_name can
contain a complete disk and directory pathname. You can specify
the filename in uppercase or lowercase letters.

access must be one of the values from Table 30.1.

Table 30.1. Possible access modes.

Mode Description

app Open the file for appending (adding to it).

ate Seek to end of file on opening it.

in Open the file for reading.

out Open the file for writing.

binary Open the file in binary mode.

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails.

noreplace If file exists, open fails unless appending or seeking

to end of file on opening.

The default access mode for file access is a text mode. A text file
is an ASCII file, compatible with most other programming lan-
guages and applications. Text files do not always contain text, in the
word-processing sense of the word. Any data you have to store can
go in a text file. Programs that read ASCI|I files can read data you
create as C++ text files. For a discussion of binary file access, see the
box that follows.

EXAMPLE

Binary Modes

If you specify binary access, C++ creates or reads the file in a
binary format. Binary data files are “squeezed”—they take less
space than text files. The disadvantage of using binary files is
that other programs cannot always read the data files. Only
C++ programs written to access binary files can read and write
to them. The advantage of binary files is that you save disk
space because your data files are more compact. Other than the
access mode in the open() function, you use no additional
commands to access binary files with your C++ programs.

The binary format is a system-specific file format. In other
words, not all computers can read a binary file created on
another computer.

If you open a file for writing, C++ creates the file. If a file by
that name already exists, C++ overwrites the old file with
no warning. You must be careful when opening files so you do
not overwrite existing data that you want to save.

If an error occurs during the opening of a file, C++ does not
create a valid file pointer. Instead, C++ creates a file pointer equal to
zero. For example, if you open a file for output, but use a disk name
that is invalid, C++ cannot open the file and makes the file pointer
equal to zero. Always check the file pointer when writing disk file
programs to ensure the file opened properly.

=My

TIP: Beginning programmers like to open all files at the begin-
ning of their programs and close them at the end. This is not
always the best method. Open files immediately before
you access them and close them immediately when you are
done with them. This habit protects the files because they are
closed immediately after you are done with them. A closed file
is more likely to be protected in the unfortunate (but possible)
event of a power failure or computer breakdown.

Chapter 30 ¢

Sequential Files

This section contains much information on file-access theories.
The following examples help illustrate these concepts.

Examples

1. Suppose you want to create a file for storing your house
payment records for the previous year. Here are the first few
lines in the program which creates a file called HOUSE.DAT
on your disk:

#include <fstream.h>

mainQ)

{
ofstream file_ptr; // Declares a file pointer for writing
file_ptr.open(“house.dat”, ios::out); // Creates the file

The remainder of the program writes data to the file. The
program never has to refer to the filename again. The pro-
gram uses the file_ptr variable to refer to the file. Examples
in the next few sections illustrate how. There is nothing
special about file_ptr, other than its name (although the
name is meaningful in this case). You can name file pointer
variables xvz or a9o8973 if you like, but these names would not
be meaningful.

You must include the fstream.h header file because it con-
tains the definition for the ofstream and ifstream declarations.
You don’t have to worry about the physical specifics. The
file_ptr “points” to data in the file as you write it. Put the
declarations in your programs where you declare other
variables and arrays.

TIP: Because files are not part of your program, you might
find it useful to declare file pointers globally. Unlike data in
variables, there is rarely a reason to keep file pointers local.

EXAMPLE

Before finishing with the program, you should close the file.
The following close() function closes the house file:

file_ptr.close(); // Close the house payment file.

2. If you want, you can put the complete pathname in the file’s
name. The following opens the household payment file in a
subdirectory on the D: disk drive:

Ffile_ptr.open(“d:\mydata\house.dat”, ios::out);

3. If you want, you can store a filename in a character array or
point to it with a character pointer. Each of the following
sections of code is equivalent:

char fn[1 = “house.dat”; // Filename in character array.
file_ptr.open(fn, ios::out); // Creates the file.

char *myfile = “house.dat”; // Filename pointed to.
file_ptr.open(myfile, ios::out); // Creates the file.

// Let the user enter the filename.
cout << “What is the name of the household file? “;
gets(filename); // Filename must be an array or

// character pointer.
File_ptr.open(filename, ios::out); // Creates the file.

No matter how you specify the filename when opening the
file, close the file with the file pointer. This close() function
closes the open file, no matter which method you used to
open the file:

Ffile_ptr.close(); // Close the house payment Ffile.

4. You should check the return value from open() to ensure the
file opened properly. Here is code after open() that checks for

an error:
L #include <fstream.h>
Chest;
= T
oo main(Q)
ez T e {

+ ofstream file_ptr; // Declares a fTile pointer.

Chapter 30 & Sequential Files

file_ptr.open(“house.dat”, ios::out); // Creates the file.
if (1file_ptr)

{ cout << “Error opening file.\n”; }

else

{

// Rest of output commands go here.

5. You can open and write to several files in the same program.
Suppose you wanted to read data from a payroll file and
create a backup payroll data file. You have to open the
current payroll file using the in reading mode, and the
backup file in the output out mode.

For each open file in your program, you must declare a
different file pointer. The file pointers used by your input
and output statement determine on which file they operate.
If you have to open many files, you can declare an array of
file pointers.

Here is a way you can open the two payroll files:

#include <fstream.h>

ifstream file_in; // Input file
ofstream file_out; // Output file
main(Q)

{

file_in.open(“payroll._dat”, ios::in); // Existing file
file_out.open(“payroll .BAK”, ios::out); // New file

When you finish with these files, be sure to close them with
these two close() function calls:

file_in.close();
file_out.close();

EXAMPLE

Writing to a File

Any input or output function that requires a device performs
input and output with files. You have seen most of these already.
The most common file 1/0 functions are

get() and put(Q
gets() and puts(Q

You also can use file_ptr as you do with cout Or cin.
The following function call reads three integers from a file
pointed to by file_ptr:

Ffile_ptr >> numl >> num2 >> num3; // Reads three variables.

There is always more than one way to write data to a disk file.
Most the time, more than one function will work. For example, if
you write many names to a file, both puts() and file_ptr << work.
You also can write the names using put(). You should use which-
ever function you are most comfortable with. If you want a newline
character (\n) at the end of each line in your file, the file_ptr <<and
puts() are probably easier than put(), but all three will do the job.

TIP: Each line in a file is called a record. By putting a newline
character at the end of file records, you make the input of those
records easier.

Examples

1. The following program creates a file called NAMES.DAT.
The program writes five names to a disk file using
file_ptr <<,

// Filename: C30WR1.CPP
// Writes five names to a disk file.
#include <fstream.h>

ofstream fp;

Chapter 30 & Sequential Files

J

?

L1

Cpen i

g

cudpat

Wr e drings
bafile

o

fike

void mainQ)

{
fp.open(“NAMES.DAT”, ios::out); // Creates a new file.

fp << “Michael Langston\n”;

fp << “Sally Redding\n”;

fp << “Jane Kirk\n”;

fp << “Stacy Wikert\n”;

fp << “Joe Hiquet\n”;

fp.close(); // Release the file.
return;

}

To keep this first example simple, error checking was not
done on the open() function. The next few examples check for
the error.

NAMES.TXT is a text data file. If you want, you can read this
file into your word processor (use your word processor’s
command for reading ASCI|I files) or use the MS-DOS TYPE
command (or your operating system’s equivalent command)
to display this file on-screen. If you were to display
NAMES.TXT, you would see:

Michael Langston
Sally Redding
Jane Kirk

Stacy Wikert
Joe Hiquet

. The following file writes the numbers from 1 to 100 to a file

called NUMS.1.

// Filename: C30WR2.CPP
// Writes 1 to 100 to a disk File.

#include <fstream.h>

ofstream fp;

void mainQ)

EXAMPLE

int ctr;

fp.open(“NUMS.1”, ios::out); // Creates a new file.
if (1fp)

{ cout << “Error opening file.\n”; }
else

{

for (ctr = 1; ctr < 101; ctr++)
{ fp << ctr << “ “; }

b
fp.close();
return;

}

The numbers are not written one per line, but with a space
between each of them. The format of the file_ptr << deter-
mines the format of the output data. When writing data to
disk files, keep in mind that you have to read the data later.
You have to use “mirror-image” input functions to read data
you output to files.

Writing to a Printer

Functions such as open() and others were not designed to write
only to files. They were designed to write to any device, including
files, the screen, and the printer. If you must write data to a printer,
you can treat the printer as if it were a file. The following program
opens a file pointer using the MS-DOS name for a printer located at
LPT1 (the MS-DOS name for the first parallel printer port):

// Filename: C30PRNT.CPP
// Prints to the printer device

#include <fstream.h>

ofstream prnt; // Points to the printer.

void main(Q)

Chapter 30 & Sequential Files

{
prnt.open(“LPT1”, ios::out);
prnt << “Printer line 1\n”; // 1st line printed.
prnt << “Printer line 2\n”’; // 2nd line printed.
prnt << “Printer line 3\n”; // 3rd line printed.
prnt.close();

return;

3

Make sure your printer is on and has paper before you run this
program. When you run the program, you see this printed on the
printer:

Printer line 1
Printer line 2
Printer line 3

Adding to a File

You can easily add data to an existing file or create new files, by
opening the file in append access mode. Data files on the disk are
rarely static; they grow almost daily due to (hopefully!) increased
business. Being able to add to data already on the disk is very useful,
indeed.

Files you open for append access (using ios: :app) do not have
to exist. If the file exists, C++ appends data to the end of the file when
you write the data. If the file does not exist, C++ creates the file (as
is done when you open a file for write access).

Example

The following program adds three more names to the
NAMES.DAT file created in an earlier example.

// Filename: C30AP1.CPP
// Adds three names to a disk File.

#include <fstream.h>

EXAMPLE

ofstream p;

void mainQ)

{
fp.open(“NAMES.DAT”, ios::app); // Adds to file.
fp << “Johnny Smith\n”’;
fp << “Laura Hull\n”;
fp << “Mark Brown\n”;
fp.close(); // Release the file.
return;

Here is what the file now looks like:

Michael Langston
Sally Redding
Jane Kirk

Stacy Wikert
Joe Hiquet
Johnny Smith
Laura Hull

Mark Brown

NOTE: If the file does not exist, C++ creates it and stores the
three names to the file.

Basically, you only have to change the open() function’s access
mode to turn a file-creation program into a file-appending program.

Reading from a File

Files must exist Once the data is in a file, you must be able to read that data. You

prior to opening must open the file in a read access mode. There are several ways to

them for read .

ACCESS, read data. You can read character data one character at a time or one
string at a time. The choice depends on the format of the data.

Files you open for read access (using ios::in) must exist al-

ready, or C++ gives you an error. You cannot read a file that does not
exist. open() returns zero if the file does not exist when you open it
for read access.

639

Chapter 30 & Sequential Files

Another event happens when reading files. Eventually, you
read all the data. Subsequent reading produces errors because there
is no more data to read. C++ provides a solution to the end-of-file
occurrence. If you attempt to read from a file that you have com-
pletely read the data from, C++ returns the value of zero. To find the
end-of-file condition, be sure to check for zero when reading infor-
mation from files.

Examples

1. This program asks the user for a filename and prints the
contents of the file to the screen. If the file does not exist, the
program displays an error message.

// Filename: C30RE1.CPP
// Reads and displays a file.

#include <fstream.h>
#include <stdlib.h>

ifstream fp;

void main()

{

char filename[12]; // Holds user’s filename.
char in_char; // Input character.

cout << “What is the name of the file you want to see? “;
cin >> filename;
fp.open(filename, 10s::in);

if (1fp)

{
cout << “\n\n*** That file does not exist ***\n”’;
exit(0); // ExXit program.

¥

while (fp.get(in_char))
{ cout << in_char; }

fp.close();

return;

EXAMPLE

Here is the resulting output when the NAMES.DAT file is
requested:

What is the name of the file you want to see? NAMES.DAT
Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

Because newline characters are in the file at the end of each
name, the names appear on-screen, one per line. If you
attempt to read a file that does not exist, the program dis-
plays the following message:

*** That file does not exist ***

2. This program reads one file and copies it to another. You
might want to use such a program to back up important data
in case the original file is damaged.

The program must open two files, the first for reading, and
the second for writing. The file pointer determines which of
the two files is being accessed.

// Filename: C30RE2.CPP
// Makes a copy of a file.

#include <fstream.h>
#include <stdlib.h>

ifstream in_fp;
ofstream out_fp;

void main()

{
char in_filename[12]; // Holds original filename.
char out_filename[12]; // Holds backup filename.
char in_char; // Input character.

Chapter 30 & Sequential Files

cout << “What is the name of the file you want to back up?

cin >> in_filename;

cout << “What is the name of the file “;

cout << “you want to copy “ << in_filename << “ to? “;
cin >> out_filename;

in_fp.open(in_filename, i0s::in);

if (Vin_fp)
{
cout << “\Nn\n*** “ << in_Ffilename << “ does not exist
***\n" ;
exit(0); // Exit program
3
out_fp.open(out_filename, ios::out);
it (lTout_fp)
{
cout << “\n\n*** Error opening “ << in_filename << *
***\n" ;
exit(0); // Exit program
3

cout << “\nCopying..-\n"’; // Waiting message.
while (in_fp.get(in_char))

{ out_fp.put(in_char); }
cout << “\nThe file is copied.\n”;
in_fp.close();
out_fp.close();
return;

Review Questions

Answers to the review questions are in Appendix B.

1. What are the three ways to access sequential files?

2. What advantage do disk files have over holding data in
memory?

3. How do sequential files differ from random-access files?

EXAMPLE

4. What happens if you open a file for read access and the file
does not exist?

5. What happens if you open a file for write access and the file
already exists?

6. What happens if you open a file for append access and the
file does not exist?

7. How does C++ inform you that you have reached the end-
of-file condition?

Review Exercises

1. Write a program that creates a file containing the following
data:

Your name

Your address

Your phone number
Your age

2. Write a second program that reads and prints the data file
you created in Exercise 1.

3. Write a program that takes your data created in Exercise 1
and writes it to the screen one word per line.

4. Write a program for PCs that backs up two important files:
the AUTOEXEC.BAT and CONFIG.SYS. Call the backup
files AUTOEXEC.SAV and CONFIG.SAV.

5. Write a program that reads a file and creates a new file with
the same data, except reverse the case on the second file.
Everywhere uppercase letters appear in the first file, write
lowercase letters to the new file, and everywhere lowercase
letters appear in the first file, write uppercase letters to the
new file.

Chapter 30 & Sequential Files

Summary

You can now perform one of the most important requirements
of data processing: writing and reading to and from disk files. Before
this chapter, you could only store data in variables. The short life of
variables (they only last as long as your program is running) made
long-term storage of data impossible. You can now save large
amounts of data in disk files to process later.

Reading and writing sequential files involves learning more
concepts than actual commands or functions. The open() and close()
functions are the most important functions you learned in this
chapter. You are now familiar with most of the 1/0 functions needed
to retrieve data to and from disk files.

The next chapter concludes the discussion of disk files in this
book. You will learn how to create and use random-access files. By
programming with random file access, you can read selected data
from a file, as well as change data without having to rewrite the
entire file.

Random-Access
Files

This chapter introduces the concept of random file access. Random
file access enables you to read or write any data in your disk file
without having to read or write every piece of data before it. You can
quickly search for, add, retrieve, change, and delete information in
a random-access file. Although you need a few new functions to
access files randomly, you find that the extra effort pays off in
flexibility, power, and speed of disk access.
This chapter introduces

Randome-access files
File records

The seekg() function

* & o o

Special-purpose file 1/0 functions

With C++’s sequential and random-access files, you can do
everything you would ever want to do with disk data.

Chapter 31 ¢ Random-Access Files

Random File Records

Random files exemplify the power of data processing with
C++. Sequential file processing is slow unless you read the entire
file into arrays and process them in memory. As explained in
Chapter 30, however, you have much more disk space than RAM,
and most disk files do not even fit in your RAM at one time.
Therefore, you need a way to quickly read individual pieces of
data from a file in any order and process them one at a time.

Arecord to a file is Generally, you read and write file records. A record to a file is
like ab'f"ucwfe to analogous to a C++ structure. A record is a collection of one or more
varianlies.

data values (called fields) you read and write to disk. Generally, you
store data in structures and write the structures to disk where they
are called records. When you read a record from disk, you generally
read that record into a structure variable and process it with your
program.

Unlike most programming languages, not all disk data for C++
programs has to be stored in record format. Typically, you write a
stream of characters to a disk file and access that data either sequen-
tially or randomly by reading it into variables and structures.

The process of randomly accessing data in a file is simple. Think
about the data files of a large credit card organization. When you
make a purchase, the store calls the credit card company to receive
authorization. Millions of names are in the credit card company’s
files. There is no quick way the credit card company could read
every record sequentially from the disk that comes before yours.
Sequential files do not lend themselves to quick access. It is not
feasible, in many situations, to look up individual records in a data
file with sequential access.

The credit card companies must use a random file access so
their computers can go directly to your record, just as you go directly
to a song on a compact disk or record album. The functions you use
are different from the sequential functions, but the power that
results from learning the added functions is worth the effort.

You do not have to When your program reads and writes files randomly, it treats
rewrite anentire file the file like a big array. With arrays, you know you can add, print,

;"ng‘:s”gfergggom' or remove values in any order. You do not have to start at the first

EXAMPLE

array element, sequentially looking at the next one, until you get the
element you need. You can view your random-access file in the same
way, accessing the data in any order.

Most random file records are fixed-length records. Each record
(usually a row in the file) takes the same amount of disk space.
Most of the sequential files you read and wrote in the previous
chapters were variable-length records. When you are reading or
writing sequentially, there is no need for fixed-length records be-
cause you input each value one character, word, string, or number
at a time, and look for the data you want. With fixed-length records,
your computer can better calculate where on the disk the desired
record is located.

Although you waste some disk space with fixed-length records
(because of the spaces that pad some of the fields), the advantages
of random file access compensate for the “wasted” disk space (when
the data do not actually fill the structure size).

TIP: With random-access files, you can read or write records
in any order. Therefore, even if you want to perform sequential
reading or writing of the file, you can use random-access
processing and “randomly” read or write the file in sequential
record number order.

Opening Random-Access
Files

Just as with sequential files, you must open random-access files
before reading or writing to them. You can use any of the read access
modes mentioned in Chapter 30 (such as ios::in) only to read a file
randomly. However, to modify data in a file, you must open the file
in one of the update modes, repeated for you in Table 31.1.

Chapter 31 ¢ Random-Access Files

Table 31.1. Random-access update modes.

Mode Description

app Open the file for appending (adding to it)

ate Seek to end of file on opening it

in Open file for reading

out Open file for writing

binary Open file in binary mode

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails

noreplace If file exists, open fails unless appending or seeking to

end of file on opening

There is really no difference between sequential files and
random files in C++. The difference between the files is not physical,
but lies in the method you use to access them and update them.

Examples

1. Suppose you want to write a program to create a file of your
friends’ names. The following open() function call suffices,
1 assuming fp is declared as a file pointer:

fp.open(“NAMES.DAT”, io0s::out);

Frapare if (1fp)
wiking { cout << “\n*** Cannot open file ***\n”; }

No update open() access mode is heeded if you are only
creating the file. However, what if you wanted to create the
file, write names to it, and give the user a chance to change
any of the names before closing the file? You then have to
open the file like this:

fp.open(““NAMES.DAT”, Hos::in | ios::out);

if (1fp)
cout << “\n*** Cannot open file ***\n”;

EXAMPLE

This code enables you to create the file, then change data
you wrote to the file.

2. As with sequential files, the only difference between using a
binary open() access mode and a text mode is that the file
you create is more compact and saves disk space. You
cannot, however, read that file from other programs as an
ASCII text file. The previous open() function can be rewritten
to create and allow updating of a binary file. All other file-
related commands and functions work for binary files just as
they do for text files.

fp.open(“NAMES.DAT”, ios::in | ios::out | ios::binary);

if (1fp)
cout << “\n*** Cannot open file ***\n”’;

The seekg() Function

C++ provides a function that enables you to read to a specific
point in a random-access data file. This is the seekg() function. The
format of seekgQ is

Ffile_ptr._.seekg(long_num, origin);

You can read file_ptr is the pointer to the file that you want to access,
forwards or initialized with an open() statement. 1ong_num is the number of bytes
backwards fromany iy the file you want to skip. C++ does not read this many bytes, but

point in the file with

seekgO). literally skips the data by the number of bytes specified in 1ong_num.

Skipping the bytes on the disk is much faster than reading them. If
long_num iS negative, C++ skips backwards in the file (this allows for
rereading of data several times). Because data files can be large, you
must declare 1ong_num as a long integer to hold a large amount of
bytes.

origin is a value that tells C++ where to begin the skipping of
bytes specified by 1ong_num. origin can be any of the three values
shown in Table 31.2.

Chapter 31 ¢ Random-Access Files

Table 31.2. Possible origin values.

Description origin Equivalent
Beginning of file SEEK_SET ios: :beg
Current file position SEEK_CUR ios::cur
End of file SEEK_END ios::end

The origins SEEK_SET, SEEK_CUR, and SEEK_END are de-
fined in stdio.h. The equivalents ios: :beg, ios::cur, and ios: :end are
defined in fstream.h.

NOTE: Actually, the file pointer plays a much more important
role than simply “pointing to the file” on the disk. The file
pointer continually points to the exact location of the next byte
to read or write. In other words, as you read data from either a
sequential or random-access file, the file pointer increments
with each byte read. By using seekg(), you can move the file
pointer forward or backward in the file.

Examples

5"1 1. No matter how far into a file you have read, the following
seekg() function positions the file pointer back to the begin-
ning of a file:

fp.seekg(OL, SEEK_SET); // Position file pointer at beginning.

The constant oL passes a long integer o to the seekg() func-
tion. Without the L, C++ passes a regular integer and this
does not match the prototype for seekg() that is located in
fstream.h. Chapter 4, “Variables and Literals,” explained the
use of data type suffixes on numeric constants, but the
suffixes have not been used until now.

This seekg() function literally reads “move the file pointer 0
bytes from the beginning of the file.”

EXAMPLE

2. The following example reads a file named MYFILE. TXT
twice, once to send the file to the screen and once to send the
file to the printer. Three file pointers are used, one for each
device (the file, the screen, and the printer).

// Filename: C31TWIC.CPP
// Writes a file to the printer, rereads it,
// and sends it to the screen.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

ifstream in_file; // Input file pointer.
ofstream scrn; // Screen pointer.
ofstream prnt; // Printer pointer.

void main()

{

char in_char;

in_file.open(“MYFILE.TXT”, i0s::in);
if (Yin_file)

{
cout << “\n*** Error opening MYFILE.TXT ***\n”;
exit(0);

}

scrn.open(“CON”, ios::out); // Open screen device.

while (in_file.get(in_char))
{ scrn << in_char; } // Output characters to the screen.
scrn.close(); // Close screen because it is no
// longer needed.

in_file._seekg(OL, SEEK_SET); // Reposition file pointer.
prnt.open(“LPT1”, ios::out); // Open printer device.
while (in_file.get(in_char))

{ prnt << in_char; } // Output characters to the

// printer.
prnt.close(); // Always close all open files.
in_file.close();
return;

Chapter 31 ¢ Random-Access Files

You also can close then reopen a file to position the file
pointer at the beginning, but using seekg() is a more efficient
method.

Of course, you could have used regular 1/0 functions to
write to the screen, rather than having to open the screen as
a separate device.

3. The following seekg() function positions the file pointer at
the 30th byte in the file. (The next byte read is the 31st byte.)

file_ptr.seekg(30L, SEEK_SET); // Position file pointer
// at the 30th byte.

This seekg() function literally reads “move the file pointer 30
bytes from the beginning of the file.”

If you write structures to a file, you can quickly seek any
structure in the file using the sizeof() function. Suppose you
want the 123rd occurrence of the structure tagged with
inventory. You would search using the following seekg()
function:

file_ptr.seekg((123L * sizeof(struct inventory)), SEEK SET);

4. The following program writes the letters of the alphabet to a
file called ALPH.TXT. The seekg() function is then used to
read and display the ninth and 17th letters (I and Q).

// Filename: C31ALPH.CPP
// Stores the alphabet in a file, then reads
// two letters from it.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

fstream fp;
void main()

{
char ch; // Holds A through Z.

EXAMPLE

// Open in update mode so you can read file after writing to it.
fp.open(“alph.txt”, ios::in | ios::out);
if (1fp)
{

cout << “\n*** Error opening file ***\n”;

exit(0);
T
for (ch = “A”; ch <= “Z”; ch++)
{ fp << ch; } // Write letters.
fp.seekg(8L, io0s::beg); // SKip eight letters, point to I.
fp >> ch;
cout << “The first character is “ << ch << *“\n”’;
fp.seekg(16L, ios::beg); // Skip 16 letters, point to Q.
fp >> ch;
cout << “The second character is “ << ch << “\n”’;
fp.close();
return;

}

5. To point to the end of a data file, you can use the seekg()
function to position the file pointer at the last byte. Subse-
quent seekg()s should then use a negative 1ong_num value to
skip backwards in the file. The following seekg() function
makes the file pointer point to the end of the file:

file_ptr._seekg(OL, SEEK_END); // Position file
// pointer at the end.

This seekg() function literally reads “move the file pointer 0
bytes from the end of the file.” The file pointer now points to
the end-of-file marker, but you can seekg() backwards to find
other data in the file.

6. The following program reads the ALPH.TXT file (created in
Exercise 4) backwards, printing each character as it skips
back in the file.

// Filename: C31BACK.CPP
// Reads and prints a file backwards.

Chapter 31 ¢ Random-Access Files

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

ifstream fp;
void mainQ)
{
int ctr; // Steps through the 26 letters in the file.

char in_char;

fp.open(“ALPH.TXT”, i0s::in);

if (1fp)

{
cout << “\n*** Error opening file ***\n”;
exit(0);

3

fp.seekg(-1L, SEEK_END); // Point to last byte in

// the file.
for (ctr = 0; ctr < 26; ctr++)
{

fp >> in_char;
fp.seekg(-2L, SEEK_CUR);
cout << in_char;

3

fp.close();

return;

}

This program also uses the seek_cur origin value. The last
seekg() in the program seeks two bytes backwards from the
current position, not the beginning or end as the previous
examples have. The for loop towards the end of the program
performs a “skip-two-bytes-back, read-one-byte-forward”
method to skip through the file backwards.

7. The following program performs the same actions as Ex-
ample 4 (C31ALPH.CPP), with one addition. When the
letters | and Q are found, the letter x is written over the | and
Q. The seekg() must be used to back up one byte in the file to
overwrite the letter just read.

EXAMPLE

// Filename: C31CHANG.CPP
// Stores the alphabet in a file, reads two letters from it,
// and changes those letters to xs.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

fstream fp;

void main()

{
char ch; // Holds A through Z.

// Open in update mode so you can read file after writing to it.
fp.open(“alph.txt”, ios::in | ios::out);
if (1fp)
{
cout << “\n*** Error opening file ***\n”;
exit(0);
}
for (ch = “A”; ch <= “Z7; ch++)
{ fp << ch; } // Write letters
fp.seekg(8L, SEEK_SET); // Skip eight letters, point to I.
fp >> ch;
// Change the Q to an x.
fp.seekg(-1L, SEEK_CUR);
fp << *x7;
cout << “The First character is *“ << ch << “\n”’;
fp.seekg(16L, SEEK_SET); // SKkip 16 letters, point to Q.
fp >> ch;
cout << “The second character is *“ << ch << “\n”’;
// Change the Q to an x.
fp.seekg(-1L, SEEK_CUR);
fp << “x7;
fp.close();
return;

Chapter 31 ¢ Random-Access Files

The file named ALPH.TXT now looks like this:
ABCDEFGHXJKLMNOPXRSTUVWXYZ

This program forms the basis of a more complete data file
management program. After you master the seekg() func-
tions and become more familiar with disk data files, you will
begin to write programs that store more advanced data
structures and access them.

The mailing list application in Appendix F is a good example
of what you can do with random file access. The user is
given a chance to change names and addresses already in
the file. The program, using random access, seeks for and
changes selected data without rewriting the entire disk file.

Other Helpful I/O Functions

There are several more disk 1/0 functions available that you
might find useful. They are mentioned here for completeness. As
you perform more powerful disk 1/0, you might find a use for many
of these functions. Each of these functions is prototyped in the
fstream.h header file.

¢ read(array, count): Reads the data specified by count into the
array or pointer specified by array. read() is called a buffered
I/0 function. read() enables you to read much data with a
single function call.

¢ write(array, count): Writes count array bytes to the specified
file. writeQ) is a buffered 1/0 function. write() enables you to
write much data in a single function call.

¢ remove(filename): Erases the file named by filename. remove()
returns a o if the file was erased successfully and -1 if an
error occurred.

Many of these (and other built-in 1/0 functions that you learn
in your C++ programming career) are helpful functions that you
could duplicate using what you already know.

EXAMPLE

The buffered 170 file functions enable you to read and write
entire arrays (including arrays of structures) to the disk in a single
function call.

Examples

1. The following program requests a filename from the user
and erases the file from the disk using the remove () function.

// Filename: C31ERAS.CPP
// Erases the file specified by the user.

#include <stdio.h>
#include <iostream.h>

void mainQ)

{
char filename[12];
cout << “What is the filename you want me to erase? “;
cin >> filename;
if (remove(filename) == -1)
{ cout << “\n*** | could not remove the file ***\n”; }
else
{ cout << “\nThe file “ << filename << *“ is now removed\n”;}
return;
¥

2. The following function is part of a larger program that
receives inventory data, in an array of structures, from the
user. This function is passed the array name and the number
of elements (structure variables) in the array. The write()
function then writes the complete array of structures to the
disk file pointed to by fp.

void write_str(inventory items[], int inv_cnt)
{
fp.write(items, inv_cnt * sizeof(inventory);
return;

Chapter 31 ¢ Random-Access Files

If the inventory array had 1,000 elements, this one-line
function would still write the entire array to the disk file.
You could use the read() function to read the entire array of
structures from the disk in a single function call.

Review Questions

The answers to the review questions are in Appendix B.
1. What is the difference between records and structures?

2. True or false: You have to create a random-access file before
reading from it randomly.

3. What happens to the file pointer as you read from a file?
4. What are the two buffered file 1/0 functions?
5. What is wrong with this program?

#include <fstream.h>
ifstream Tp;
void mainQ)
{
char in_char;
fp.open(ios::in | 1os::binary);
if (fp.get(in_char))
{ cout << in_char; 3} // Write to the screen
fp.close();
return;

Review Exercises

1. Write a program that asks the user for a list of five names,
then writes the names to a file. Rewind the file and display
] its contents on-screen using the seekg() and get() functions.

EXAMPLE

2. Rewrite the program in Exercise 1 so it displays every other
character in the file of names.

3. Write a program that reads characters from a file. If the input
character is a lowercase letter, change it to uppercase. If the
input character is an uppercase letter, change it to lowercase.
Do not change other characters in the file.

4. Write a program that displays the number of nonalphabetic
characters in afile.

5. Write a grade-keeping program for a teacher. Allow the
teacher to enter up to 10 students’ grades. Each student has
three grades for the semester. Store the students’ names and
their three grades in an array of structures and store the data
on the disk. Make the program menu-driven. Include op-
tions of adding more students, viewing the file’s data, or
printing the grades to the printer with a calculated class
average.

Summary

C++ supports random-access files with several functions. These
functions include error checking, file pointer positioning, and the
opening and closing of files. You now have the tools you need to save
your C++ program data to disk for storage and retrieval.

The mailing-list application in Appendix F offers a complete
example of random-access file manipulation. The program enables
the user to enter names and addresses, store them to disk, edit them,
change them, and print them from the disk file. The mailing-list
program combines almost every topic from this book into a com-
plete application that “puts it all together.”

Introduction to
Object-Oriented
Programming

The most widely used object-oriented programming language to-
day is C++. C++ provides classes—which are its objects. Classes
really distinguish C++ from C. In fact, before the name C++ was
coined, the C++ language was called “C with classes.”

This chapter attempts to expose you to the world of object-
oriented programming, often called OOP. You will probably not
become a master of OOP in these few short pages, however, you are
ready to begin expanding your C++ knowledge.

This chapter introduces the following concepts:

C++ classes
Member functions

Constructors

* & o o

Destructors

This chapter concludes your introduction to the C++ language.
After mastering the techniques taught in this book, you will be ready
to modify the mailing list program in Appendix F to suit your own
needs.

661

Chapter 32 & Introduction to Object-Oriented Programming

What Is a Class”?

Aclass is a user-defined data type that resembles a structure. A
class can have data members, but unlike the structures you have
seen thus far, classes can also have member functions. The data
members can be of any type, whether defined by the language or by
you. The member functions can manipulate the data, create and
destroy class variables, and even redefine C++’s operators to act on
the class objects.

Classes have several types of members, but they all fall into two
categories: data members and member functions.

Data Members

Data members can be of any type. Here is a simple class:

// A sphere class.
class Sphere

{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
};

Notice how this class resembles structures you have already
seen, with the exception of the public keyword. The sphere class has
four data members: r, x, y, and z. In this case, the public keyword
plays an important role; it identifies the class sphere as a structure.
As a matter of fact, in C++, a public class is physically identical to a
structure. For now, ignore the pubtic keyword; it is explained later
in this chapter.

Member Functions

A class can also have member functions (members of a class that
manipulate data members). This is one of the primary features that
distinguishes a class from a structure. Here is the sphere class again,
with member functions added:

EXAMPLE

#include <math.h>

const float Pl = 3.14159;
// A sphere class.
class Sphere

{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord, float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere() { }
float volume()
{
return (r *r *r * 4 * Pl / 3);
}
float surface_area()
{
return (r * r * 4 * Pl1);
}
}:

This sphere class has four member functions: sphere(), ~Sphere(),
volume(), and surface_area(). The class is losing its similarity to a
structure. These member functions are very short. (The one with the
strange name of ~sphere() has no code in it.) If the codes of the
member functions were much longer, only the prototypes would
appear in the class, and the code for the member functions would
follow later in the program.

C++ programmers call class data objects because classes do
more than simply hold data. Classes act on data; in effect, a class is
an object that manipulates itself. All the data you have seen so far in
this book is passive data (data that has been manipulated by code in
the program). Classes’ member functions actually manipulate class
data.

Constructors create In this example, the class member sphere() is a special function.
and initialize class It is a constructor function, and its name must always be the same as
data its class. Its primary use is declaring a new instance of the class.

Chapter 32 & Introduction to Object-Oriented Programming

Examples

1. The following program uses the sphere() class to initialize a
class variable (called a class instance) and print it.

// Filename: C32CON.CPP
// Demonstrates use of a class constructor function.

#include <iostream.h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.
class Sphere
{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord,
float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere(Q { }
float volume()
{
return (r *r *r * 4 * Pl / 3);
}
float surface_area()
{
return (r * r * 4 * Pl);
}
}:

void main()

{
Sphere s(1.0, 2.0, 3.0, 4.0);

cout << “X = “ << s x << *, Y =" <<sy
<< %, Z =" << s.z<< ™, R="<<s.r << \n";
return;

EXAMPLE

Note: In OOP, the main() function (and all it calls) becomes
smaller because member functions contain the code that ma-
nipulates all class data.

Indeed, this program looks different from those you have
seen so far. This example is your first true exposure to OOP
programming. Here is the output of this program:

X=1,Y=2,2Z2=3,R=4

This program illustrates the sphere() constructor function.
The constructor function is the only member function called
by the program. Notice the ~sphere() member function
constructed s, and initialized its data members as well.

Destructors erase The other special function is the destructor function,

class data. ~sphere(). Notice that it also has the same name as the class,
but with a tilde (~) as a prefix. The destructor function never
takes arguments, and never returns values. Also notice that
this destructor doesn’t do anything. Most destructors do
very little. If a destructor has no real purpose, you do not
have to specify it. When the class variable goes out of scope,
the memory allocated for that class variable is returned to
the system (in other words, an automatic destruction oc-
curs). Programmers use destructor functions to free memory
occupied by class data in advanced C++ applications.

Similarly, if a constructor doesn’t serve any specific function,
you aren’t required to declare one. C++ allocates memory for
a class variable when you define the class variable, just as it
does for all other variables. As you learn more about C++
programming, especially when you begin using the ad-
vanced concept of dynamic memory allocation, constructors
and destructors become more useful.

2. Toillustrate that the ~sphere() destructor does get called (it
just doesn’t do anything), you can put a cout Statement in the
constructor as seen in the next program:

// Filename: C32DES.CPP
// Demonstrates use of a class destructor function.

Chapter 32 & Introduction to Object-Oriented Programming

#include <iostream.h>
#include <math.h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class
class Sphere

{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord,
float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (“ << X << “, “ <<y
<< %, Mk oz <<, M << r <<) destroyed\n”';
T
float volume()
{
return (r *r *r * 4 * Pl / 3);
T
float surface_area()
{
return (r * r * 4 * Pl);
T
};
void main(void)
{
Sphere s(1.0, 2.0, 3.0, 4.0);
// Construct a class instance.
cout << “X = “ << s.Xx << “, Y = ¢
<< s,y << “, Z=%“<<s.Z<<“ R=“<<s.r << ‘“\n”’;
return;
h

Here is the output of this program:

X=1,Y=2,2Z=3,R=4
Sphere (1, 2, 3, 4) destroyed

EXAMPLE

Notice that main(Q) did not explicitly call the destructor
function, but ~sphere() was called automatically when the
class instance went out of scope.

3. The other member functions have been waiting to be used.
The following program uses the volume() and surface_area()
functions:

// Filename: C32MEM.CPP
// Demonstrates use of class member functions.

#include <iostream.h>
#include <math._h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.
class Sphere
{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord,
float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (*“ << x << “, “ <<y
<< M, Yk oz <<, M << r <<) destroyed\n”';

3

float volume()

{

return (r *r *r * 4 * Pl / 3);

3

float surface_area()

{

return (r * r * 4 * Pl);
}

}; // End of class.

void main()

{
Sphere s(1.0, 2.0, 3.0, 4.0);
cout << “X = * << s, X << *, ¥ = “ << sy
<< “, Z=“<<8s.Zz<<“ R=*“<<s.r << ‘“\n”’;

667

Chapter 32 & Introduction to Object-Oriented Programming

cout << “The volume is “ << s.volume() << “\n”’;
cout << “The surface area is “
<< s.surface_area() << “\n”;

}

The volume Q) and surface_area() functions could have been
made in-line. This means that the compiler embeds the
functions in the code, rather than calling them as functions.
In C32MEM.CPP, there is essentially a separate function that
is called using the data in sphere(). By making it in-line,
sphere() essentially becomes a macro and is expanded in the
code.

4. In the following program, volume() has been changed to an
in-line function, creating a more efficient program:

// Filename: C32MEM1.CPP
// Demonstrates use of in-line class member functions.

#include <iostream.h>
#include <math._h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.
class Sphere
{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord, float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (*“ << x << “, “ <<y
<< %, Mk z <<, " << r <<) destroyed\n”’;

nline float volume()

e

return (r *r *r * 4 * Pl / 3);
3

float surface_area()

{

return (r * r * 4 * P1);

EXAMPLE

3
};
void mainQ)
{

Sphere s(1.0, 2.0, 3.0, 4.0);

cout << “X = * << s.Xx << “, ¥ = “ << sy

<<, Z="<<s.z<<“, R=*"<<s.r << "\n”’;

cout << “The volume is “ << s.volume() << “\n”’;

cout << “The surface area is “ << s.surface_area() << “\n”’;
3

The inline functions expand to look like this to the compiler:

// C32MEM1A.CPP
// Demonstrates use of in-line class member functions.

#include <iostream.h>
#include <math.h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class
class Sphere
{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord, float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (* << x << “, “ <<y
<< L, <z << M, M << r <<) destroyed\n”’;

}
inline float volume()
{
return (r * r *r * 4 * Pl / 3);
}
float surface_area()
{
return (r * r * 4 * Pl1);
}

Chapter 32 & Introduction to Object-Oriented Programming

void main()

{
Sphere s(1.0, 2.0, 3.0, 4.0);
cout << “X = “ << s.X << “, ¥ = ¥ << sy
<<, Z="<<s.2z<< ", R="<<s.r << "\n”;
cout << “The volume is “ << (s.r * s.r * s.r * 4 * Pl / 3)
<< *“\n”’;
cout << “The surface area is “ << s.surface_area() << “\n”’;
}

The advantage of using in-line functions is that they execute
faster—there’s no function-call overhead involved because
no function is actually called. The disadvantage is that if
your functions are used frequently, your programs become
larger and larger as functions are expanded.

Default Member Arguments

You can also give member functions arguments by default.
Assume by default that the y coordinate of a sphere will be 2.0, the
z coordinate will be 2.5, and the radius will be 1.0. Rewriting the
previous example’s constructor function to do this results in this
code:

Sphere(float xcoord, float ycoord = 2.0, float zcoord = 2.5,
float radius = 1.0)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }

You can create a sphere with the following instructions:

Sphere s(1.0); // Use all default
Sphere t(1.0, 1.1); // Override y coord
Sphere u(1.0, 1.1, 1.2); // Override y and z

Sphere v(1.0, 1.1, 1.2, 1.3); // Override all defaults

EXAMPLE

Examples

1. Default arguments are used in the following code.

// Filename: C32DEF.CPP
// Demonstrates use of default arguments in
// class member functions.

#include <iostream.h>
#include <math.h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.
class Sphere

{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere(float xcoord, float ycoord = 2.0,
float zcoord = 2.5, float radius = 1.0)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (* << x << *, “ <<y
<< M, <z < M, M << r <<) destroyed\n”;
3
inline float volume()
{
return (r *r *r * 4 * Pl / 3);
}
float surface_area()
{
return (r * r * 4 * Pl);
b
};
void main(Q)
{
Sphere s(1.0); // use all default
Sphere t(1.0, 1.1); // override y coord
Sphere u(1.0, 1.1, 1.2); // override y and z
Sphere v(1.0, 1.1, 1.2, 1.3); // override all defaults
cout << “s: X = * << s.Xx <<, Y = “ << sy
<<, Z="<<s.z<< ", R=""<<s.r << "\n”;

671

Chapter 32 & Introduction to Object-Oriented Programming

cout << “The volume of s is “ << s.volume() << “\n”;
cout << “The surface area of s is “ << s.surface_area() << “\n”;
cout << “tr X = “ << t.x << ¥, Y = ¥ << tuy

<<, Z =" <<tz <<, R="<<tr << \n”’;
cout << “The volume of t is “ << t.volume() << “\n”;
cout << “The surface area of t is “ << t.surface_area() << *“\n”;
cout << “ur X = " << u.x << ¥, Y = ¥ << u.y

<<, Z =" << Uu.z <<, R=*"<<u.r << “\n”’;
cout << “The volume of u is “ << u.volume() << “\n”’;
cout << “The surface area of u is “ << u.surface_area() << “\n”’;
cout << “v:I X = “ << v.X << “, ¥ = ¥ << Vv.y

<<, Z =" << vVv.z <<, R=*"<<v.r << “\n”’;
cout << “The volume of v is “ << v.volume() << “\n”;
cout << “The surface area of v is *“ << v.surface_area() << “\n”’;
return;

}

Here is the output from this program:

s: X=1,Y=2,2Z2=25,R=1

The volume of s is 4.188787

The surface area of s is 12.56636
t: X =1, Y=1.1, Z=25,R=1
The volume of t is 4.188787

The surface area of t is 12.56636
u: XxX=1,vy=1.1,272=1.2, R=1
The volume of u is 4.188787

The surface area of u is 12.56636
viX=1,Y=11,2=1.2, R=1.3
The volume of v is 9.202764

The surface area of v iIs 21.237148
Sphere (1, 1.1, 1.2, 1.3) destroyed
Sphere (1, 1.1, 1.2, 1) destroyed
Sphere (1, 1.1, 2.5, 1) destroyed
Sphere (1, 2, 2.5, 1) destroyed

Notice that when you use a default value, you must also use
the other default values to its right. Similarly, once you
define a function’s parameter as having a default value,
every parameter to its right must have a default value as well.

EXAMPLE

2. You also can call more than one constructor; this is called
overloading the constructor. When having more than one
constructor, all with the same name of the class, you must
give them each a different parameter list so the compiler can
determine which one you intend to use. A common use of
overloaded constructors is to create an uninitialized object
on the receiving end of an assignment, as you see done here:

// C320VCON.CPP
// Demonstrates use of overloaded constructors.

#include <iostream.h>
#include <math.h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.
class Sphere
{
public:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
Sphere() { /* doesn’t do anything... */ }
Sphere(float xcoord, float ycoord,
float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }
~Sphere()
{
cout << “Sphere (* << x << “, “ <<y
<< ¥, Yk z << M, " << r <<) destroyed\n”';

nline float volume()

-

return (r *r *r * 4 * Pl / 3);
3
float surface_area()
{
return (r * r * 4 * P1);
¥
};

void main()

{
Sphere s(1.0, 2.0, 3.0, 4.0);

Chapter 32 & Introduction to Object-Oriented Programming

Sphere t; // No parameters (an uninitialized sphere).
cout << “X = * << s.Xx << *, ¥ = “ << sy

<< “, Z="“<<8s.Zz<<“ R=*“<<s.r << “\n”;
t =s;

cout << “The volume of t is “ << t.volume() << “\n”’;

cout << “The surface area of t is “ << t.surface_area()
<< “\n”:

return;

Class Member Visibility

Recall that the sphere() class had the label pubtic. Declaring the
public label is necessary because, by default, all members of a class
are private. Private members cannot be accessed by anything but a
member function. In order for data or member functions to be used
by other programs, they must be explicitly declared publtic. In the
case of the sphere() class, you probably want to hide the actual data
from other classes. This protects the data’s integrity. The next
program adds a cube() and square() function to do some of the work
of the volume() and surface_area() functions. There is no need for
other functions to use those member functions.

// Filename: C32VISIB.CPP
// Demonstrates use of class visibility labels.

#include <iostream.h>
#include <math._h>
const float Pl = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

private:
float r; // Radius of sphere
float x, y, z; // Coordinates of sphere
float cube() { return (r *r * r); }
float square() { return (r * r); }

EXAMPLE

public:
Sphere(float xcoord, float ycoord, float zcoord, float radius)
{ x = xcoord; y = ycoord; z = zcoord; r = radius; }

~Sphere()
{
cout << “Sphere (* << X << “, “ <<y
<<, % <<z <<, % << r << “) destroyed\n”;
}
float volume()
{
return (cube() * 4 * Pl / 3);
}
float surface_area()
{
return (square() * 4 * Pl);
}
}:
void mainQ)
{
Sphere s(1.0, 2.0, 3.0, 4.0);
cout << “The volume is “ << s.volume() << “\n”’;
cout << “The surface area is “ << s.surface_area() << “\n”’;
return;
¥

Notice that the line showing the data members had to be
removed from main(). The data members are no longer directly
accessible except by a member function of class sphere. In other
words, main() can never directly manipulate data members such as
r and z, even though it calls the constructor function that created
them. The private member data is only visible in the member
functions. This is the true power of data hiding; even your own code
cannot get to the data! The advantage is that you define specific data-
retrieval, data-display, and data-changing member functions that
main() must call to manipulate member data. Through these member
functions, you set up a buffer between your program and the
program’s data structures. If you change the way the data is stored,
you do not have to changemain() or any functions thatmain() calls.
You only have to change the member functions of that class.

Chapter 32 & Introduction to Object-Oriented Programming

Review Questions

The answers to the review questions are in Appendix B.
What are the two types of class members called?

Is a constructor always necessary?

Is a destructor always necessary?

What is the default visibility of a class data member?

o > D e

How do you make a class member visible outside its class?

Review Exercise

Construct a class to hold personnel records. Use the following
data members, and keep them private:

char name[25];
float salary;
char date_of _birth[9];

Create two constructors, one to initialize the record with its
necessary values and another to create an uninitialized record.
Create member functions to alter the individual’s name, salary, and
date of birth.

Summary

You have now been introduced to classes, the data type that
distinguishes C++ from its predecessor, C. This was only a cursory
glimpse of object-oriented programming. However, you saw that
OOP offers an advanced view of your data, combining the data with
the member functions that manipulate that data. If you desire to
learn more about C++ and become a “guru” of sorts, try Using
Microsoft C/C++ 7 (Que, 0-88022-809-1).

Part VVIII

References

Memory
Addressing,
Binary, and
Hexadecimal
Review

You do not have to understand the concepts in this appendix to
become well-versed in C++. You can master C++, however, only if
you spend some time learning about the behind-the-scenes roles
played by binary numbers. The material presented here is not
difficult, but many programmers do not take the time to study it;
hence, there are a handful of C++ masters who learn this material
and understand how C++ works “under the hood,” and there are
those who will never master the language as they could.

You should take the time to learn about addressing, binary
numbers, and hexadecimal numbers. These fundamental principles
are presented here for you to learn, and although a working knowl-
edge of C++ is possible without knowing them, they greatly enhance
your C++ skills (and your skills in every other programming lan-

guage).

679

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

After reading this appendix, you will better understand why
different C++ data types hold different ranges of numbers. You also
will see the importance of being able to represent hexadecimal
numbers in C++, and you will better understand C++ array and
pointer addressing.

Computer Memory

Each memory location inside your computer holds a single
character called abyte. A byte is any character, whether it is a letter
of the alphabet, a numeric digit, or a special character such as a
period, question mark, or even a space (a blank character). If your
computer contains 640K of memory, it can hold a total of approxi-
mately 640,000 bytes of memory. This means that as soon as you fill
your computer’s memory with 640K, there is no room for an addi-
tional character unless you overwrite something.

Before describing the physical layout of your computer’s
memory, it is best to take a detour and explain exactly what 640K
means.

Memory and Disk Measurements

K means approxi- By appending the K (from the metric word kilo) to memory

mately 1000 bytes measurements, the manufacturers of computers do not have to
and exactly 1024

bytes.

attach as many zeros to the end of numbers for disk and memory
storage. The K stands for approximately 1000 bytes. As you will see,
almost everything inside your computer is based on a power of 2.
Therefore, the K of computer memory measurements actually equals
the power of 2 closest to 1000, which is 2 to the 10th power, or 1024.
Because 1024 is very close to 1000, computer-users often think of K
as meaning 1000, even though they know it only approximately
equals 1000.

Think for a moment about what 640K exactly equals. Practi-
cally speaking, 640K is about 640,000 bytes. To be exact, however,
640K equals 640 times 1024, or 655,360. This explains why the PC
DOS command CHKDSK returns 655,360 as your total memory
(assuming that you have 640K of RAM) rather than 640,000.

EXAMPLE

M means Because extended memory and many disk drives can hold such
approximately a large amount of data, typically several million characters, there is
;r,%og),(ggtcl)ybytes an additional memory measurement shortcut called M, which stands
1,048,576 bytes. for meg, or megabytes. The M is a shortcut for approximately one

million bytes. Therefore, 20M is approximately 20,000,000 charac-
ters, or bytes, of storage. As with K, the M literally stands for
1,048,576 because that is the closest power of 2 (2 to the 20th power)
to one million.

How many bytes of storage is 60 megabytes? It is approxi-
mately 60 million characters, or 62,914,560 characters to be exact.

Memory Addresses

Each memory location in your computer, just as with each
house in your town, has a unique address. A memory address is
simply a sequential number, starting at 0, that labels each memory
location. Figure A.1 shows how your computer memory addresses
are numbered if you have 640K of RAM.

Figure A.1. Memory addresses for a 640K computer.

By using unique addresses, your computer can track memory.
When the computer stores a result of a calculation in memory, it
finds an empty address, or one matching the data area where the
result is to go, and stores the result at that address.

681

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

Your C++ programs and data share computer memory with
DOS. DOS must always reside in memory while you operate your
computer. Otherwise, your programs would have no way to access
disks, printers, the screen, or the keyboard. Figure A.2 shows
computer memory being shared by DOS and a C++ program. The
exact amount of memory taken by DOS and a C++ program is
determined by the version of DOS you use, how many DOS extras
(such as device drivers and buffers) your computer uses, and the
size and needs of your C++ programs and data.

Ca s Frosgrm

Ok s

Figure A.2. DOS, your C++ program, and your program’s data share the
same memory.

Bits and Bytes

You now know that a single address of memory might contain
any character, called a byte. You know that your computer holds
many bytes of information, but it does not store those characters in
the same way that humans think of characters. For example, if you
type a letter W on your keyboard while working in your C++ editor,
you see the W on-screen, and you also know that the W is stored in
a memory location at some unique address. Actually, your com-
puter does not store the letter W; it stores electrical impulses that
stand for the letter W.

EXAMPLE

Electricity, which runs through the components of your com-
puter and makes it understand and execute your programs, can exist
in only two states—on or off. As with a light bulb, electricity is either
flowing (it is on) or it is not flowing (it is off). Even though you can
dim some lights, the electricity is still either on or off.

The binary digits 1 Today’s modern digital computers employ this on-or-off con-

and 0 (called bits) cept. Your computer is nothing more than millions of on and off

represent on and off

states of electricity. switches. You might have heard about integrated circuits, transis-
tors, and even vacuum tubes that computers have contained over
the years. These electrical components are nothing more than switches
that rapidly turn electrical impulses on and off.

This two-state on and off mode of electricity is called a binary
state of electricity. Computer people use a 1 to represent an on state
(a switch in the computer that is on) and a 0 to represent an off state
(a switch that is off). These numbers, 1 and 0, are called binary digits.
The term binary digits is usually shortened to bits. A bit is either a 1
or a 0 representing an on or an off state of electricity. Different
combinations of bits represent different characters.

Several years ago, someone listed every single character that
might be represented on a computer, including all uppercase letters,
all lowercase letters, the digits 0 through 9, the many other charac-
ters (such as %, *, {, and +), and some special control characters.
When you add the total number of characters that a PC can repre-
sent, you get 256 of them. The 256 ASCII characters are listed in
Appendix C’s ASCII (pronounced ask-ee) table.

The order of the ASCII table’s 256 characters is basically arbi-
trary, just as the telegraph’s Morse code table is arbitrary. With
Morse code, a different set of long and short beeps represent
different letters of the alphabet. In the ASCII table, a different
combination of bits (1s and 0s strung together) represent each of the
256 ASCII characters. The ASCII table is a standard table used by
almost every PC in the world. ASCII stands for American Standard
Code for Information Interchange. (Some minicomputers and main-
frames use a similar table called the EBCDIC table.)

It turns out that if you take every different combination of eight
0s strung together, to eight 1s strung together (that is, from 00000000,
00000001, 00000010, and so on until you get to 11111110, and finally,
11111111), you have a total of 256 of them. (256 is 2 to the 8th power.)

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

Each memory location in your computer holds eight bits each. These
bits can be any combination of eight 1s and 0s. This brings us to the
following fundamental rule of computers.

NOTE: Because it takes a combination of eight 1s and 0Os to
represent a character, and because each byte of computer
memory can hold exactly one character, eight bits equals one
byte.

To bring this into better perspective, consider that the bit
pattern needed for the uppercase letter A is 01000001. No other
character in the ASCII table “looks” like this to the computer because
each of the 256 characters is assigned a unique bit pattern.

Suppose that you press the A key on your keyboard. Your
keyboard does not send a letter A to the computer; rather, it looks in
its ASCII table for the on and off states of electricity that represent
the letter A. As Figure A.3 shows, when you press the A key, the
keyboard actually sends 01000001 (as on and off impulses) to the
computer. Your computer simply stores this bit pattern for Ain a
memory location. Even though you can think of the memory loca-
tion as holding an A, it really holds the byte 01000001.

Computer
= DI TITTT
Ford L g
.ﬁ-
Your Keyboard 1 L]
1
. Printer

OO0 H_‘,.--"

Figure A.3. Your computer keeps track of characters by their bit
patterns.

EXAMPLE

If you were to print that A, your computer would not send an
A to the printer; it would send the 01000001 bit pattern for an A to the
printer. The printer receives that bit pattern, looks up the correct
letter in the ASCII table, and prints an A.

From the time you press the A until the time you see it on the
printer, it is not a letter Al It is the ASCII pattern of bits that the
computer uses to represent an A. Because a computer is electrical,
and because electricity is easily turned on and off, this is a nice way
for the computer to manipulate and move characters, and it can do
so very quickly. Actually, if it were up to the computer, you would
enter everything by its bit pattern, and look at all results in their bit
patterns. Of course, it would be much more difficult for us to learn
to program and use a computer, so devices such as the keyboard,
screen, and printer are created to work part of the time with letters
as we know them. That is why the ASCII table is such an integral
part of a computer.

There are times when your computer treats two bytes as a
single value. Even though memory locations are typically eight bits
wide, many CPUs access memory two bytes at a time. If this is the
case, the two bytes are called a word of memory. On other computers
(commonly mainframes), the word size might be four bytes (32 bits)
or even eight bytes (64 bits).

Summarizing Bits and Bytes

A bitis a1l or a0 representing an on or an off state of electricity.
Eight bits represents a byte.

A byte, or eight bits, represents one character.

Each memory location of your computer is eight bits (a single
byte) wide. Therefore, each memory location can hold one
character of data. Appendix C is an ASCII table listing all
possible characters.

If the CPU accesses memory two bytes at a time, those two bytes
are called a word of memory.

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

The Order of Bits

To further understand memory, you should understand how
programmers refer to individual bits. Figure A.4 shows a byte and
a two-byte word. Notice that the bit on the far right is called bit 0.
From bit 0, keep counting by ones as you move left. For a byte, the
bits are numbered 0 to 7, from right to left. For a double-byte (a 16-
bit word), the bits are numbered from 0 to 15, from right to left.

A b
Bt # 7 3 z + 3 z i 0

Bt # 45 44 43 42 44 2 @ & T & £ 4+ & X 1 0

Figure A.4. The order of bits in a byte and a two-byte word.

Bit 0 is called the least-significant bit, or sometimes the low-order
bit. Bit 7 (or bit 15 for a two-byte word) is called the most-significant
bit, or sometimes the high-order bit.

Binary Numbers

Because a computer works best with 1s and 0s, its internal
numbering method is limited to a base-2 (binary) numbering system.
People work in a base-10 numbering system in the “real”” world. The
base-10 numbering system is sometimes called the decimal number-
ing system. There are always as many different digits as the base in
a numbering system. For example, in the base-10 system, there are
ten digits, 0 through 9. As soon as you count to 9 and run out of digits,
you have to combine some that you already used. The number 10 is
a representation of ten values, but it combines the digits 1 and 0.

EXAMPLE

The same is true of base-2. There are only two digits, 0 and 1.
As soon as you run out of digits, after the second one, you have to
reuse digits. The first seven binary numbers are 0, 1, 10, 11, 100, 101,
and 110.

It is okay if you do not understand how these numbers were
derived; you will see how in a moment. For the time being, you
should realize that no more than two digits, 0 and 1, can be used to
represent any base-2 number, just as no more than ten digits, 0
through 9, can be used to represent any base-10 number in the
regular numbering system.

You should know that a base-10 number, such as 2981, does not
really mean anything by itself. You must assume what base it is. You
get very used to working with base-10 numbers because you use
them every day. However, the number 2981 actually represents a
quantity based on powers of 10. For example, Figure A.5 shows what
the number 2981 actually represents. Notice that each digit in the
number represents a certain number of a power of 10.

Bazp—dx 2 o & |

e J: J:
- o
iwoon

[SO = R)
2
|E§3*

23] Baae - 10
o 921

Figure A.5. The base-10 breakdown of the number 2981.

A binary number This same concept applies when you work in a base-2 number-
g?gn‘;"ft;g%”'y e ing system. Your computer does this because the power of 2 is just
' as common to your computer as the power of 10 is to you. The only
difference is that the digits in a base-2 number represent powers of
2 and not powers of 10. Figure A.6 shows you what the binary
numbers 10101 and 10011110 are in base-10. This is how you convert

any binary number to its base-10 equivalent.

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

Basp—-E 4 0O 4 0O A

L
- o
)
i

= Basg - 40

10404
Basa—= {4 0O 0 4 4 {4 4 0

| |—)-:--2'= o

{.2'= z

1. 2'= +

> 4. 2= =

3 1. 2'= 1

3 0. 2= o

= 0

¥ 4. 2= 4ER

1004 4 4 4 0

Figure A.6. The base-2 breakdown of the numbers 10101 and
10011110.

A base-2 number contains only 1s and 0s. To convert any base-
2 number to base-10, add each power of 2 everywhere a 1 appears in
the number. The base-2 number 101 represents the base-10 number
5. (There are two 1s in the number, one in the 2 to the 0 power, which
equals 1, and one in the 2 to the second power, which equals 4.) Table
A.1 shows the first 18 base-10 numbers and their matching base-2
numbers.

EXAMPLE
Table A.1. The first 17 base-10 and base-2 (binary)
numbers.
Base-10 Base-2
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000
17 10001

You do not have to memorize this table; you should be able to
figure the base-10 numbers from their matching binary numbers by
adding the powers of two for each 1 (on) bit. Many programmers do
memorize the first several binary numbers because it comes in
handy in advanced programming techniques.

What is the largest binary number a byte can hold? The answer
isall 1s, or 11111111. If you add the first eight powers of 2, you
get 255.

Appendix A ¢ Memory Addressing, Binary, and Hexadecimal Review

A byte holds either a number or an ASCII character, depending
on how it is accessed. For example, if you were to convert the base-
2 number 01000001 to a base-10 number, you would get 65. How-
ever, this also happens to be the ASCI|I bit pattern for the uppercase
letter A. If you check the ASCII table, you see that the A is ASCII code
65. Because the ASCII table is so closely linked with the bit patterns,
the computer knows whether to work with a number 65 or a letter
A—Dby the context of how the patterns are used.

A binary number is not limited to a byte, as an ASCII character
is. Sixteen or 32 bits at a time can represent a binary number (and
usually do). There are more powers of 2 to add when converting that
number to a base-10 number, but the process is the same. By now you
should be able to figure out that 1010101010101010 is 43,690 in base-
10 decimal numbering system (although it might take a little time to
calculate).

To convert from decimal to binary takes a little more effort.
Luckily, you rarely need to convert in that direction. Converting
from base-10 to base-2 is not covered in this appendix.

Binary Arithmetic

At their lowest level, computers can only add and convert
binary numbers to their negative equivalents. Computers cannot
truly subtract, multiply, or divide, although they simulate these
operations through