
i

EXAMPLE
C++ By

Greg Perry

By

C++

Contents ♦

ii

C++ By Example

© 1992 by Que

All rights reserved. Printed in the United States of America. No part of this

book may be used or reproduced, in any form or by any means, or stored

in a database or retrieval system, without prior written permission of the

publisher except in the case of brief quotations embodied in critical articles

and reviews. Making copies of any part of this book for any purpose other

than your own personal use is a violation of United States copyright laws.

For information, address Que, 11711 N. College Ave., Carmel, IN 46032.

Library of Congress Catalog Card Number: 92-64353

ISBN: 1-56529-038-0

This book is sold as is, without warranty of any kind, either express or

implied, respecting the contents of this book, including but not limited to

implied warranties for the book’s quality, performance, merchantability,

or fitness for any particular purpose. Neither Que Corporation nor its

dealers or distributors shall be liable to the purchaser or any other person

or entity with respect to any liability, loss, or damage caused or alleged to

be caused directly or indirectly by this book.

96 95 94 93 92 8 7 6 5 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is

the year of the book’s printing; the rightmost single-digit number, the

number of the book’s printing. For example, a printing code of 92-1 shows

that the first printing of the book occurred in 1992.

iii

EXAMPLE
C++ By

Publisher
Lloyd Short

Publishing Manager
Joseph Wikert

Development Editor
Stacy Hiquet

Production Editor
Kezia Endsley

Copy Editor
Bryan Gambrel

Technical Editor
Tim Moore

Editorial Assistants
Rosemarie Graham
Melissa Keegan

Book Design
Scott Cook
Michele Laseau

Production Analyst
Mary Beth Wakefield

Cover Design
Jean Bisesi

Indexer
Johnna VanHoose

Production
Caroline Roop (Book Shepherd)
Jeff Baker, Paula Carroll,
Michelle Cleary, Brook Farling,
Kate Godfrey, Bob LaRoche,
Laurie Lee, Jay Lesandrini,
Cindy L. Phipps, Linda Seifert,
Phil Worthington

Composed in Palatino and MCPdigital typefaces by Prentice Hall Computer Publishing.

Screen reproductions in this book were created by means of the program Collage Plus

from Inner Media, Inc., Hollis, NH.

Contents ♦

iv

Dedication

Dr. Rick Burgess, you shaped my life. Good or bad, I’m what I am
thanks to your help. I appreciate the many hours we’ve shared together.

 G.M.P.

v

EXAMPLE
C++ By

About the Author

Greg Perry has been a programmer and trainer for the past 14 years.

He received his first degree in computer science, then he received a

Masters degree in corporate finance. He currently is a professor of

computer science at Tulsa Junior College, as well as a computer

consultant and a lecturer. Greg Perry is the author of 11 other

computer books, including QBASIC By Example and C By Example. In
addition, he has published articles in several publications, including

PC World, Data Training, and Inside First Publisher. He has attended

computer conferences and trade shows in several countries, and is

fluent in nine computer languages.

Contents ♦

vi

vii

EXAMPLE
C++ By

Acknowledgments

Much thanks to Stacy Hiquet and Joseph Wikert at Prentice Hall

(Que) for trusting me completely with the direction and style of this

book. The rest of my editors: Kezia Endsley, Bryan Gambrel, and the

Technical Editor, Tim Moore, kept me on track so the readers can

have an accurate and readable text.

The Tulsa Junior College administration continues to be sup-

portive of my writing. More importantly, Diane Moore, head of our

Business Services Division, Tony Hirad, and Elaine Harris, are

friends who make teaching a joy and not a job.

As always, my beautiful bride Jayne, and my parents Glen and

Bettye Perry, are my closest daily companions. It is for them I work.

Trademark Acknowledgments

Que Corporation has made every attempt to supply trademark

information about company names, products, and services men-

tioned in this book. Trademarks indicated below were derived from

various sources. Que Corporation cannot attest to the accuracy of

this information.

AT&T is a registered trademark of American Telephone &

Telegraph Company.

FORTRAN and COBOL are trademarks of International

Business Machines Corporation (IBM).

Turbo BASIC is a registered trademark of Borland

International, Inc.

Turbo C is a registered trademark of Borland International, Inc.

Microsoft QuickC and MS-DOS are registered trademarks of

Microsoft Corporation.

ANSI is a registered trademark of American National Standards

Institute.

Contents ♦

viii

ix

EXAMPLE
C++ By

Overview

I Introduction to C++

1 Welcome to C++ ...11

2 What Is a Program? ..35

3 Your First C++ Program ..51

4 Variables and Literals ..69

5 Character Arrays and Strings ...99

6 Preprocessor Directives ...113

7 Simple Input/Output ...133

II Using C++ Operators

8 Using C++ Math Operators and Precedence163

9 Relational Operators ..185

10 Logical Operators ...207

11 Additional C++ Operators ..221

III C++ Constructs

12 The while Loop ...245

13 The for Loop ..273

14 Other Loop Options ...295

15 The switch and goto Statements ...311

16 Writing C++ Functions ..331

IV Variable Scope and Modular
Programming

17 Variable Scope ...353

18 Passing Values ..379

19 Function Return Values and Prototypes397

20 Default Arguments and Function Overloading415

V Character Input/Output and
String Functions

21 Device and Character Input/Output.......................................431

22 Character, String, and Numeric Functions449

Contents ♦

x

VI Arrays and Pointers

23 Introducing Arrays ...473

24 Array Processing...493

25 Multidimensional Arrays ..519

26 Pointers ..541

27 Pointers and Arrays ...557

VII Structures and File Input/Output

28 Structures ...583

29 Arrays of Structures ...605

30 Sequential Files ...625

31 Random-Access Files ...645

32 Introduction to Object-Oriented Programming661

VIII References

A Memory Addressing, Binary, and Hexadecimal Review679

B Answers to Review Questions ..701

C ASCII Table ..719

D C++ Precedence Table ..729

E Keyword and Function Reference..733

F The Mailing List Application ..737

Glossary ...747

Index ...761

xi

EXAMPLE
C++ By

Contents

Introduction ...1

Who Should Use This Book ..1

The Book’s Philosophy ..2

Overview of This Book ..2

Conventions Used in This Book ...5

Index to the Icons ...5

Margin Graphics (Book Diagrams)6

Companion Disk Offer ..8

I Introduction to C++

1 Welcome to C++...11

What C++ Can Do for You ..12

The Background of C++ ..15

C++ Compared with Other Languages...................................16

C++ and Microcomputers ...17

An Overview of Your Computer ...19

Hardware ..19

Software ...29

Review Questions ...33

Summary ...34

2 What Is a Program?35

Computer Programs ..36

Program Design ..38

Using a Program Editor ...40

Using a C++ Compiler ...42

Running a Sample Program ..44

Handling Errors ..46

Review Questions ...48

Summary ...49

Contents ♦

xii

3 Your First C++ Program51

Looking at a C++ Program..52

The Format of a C++ Program ...53

Readability Is the Key..54

Uppercase Versus Lowercase ...55

Braces and main() ...56

Comments in C++ ..57

Explaining the Sample Program ..60

Review Questions ...66

Summary ...67

4 Variables and Literals69

Variables ..70

Naming Variables ..70

Variable Types ..72

Declaring Variables ..73

Looking at Data Types ..75

Assigning Values to Variables ...80

Literals ..82

Assigning Integer Literals ...83

Assigning String Literals...85

Assigning Character Literals ..89

Constant Variables ...94

Review Questions ...95

Review Exercises ..97

Summary ...97

5 Character Arrays and Strings......................99

Character Arrays ..100

Character Arrays Versus Strings ..103

Review Questions ...110

Review Exercises ..111

Summary ...111

6 Preprocessor Directives............................113

Understanding Preprocessor Directives114

The #include Directive ..115

The #define Directive ..120

xiii

EXAMPLE
C++ By

Review Questions ...128

Review Exercises ..130

Summary ...130

7 Simple Input/Output...................................133

The cout Operator ..134

Printing Strings ...134

The cin Operator ..144

printf() and scanf() ...149

The printf() Function ..149

Conversion Characters ..151

The scanf() Function ...154

Review Questions ...157

Review Exercises ..158

Summary ...159

II Using C++ Operators

8 Using C++ Math Operators
and Precedence...163

C++’s Primary Math Operators ..164

The Unary Operators ...165

Division and Modulus...167

The Order of Precedence ...168

Using Parentheses ..170

The Assignment Statements ...174

Multiple Assignments ...175

Compound Assignments ..176

Mixing Data Types in Calculations178

Type Casting ...179

Review Questions ...182

Review Exercises ..183

Summary ...184

9 Relational Operators185

Defining Relational Operators..186

The if Statement ..189

The else Statement ..199

Contents ♦

xiv

Review Questions ...203

Review Exercises ..204

Summary ...205

10 Logical Operators207

Defining Logical Operators...207

Logical Operators and Their Uses ...209

C++’s Logical Efficiency..211

Logical Operators and Their Precedence216

Review Questions ...217

Review Exercises ..218

Summary ...219

11 Additional C++ Operators221

The Conditional Operator ...222

The Increment and Decrement Operators225

The sizeof Operator ..230

The Comma Operator ..232

Bitwise Operators ...234

Bitwise Logical Operators ...235

Review Questions ...242

Review Exercises ..243

Summary ...243

III C++ Constructs

12 The while Loop ..245

The while Statement...246

The Concept of Loops ..247

The do-while Loop ...252

The if Loop Versus the while Loop..255

The exit() Function and break Statement256

Counters and Totals ...260

Producing Totals ..265

Review Questions ...268

Review Exercises ..269

Summary ...270

xv

EXAMPLE
C++ By

13 The for Loop...273

The for Statement ...274

The Concept of for Loops ..274

Nested for Loops ..286

Review Questions ...292

Review Exercises ..293

Summary ...293

14 Other Loop Options295

Timing Loops ..296

The break and for Statements ...298

The continue Statement ...303

Review Questions ...308

Review Exercises ..308

Summary ...309

15 The switch and goto Statements311

The switch Statement ...312

The goto Statement ...321

Review Questions ...327

Review Exercises ..328

Summary ...328

16 Writing C++ Functions331

Function Basics ...332

Breaking Down Problems ...333

More Function Basics ...335

Calling and Returning Functions ...337

Review Questions ...349

Summary ...350

IV Variable Scope and Modular Programming

17 Variable Scope ..353

Global Versus Local Variables ..354

Defining Variable Scope..355

Use Global Variables Sparingly ...362

The Need for Passing Variables ...363

Automatic Versus Static Variables...369

Contents ♦

xvi

Three Issues of Parameter Passing...374

Review Questions ...375

Review Exercises ..375

Summary ...377

18 Passing Values ..379

Passing by Value (by Copy) ..379

Passing by Address (by Reference)..385

Variable Addresses ..385

Sample Program ...386

Passing Nonarrays by Address ..391

Review Questions ...394

Review Exercises ..395

Summary ...396

19 Function Return Values and Prototypes ...397

Function Return Values ...398

Function Prototypes ...405

Prototype for Safety ...407

Prototype All Functions ..407

Review Questions ...412

Review Exercises ..412

Summary ...413

20 Default Arguments
and Function Overloading415

Default Argument Lists ...416

Multiple Default Arguments ..417

Overloaded Functions ...420

Review Questions ...426

Review Exercises ..426

Summary ...427

V Character Input/Output
and String Functions

21 Device and Character Input/Output431

Stream and Character I/O ..432

Standard Devices ...434

Redirecting Devices from MS-DOS435

xvii

EXAMPLE
C++ By

Printing Formatted Output to the Printer.............................436

Character I/O Functions ...437

The get() and put() Functions ...438

The getch() and putch() Functions444

Review Questions ...446

Review Exercises ..447

Summary ...448

22 Character, String,
and Numeric Functions449

Character Functions ...450

Character Testing Functions ...450

Alphabetic and Digital Testing ..450

Special Character-Testing Functions453

Character Conversion Functions453

String Functions ..455

Useful String Functions ...456

String I/O Functions ...456

Converting Strings to Numbers ...460

Numeric Functions ...461

Useful Mathematical Functions ...461

Trigonometric Functions ...464

Logarithmic Functions ..465

Random-Number Processing ...465

Review Questions ...467

Review Exercises ..468

Summary ...469

VI Arrays and Pointers

23 Introducing Arrays.....................................473

Array Basics ...474

Initializing Arrays ..479

Initializing Elements at Declaration Time479

Initializing Elements in the Program486

Review Questions ...491

Review Exercises ..491

Summary ...492

Contents ♦

xviii

24 Array Processing493

Searching Arrays ..494

Searching for Values ..496

Sorting Arrays ...501

Advanced Referencing of Arrays ...508

Review Questions ...515

Review Exercises ..516

Summary ...517

25 Multidimensional Arrays............................519

Multidimensional Array Basics ..520

Reserving Multidimensional Arrays522

Mapping Arrays to Memory...524

Defining Multidimensional Arrays526

Tables and for Loops ..530

Review Questions ...537

Review Exercises ..538

Summary ...538

26 Pointers..541

Introduction to Pointer Variables ..542

Declaring Pointers ..543

Assigning Values to Pointers ...545

Pointers and Parameters ...546

Arrays of Pointers ...551

Review Questions ...553

Summary ...555

27 Pointers and Arrays557

Array Names as Pointers...558

Pointer Advantages ..560

Using Character Pointers ..563

Pointer Arithmetic ..568

Arrays of Strings ...574

Review Questions ...578

Review Exercises ..579

Summary ...580

xix

EXAMPLE
C++ By

VII Structures and File Input/Output

28 Structures ..583

Introduction to Structures ...584

Defining Structures ..587

Initializing Structure Data ...591

Nested Structures ...600

Review Questions ...603

Review Exercises ..604

Summary ...604

29 Arrays of Structures605

Declaring Arrays of Structures ...606

Arrays as Members ..615

Review Questions ...623

Review Exercises ..624

Summary ...624

30 Sequential Files ...625

Why Use a Disk? ...626

Types of Disk File Access ..627

Sequential File Concepts ...628

Opening and Closing Files ..629

Writing to a File ..635

Writing to a Printer ..637

Adding to a File ..638

Reading from a File ..639

Review Questions ...642

Review Exercises ..643

Summary ...644

31 Random-Access Files645

Random File Records ...646

Opening Random-Access Files ...647

The seekg() Function ..649

Other Helpful I/O Functions..656

Review Questions ...658

Review Exercises ..658

Summary ...659

Contents ♦

xx

32 Introduction to Object-Oriented
Programming ...661

What Is a Class? ..662

Data Members ..662

Member Functions ...662

Default Member Arguments...670

Class Member Visibility ..674

Review Questions ...676

Review Exercise ..676

Summary ...676

VIII References

A Memory Addressing, Binary,
and Hexadecimal Review..........................679

Computer Memory ..680

Memory and Disk Measurements680

Memory Addresses ..681

Bits and Bytes ..682

The Order of Bits ..686

Binary Numbers ...686

Binary Arithmetic ...690

Binary Negative Numbers ..692

Hexadecimal Numbers ..695

Why Learn Hexadecimal? ...697

How Binary and Addressing Relate to C++698

B Answers to Review Questions701

C ASCII Table ..719

D C++ Precedence Table729

E Keyword and Function Reference733

stdio.h ..734

ctype.h..734

string.h ...735

math.h ..735

stdlib.h ...735

xxi

EXAMPLE
C++ By

F The Mailing List Application737

Glossary ...747

Index ..761

Contents ♦

xxii

1

EXAMPLE
C++ By

Introduction

Every day, more and more people learn and use the C++ program-

ming language. I have taught C to thousands of students in my life.

I see many of those students now moving to C++ in their school work

or career. The C++ language is becoming an industry-accepted

standard programming language, using the solid foundation of C to

gain a foothold. C++ is simply a better C than C.

C++ By Example is one of several books in Que’s new line of By
Example series. The philosophy of these books is simple: The best

way to teach computer programming concepts is with multiple

examples. Command descriptions, format syntax, and language

references are not enough to teach a newcomer a programming

language. Only by looking at numerous examples and by running

sample programs can programming students get more than just a

“feel” for the language.

Who Should Use This Book

This book teaches at three levels: beginning, intermediate, and

advanced. Text and numerous examples are aimed at each level. If

you are new to C++, and even if you are new to computers, this book

attempts to put you at ease and gradually build your C++ program-

ming skills. If you are an expert at C++, this book provides a few

extras for you along the way.

Introduction ♦

2

The Book’s Philosophy

This book focuses on programming correctly in C++ by teaching

structured programming techniques and proper program design.

Emphasis is always placed on a program’s readability rather than

“tricks of the trade” code examples. In this changing world, pro-

grams should be clear, properly structured, and well-documented,

and this book does not waver from the importance of this philos-

ophy.

This book teaches you C++ using a holistic approach. In addi-

tion to learning the mechanics of the language, you learn tips and

warnings, how to use C++ for different types of applications, and a

little of the history and interesting asides about the computing

industry.

Many other books build single applications, adding to them a

little at a time with each chapter. The chapters of this book are stand-

alone chapters, and show you complete programs that fully demon-

strate the commands discussed in the chapter. There is a program for

every level of reader, from beginning to advanced.

This book contains almost 200 sample program listings. These

programs show ways that you can use C++ for personal finance,

school and business record keeping, math and science, and general-

purpose applications that almost everybody with a computer can

use. This wide variety of programs show you that C++ is a very

powerful language that is easy to learn and use.

Appendix F, “The Mailing List Application,” is a complete

application—much longer than any of the other programs in the

book—that brings together your entire working knowledge of C++.

The application is a computerized mailing-list manager. Through-

out the chapters that come before the program, you learn how each

command in the program works. You can modify the program to

better suit your own needs. (The comments in the program suggest

changes you can make.)

Overview of This Book

This book is divided into eight parts. Part I introduces you to

the C++ environment, as well as introductory programming con-

cepts. Starting with Part II, the book presents the C++ programming

3

EXAMPLE
C++ By

language commands and built-in functions. After mastering the

language, you can use the book as a handy reference. When you

need help with a specific C++ programming problem, turn to the

appropriate area that describes that part of the language to see

numerous examples of code.

To get an idea of the book’s layout, read the following descrip-

tion of each section of the book:

Part I: Introduction to C++

This section explains what C++ is by describing a brief history

of the C++ programming language and presenting an overview of

C++’s advantages over other languages. This part describes your

computer’s hardware, how you develop your C++ programs, and

the steps you follow to enter and run programs. You begin to write

C++ programs in Chapter 3.

Part II: Using C++ Operators

This section teaches the entire set of C++ operators. The rich

assortment of operators (more than any other programming lan-

guage except APL) makes up for the fact that the C++ programming

language is very small. The operators and their order of precedence

are more important to C++ than most programming languages.

Part III: C++ Constructs

C++ data processing is most powerful due to the looping,

comparison, and selection constructs that C++ offers. This part

shows you how to write programs flowing with control computa-

tions that produce accurate and readable code.

Part IV: Variable Scope and
Modular Programming

To support true structured programming techniques, C++

must allow for local and global variables, as well as offer several

Introduction ♦

4

ways to pass and return variables between functions. C++ is a very

strong structured language that attempts, if the programmer is

willing to “listen to the language,” to protect local variables by

making them visible only to the parts of the program that need them.

Part V: Character Input/Output and
String Functions

C++ contains no commands that perform input or output. To

make up for this apparent oversight, C++ compiler writers supply

several useful input and output functions. By separating input and

output functions from the language, C++ achieves better portability

between computers; if your program runs on one computer, it will

work on any other.

This part also describes several of the other built-in math,

character, and string functions available with C++. These functions

keep you from having to write your own routines to perform

common tasks.

Part VI: Arrays and Pointers

C++ offers single and multidimensional arrays that hold mul-

tiple occurrences of repeating data, but that do not require much

effort on your part to process.

Unlike many other programming languages, C++ also uses

pointer variables a great deal. Pointer variables and arrays work

together to give you flexible data storage that allow for easy sorting

and searching of data.

Part VII: Structures and File
Input/Output

Variables, arrays, and pointers are not enough to hold the types

of data that your programs require. Structures allow for more

powerful grouping of many different kinds of data into manageable

units.

Your computer would be too limiting if you could not store

data to the disk and retrieve that data back in your programs. Disk

5

EXAMPLE
C++ By

files are required by most “real world” applications. This section

describes how C++ processes sequential and random-access files

and teaches the fundamental principles needed to effectively save

data to the disk. The last chapter in this section introduces object-

oriented programming and its use of classes.

Part VIII: References

This final section of the book includes a reference guide to the

ASCII table, the C++ precedence table, and to keywords and func-

tions in C++. Also in this section are the mailing list application and

the answers to the review questions.

Conventions Used in This
Book

The following typographic conventions are used in this book:

♦ Code lines, variables, and any text you see on-screen are in

monospace.

♦ Placeholders on format lines are in italic monospace.

♦ Filenames are in regular text, all uppercase (CCDOUB.CPP).

♦ Optional parameters on format lines are enclosed in flat

brackets ([]). You do not type the brackets when you

include these parameters.

♦ New terms, which are also found in the glossary, are in italic.

Index to the Icons

The following icons appear throughout this book:

Level 1 difficulty

Introduction ♦

6

Level 2 difficulty

Level 3 difficulty

Tip

Note

Caution

Pseudocode

The pseudocode icon appears beside pseudocode, which is

typeset in italic immediately before the program. The pseudocode

consists of one or more sentences indicating what the program

instructions are doing, in English. Pseudocode appears before se-

lected programs.

Margin Graphics (Book Diagrams)

To help your understanding of C++ further, this book includes

numerous margin graphics. These margin graphics are similar to

flowcharts you have seen before. Both use standard symbols to

represent program logic. If you have heard of the adage “A picture

is worth a thousand words,” you will understand why it is easier to

look at the margin graphics and grasp the overall logic before

dissecting programs line-by-line.

7

EXAMPLE
C++ By

Throughout this book, these margin graphics are used in two

places. Some graphics appear when a new command is introduced,

to explain how the command operates. Others appear when new

commands appear in sample programs for the first time.

The margin graphics do not provide complete, detailed expla-

nations of every statement in each program. They are simple instruc-

tions and provide an overview of the new statements in question.

The symbols used in the margin graphics, along with descriptions

of them, follow:

Terminal symbol
({,},Return...)

Assignment staement (total =
total + newvalue; ctr = ctr =
1;...)

Input/output
(scanf , print f...)

Calling a function

Small circle; loop begin

Large dot; begining and end
of IF-THEN, IF-THEN-ELSE,
and Switch

Input/output of arrays;
assumes implied FOR loop(s)
needed to deal with array I/O

Comment bracket; used for
added info, such as name of a
function

Introduction ♦

8

The margin graphics, the program listings, the program com-

ments, and the program descriptions in the book provide many

vehicles for learning the C++ language!

Companion Disk Offer
If you’d like to save yourself hours of tedious typing, use the

order form in the back of this book to order the companion disk for

C++ By Example. This disk contains the source code for all complete

programs and sample code in this book, as well as the mailing-list

application that appears in Appendix F. Additionally, the answers

to many of the review exercises are included on the disk.

Part I
Introduction to C++

11

EXAMPLE
C++ By

1

Welcome to C++

C++ is a recent addition to the long list of programming languages

now available. Experts predict that C++ will become one of the most

widely used programming languages within two to three years.

Scan your local computer bookstore’s shelves and you will see that

C++ is taking the programming world by storm. More and more

companies are offering C++ compilers. In the world of PCs, both

Borland and Microsoft, two of the leading names of PC software,

offer full-featured C++ compilers.

Although the C++ language is fairly new, having become

popular within the last three years, the designers of C++ compilers

are perfecting this efficient, standardized language that should soon

be compatible with almost every computer in the world. Whether

you are a beginning, an intermediate, or an expert programmer, C++

has the programming tools you need to make your computer do just

what you want it to do. This chapter introduces you to C++, briefly

describes its history, compares C++ to its predecessor C, shows you

the advantages of C++, and concludes by introducing you to hard-

ware and software concepts.

Chapter 1 ♦ Welcome to C++

12

What C++ Can Do for You
Imagine a language that makes your computer perform to your

personal specifications! Maybe you have looked for a program that

keeps track of your household budget—exactly as you prefer—but

haven’t found one. Perhaps you want to track the records of a small

(or large) business with your computer, but you haven’t found a

program that prints reports exactly as you’d like them. Possibly you

have thought of a new and innovative use for a computer and you

would like to implement your idea. C++ gives you the power to

develop all these uses for your computer.

If your computer could understand English, you would not

have to learn a programming language. But because it does not

understand English, you must learn to write instructions in a

language your computer recognizes. C++ is a powerful program-

ming language. Several companies have written different versions

of C++, but almost all C++ languages available today conform to the

AT&T standard. AT&T-compatible means the C++ language in ques-

tion conforms to the standard defined by the company that invented

the language, namely, American Telephone & Telegraph, Incorpo-

rated. AT&T realizes that C++ is still new and has not fully matured.

The good people there just completed the AT&T C++ 3.0 standard

to which software companies can conform. By developing a uniform

C++ language, AT&T helps ensure that programs you write today

will most likely be compatible with the C++ compilers of tomorrow.

NOTE: The AT&T C++ standard is only a suggestion. Software

companies do not have to follow the AT&T standard, although

most choose to do so. No typical computer standards commit-

tee has yet adopted a C++ standard language. The committees

are currently working on the issue, but they are probably

waiting for C++ to entrench the programming community

before settling on a standard.

Companies do not have to follow the AT&T C++ 3.0 standard.

Many do, but add their own extensions and create their own version

to do more work than the AT&T standard includes. If you are using

the AT&T C++ standard, your program should successfully run on

any other computer that also uses AT&T C++.

C++ is currently
defined by American
Telephone &
Telegraph,
Incorporated, to
achieve conformity
between versions
of C++.

C++ is called a
“better C than C.”

13

EXAMPLE
C++ By

AT&T developed C++ as an improved version of the C pro-

gramming language. C has been around since the 1970s and has

matured into a solid, extremely popular programming language.

ANSI, the American National Standards Institute, established a

standard C programming specification called ANSI C. If your C

compiler conforms to ANSI C, your program will work on any other

computer that also has ANSI C. This compatibility between comput-

ers is so important that AT&T’s C++ 3.0 standard includes almost

every element of the ANSI C, plus more. In fact, the ANSI C

committee often requires that a C++ feature be included in subse-

quent versions of C. For instance, function prototypes, a feature not

found in older versions of ANSI C, is now a requirement for

approval by the ANSI committee. Function prototypes did not exist

until AT&T required them in their early C++ specification.

C++ By Example teaches you to program in C++. All programs

conform to the AT&T C++ 2.1 standard. The differences between

AT&T 2.1 and 3.0 are relatively minor for beginning programmers.

As you progress in your programming skills, you will want to tackle

the more advanced aspects of C++ and Version 3.0 will come more

into play later. Whether you use a PC, a minicomputer, a mainframe,

or a supercomputer, the C++ language you learn here should work

on any that conform to AT&T C++ 2.1 and later.

There is a debate in the programming community as to whether

a person should learn C before C++ or learn only C++. Because C++

is termed a “better C,” many feel that C++ is an important language

in its own right and can be learned just as easily as C. Actually, C++

pundits state that C++ teaches better programming habits than the

plain, “vanilla” C. This book is aimed at the beginner programmer,

and the author feels that C++ is a great language with which to

begin. If you were to first learn C, you would have to “unlearn” a few

things when you moved to C++. This book attempts to use the C++

language elements that are better than C. If you are new to program-

ming, you learn C++ from the start. If you have a C background, you

learn that C++ overcomes many of C’s limitations.

When some people attempt to learn C++ (and C), even if they

are programmers in other computer languages, they find that

C++ can be cryptic and difficult to understand. This does not have

to be the case. When taught to write clear and concise C++ code in

an order that builds on fundamental programming concepts,

Chapter 1 ♦ Welcome to C++

14

programmers find that C++ is no more difficult to learn or use than

any other programming language. Actually, after you start using it,

C++’s modularity makes it even easier to use than most other

languages. Once you master the programming elements this book

teaches you, you will be ready for the advanced power for which

C++ was designed—object-oriented programming (OOP). The last

chapter of this book, “Introduction to Object-Oriented Program-

ming,” offers you the springboard to move to this exciting way of

writing programs.

Even if you’ve never programmed a computer before, you will

soon understand that programming in C++ is rewarding. Becoming

an expert programmer in C++—or in any other computer lan-

guage—takes time and dedication. Nevertheless, you can start

writing simple programs with little effort. After you learn the

fundamentals of C++ programming, you can build on what you

learn and hone your skills as you write more powerful programs.

You also might see new uses for your computer and develop

programs others can use.

The importance of C++ cannot be overemphasized. Over the

years, several programming languages were designed to be “the

only programming language you would ever need.” PL/I was

heralded as such in the early 1960s. It turned out to be so large and

took so many system resources that it simply became another

language programmers used, along with COBOL, FORTRAN, and

many others. In the mid-1970s, Pascal was developed for smaller

computers. Microcomputers had just been invented, and the Pascal

language was small enough to fit in their limited memory space

while still offering advantages over many other languages. Pascal

became popular and is still used often today, but it never became the
answer for all programming tasks, and it failed at being “the only

programming language you would ever need.”

When the mass computer markets became familiar with C in

the late 1970s, C also was promoted as “the only programming

language you would ever need.” What has surprised so many

skeptics (including this author) is that C has practically fulfilled this

promise! An incredible number of programming shops have con-

verted to C. The appeal of C’s efficiency, combined with its portabil-

ity among computers, makes it the language of choice. Most of

15

EXAMPLE
C++ By

The UNIX operating
system was written
almost entirely in C.

today’s familiar spreadsheets, databases, and word processors are

written in C. Now that C++ has improved on C, programmers are

retooling their minds to think in C++ as well.

The programmer help-wanted ads seek more and more C++

programmers every day. By learning this popular language, you

will be learning the latest direction of programming and keeping

your skills current with the market. You have taken the first step:

with this book, you learn the C++ language particulars as well as

many programming tips to use and pitfalls to avoid. This book

attempts to teach you to be not just a C++ programmer, but a better

programmer by applying the structured, long-term programming

habits that professionals require in today’s business and industry.

The Background of C++
Before you jump into C++, you might find it helpful to know a

little about the evolution of the C++ programming language. C++ is

so deeply rooted in C that you should first see where C began. Bell

Labs first developed the C programming language in the early

1970s, primarily so Bell programmers could write their UNIX oper-

ating system for a new DEC (Digital Equipment Corporation) com-

puter. Until that time, operating systems were written in assembly

language, which is tedious, time-consuming, and difficult to main-

tain. The Bell Labs people knew they needed a higher-level pro-

gramming language to implement their project quicker and create

code that was easier to maintain.

Because other high-level languages at the time (COBOL, FOR-

TRAN, PL/I, and Algol) were too slow for an operating system’s

code, the Bell Labs programmers decided to write their own lan-

guage. They based their new language on Algol and BCPL. Algol is

still used in the European markets, but is not used much in America.

BCPL strongly influenced C, although it did not offer the various

data types that the makers of C required. After a few versions, these

Bell programmers developed a language that met their goals well. C

is efficient (it is sometimes called a high, low-level language due to

its speed of execution), flexible, and contains the proper language

elements that enable it to be maintained over time.

Chapter 1 ♦ Welcome to C++

16

In the 1980s, Bjourn Stroustrup, working for AT&T, took the C

language to its next progression. Mr. Stroustrup added features to

compensate for some of the pitfalls C allowed and changed the way

programmers view programs by adding object-orientation to the

language. The object-orientation aspect of programming started in

other languages, such as Smalltalk. Mr. Stroustrup realized that C++

programmers needed the flexibility and modularity offered by a

true OOP programming language.

C++ Compared with Other
Languages

If you have programmed before, you should understand a little

about how C++ differs from other programming languages on the

market. C++ is efficient and has much stronger typing than its C

predecessor. C is known as a weakly typed language; variable data

types do not necessarily have to hold the same type of data. (Func-

tion prototyping and type casting help to alleviate this problem.)

For example, if you declare an integer variable and decide to

put a character value in it, C enables you to do so. The data might not

be in the format you expect, but C does its best. This is much different

from stronger-typed languages such as COBOL and Pascal.

If this discussion seems a little over your head at this point,

relax. The upcoming chapters will elaborate on these topics and

provide many examples.

C++ is a small, block-structured programming language. It has

fewer than 46 keywords. To compensate for its small vocabulary,

C++ has one of the largest assortment of operators such as +, -, and &&

(second only to APL). The large number of operators in C++ might

tempt programmers to write cryptic programs that have only a

small amount of code. As you learn throughout this book, however,

you will find that making the program more readable is more

important than saving some bytes. This book teaches you how to

use the C++ operators to their fullest extent, while maintaining

readable programs.

C++’s large number of operators (almost equal to the number

of keywords) requires a more judicious use of an operator precedence

C++ requires more
stringent data-type
checking than
does C.

17

EXAMPLE
C++ By

table. Appendix D, “C++ Precedence Table,” includes the C++

operator precedence table. Unlike most other languages that have

only four or five levels of precedence, C++ has 15. As you learn C++,

you have to master each of these 15 levels. This is not as difficult as

it sounds, but its importance cannot be overstated.

C++ also has no input or output statements. You might want to

read that sentence again! C++ has no commands that perform input

or output. This is one of the most important reasons why C++ is

available on so many different computers. The I/O (input/output)

statements of most languages tie those languages to specific hard-

ware. BASIC, for instance, has almost twenty I/O commands—

some of which write to the screen, to the printer, to a modem, and so

forth. If you write a BASIC program for a microcomputer, chances

are good that it cannot run on a mainframe without considerable

modification.

C++’s input and output are performed through the abundant

use of operators and function calls. With every C++ compiler comes

a library of standard I/O functions. I/O functions are hardware
independent, because they work on any device and on any computer

that conform to the AT&T C++ standard.

To master C++ completely, you have to be more aware of your

computer’s hardware than most other languages would require you

to be. You certainly do not have to be a hardware expert, but

understanding the internal data representation makes C++ much

more usable and meaningful.

It also helps if you can become familiar with binary and

hexadecimal numbers. You might want to read Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,” for a

tutorial on these topics before you start to learn the C++ language.

If you do not want to learn these topics, you can still become a good

C++ programmer, but knowing what goes on “under the hood”

makes C++ more meaningful to you as you learn it.

C++ and Microcomputers
C was a relatively unknown language until it was placed on the

microcomputer. With the invention and growth of the microcom-

puter, C blossomed into a worldwide computer language. C++

Chapter 1 ♦ Welcome to C++

18

extends that use on smaller computers. Most of readers of C++ By
Example are probably working on a microcomputer-based C++

system. If you are new to computers, this section will help you learn

how microcomputers were developed.

In the 1970s, NASA created the microchip, a tiny wafer of sili-

con that occupies a space smaller than a postage stamp. Computer

components were placed on these microchips, hence computers

required much less space than before. NASA produced these

smaller computers in response to their need to send rocket ships to

the moon with on-board computers. The computers on Earth could

not provide split-second accuracy for rockets because radio waves

took several seconds to travel between the Earth and the moon.

Through development, these microchips became small enough so

the computers could travel with a rocket and safely compute the

rocket’s trajectory.

The space program was not the only beneficiary of computer

miniaturization. Because microchips became the heart of the mi-
crocomputer, computers could now fit on desktops. These micro-

computers cost much less than their larger counterparts, so many

people started buying them. Thus, the home and small-business

computer market was born.

Today, microcomputers are typically called PCs from the wide-

spread use of the original IBM PC. The early PCs did not have the

memory capacity of the large computers used by government and

big business. Nevertheless, PC owners still needed a way to pro-

gram these machines. BASIC was the first programming language

used on PCs. Over the years, many other languages were ported

from larger computers to the PC. However, no language was as

successful as C in becoming the worldwide standard programming

language. C++ seems to be the next standard.

Before diving into C++, you might take a few moments to

familiarize yourself with some of the hardware and software com-

ponents of your PC. The next section, “An Overview of Your

Computer,” introduces you to computer components that C++

interacts with, such as the operating system, memory, disks, and

I/O devices. If you are already familiar with your computer’s

hardware and software, you might want to skip to Chapter 2, “What

Is a Program?,” and begin using C++.

19

EXAMPLE
C++ By

An Overview of Your
Computer

Your computer system consists of two parts: hardware and

software. The hardware consists of all the physical parts of the

machine. Hardware has been defined as “anything you can kick.”

Although this definition is coarse, it illustrates that your computer’s

hardware consists of the physical components of your PC. The

software is everything else. Software comprises the programs and

data that interact with your hardware. The C++ language is an

example of software. You can use C++ to create even more software

programs and data.

Hardware

Figure 1.1 shows you a typical PC system. Before using C++,

you should have a general understanding of what hardware is and

how your hardware components work together.

System Unit

Keyboard
Mouse Printer

Modem

Monitor

Figure 1.1. A typical PC system.

Disk Drives

Chapter 1 ♦ Welcome to C++

20

The System Unit and Memory

The system unit is the large, box-shaped component of the

computer. This unit houses the PC’s microprocessor. You might

hear the microprocessor called the CPU, or central processing unit.
The CPU acts like a traffic cop, directing the flow of information

throughout your computer system. The CPU is analogous also to the

human brain. When you use a computer, you are actually interact-

ing with its CPU. All the other hardware exists so the CPU can send

information to you (through the monitor or the printer), and you can

give instructions to the CPU (through the keyboard or the mouse).

The CPU also houses the computer’s internal memory. Al-

though the memory has several names, it is commonly referred to as

RAM (random-access memory). RAM is where the CPU looks for

software and data. When you run a C++ program, for example, you

are instructing your computer’s CPU to look in RAM for that

program and carry out its instructions. C++ uses RAM space when

it is loaded.

RAM is used for many things and is one of the most important

components of your computer’s hardware. Without RAM, your

computer would have no place for its instructions and data. The

amount of RAM can also affect the computer’s speed. In general, the

more RAM your computer has, the more work it can do and the

faster it can process data.

The amount of RAM is measured by the number of characters

it can hold. PCs generally hold approximately 640,000 characters of

RAM. A character in computer terminology is called a byte, and a

byte can be a letter, a number, or a special character such as an

exclamation point or a question mark. If your computer has 640,000

bytes of RAM, it can hold a total of 640,000 characters.

All the zeros following RAM measurements can become cum-

bersome. You often see the shortcut notation K (which comes from

the metric system’s kilo, meaning 1000) in place of the last three

zeros. In computer terms, K means exactly 1024 bytes; but this

number is usually rounded to 1000 to make it easier to remember.

Therefore, 640K represents approximately 640,000 bytes of RAM.

For more information, see the sidebar titled “The Power of Two.”

The limitations of RAM are similar to the limitations of audio

cassette tapes. If a cassette is manufactured to hold 60 minutes of

A byte is a single
character of memory.

21

EXAMPLE
C++ By

music, it cannot hold 75 minutes of music. Likewise, the total

number of characters that compose your program, the C++ data, and

your computer’s system programs cannot exceed the RAM’s limit

(unless you save some of the characters to disk).

You want as much RAM as possible to hold C++, data, and the

system programs. Generally, 640K is ample room for anything you

might want to do in C++. Computer RAM is relatively inexpensive,

so if your computer has less than 640K bytes of memory, you should

consider purchasing additional memory to increase the total RAM

to 640K. You can put more than 640K in most PCs. There are two

types of additional RAM: extended memory and expanded memory

(they both offer memory capacity greater than 640K). You can access

this extra RAM with some C++ systems, but most beginning C++

programmers have no need to worry about RAM beyond 640K.

The Power of Two

Although K means approximately 1000 bytes of memory, K

equates to 1024. Computers function using on and off states of

electricity. These are called binary states. At the computer’s

lowest level, it does nothing more than turn electricity on and

off with many millions of switches called transistors. Because

these switches have two possibilities, the total number of states

of these switches—and thus the total number of states of

electricity—equals a number that is a power of 2.

The closest power of 2 to 1000 is 1024 (2 to the 10th power). The

inventors of computers designed memory so that it is always

added in kilobytes, or multiples of 1024 bytes at a time. There-

fore, if you add 128K of RAM to a computer, you are actually

adding a total of 131,072 bytes of RAM (128 times 1024 equals

131,072).

Because K actually means more than 1000, you always have a

little more memory than you bargained for! Even though your

computer might be rated at 640K, it actually holds more than

640,000 bytes (655,360 to be exact). See Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review,” for a more

detailed discussion of memory.

Chapter 1 ♦ Welcome to C++

22

The computer stores C++ programs to RAM as you write them.

If you have used a word processor before, you have used RAM. As

you type words in your word-processed documents, your words

appear on the video screen and also go to RAM for storage.

Despite its importance, RAM is only one type of memory in

your computer. RAM is volatile; when you turn the computer off, all

RAM is erased. Therefore, you must store the contents of RAM to a

nonvolatile, more permanent memory device (such as a disk) before

you turn off your computer. Otherwise, you lose your work.

Disk Storage

A disk is another type of computer memory, sometimes called

external memory. Disk storage is nonvolatile. When you turn off your

computer, the disk’s contents do not go away. This is important.

After typing a long C++ program in RAM, you do not want to retype

the same program every time you turn your computer back on.

Therefore, after creating a C++ program, you save the program to

disk, where it remains until you’re ready to retrieve it again.

Disk storage differs from RAM in ways other than volatility.

Disk storage cannot be processed by the CPU. If you have a program

or data on disk that you want to use, you must transfer it from the

disk to RAM. This is the only way the CPU can work with the

program or data. Luckily, most disks hold many times more data

than the RAM’s 640K. Therefore, if you fill up RAM, you can store

its contents on disk and continue working. As RAM continues to fill

up, you or your C++ program can keep storing the contents of RAM

to the disk.

This process might sound complicated, but you have only to

understand that data must be transferred to RAM before your

computer can process it, and saved to disk before you shut your

computer off. Most the time, a C++ program runs in RAM and

retrieves data from the disk as it needs it. In Chapter 30, “Sequential

Files,” you learn that working with disk files is not difficult.

There are two types of disks: hard disks and floppy disks. Hard

disks (sometimes called fixed disks) hold much more data and are

many times faster to work with than floppy disks. Most of your C++

programs and data should be stored on your hard disk. Floppy disks

23

EXAMPLE
C++ By

are good for backing up hard disks, and for transferring data and

programs from one computer to another. (These removable floppy

disks are often called diskettes.) Figure 1.2 shows two common sizes,

the 5 1/4-inch disk and the 3 1/2-inch disk. These disks can hold

from 360K to 1.4 million bytes of data.

Write-protect notch

Write-protect notch

Figure 1.2. 5 1/4-inch disk and 3 1/2-inch disk.

Before using a new box of disks, you have to format them

(unless you buy disks that are already formatted). Formatting

prepares the disks for use on your computer by writing a pattern of

paths, called tracks, where your data and programs are stored. Refer

to the operating system instruction manual for the correct format-

ting procedure.

Disk drives house the disks in your computer. Usually, the disk

drives are stored in your system unit. The hard disk is sealed inside

the hard disk drive, and you never remove it (except for repairs). In

general, the floppy disk drives also are contained in the system unit,

but you insert and remove these disks manually.

Disk drives have names. The computer’s first floppy disk drive

is called drive A. The second floppy disk drive, if you have one, is

called drive B. The first hard disk (many computers have only one)

is called drive C. If you have more than one hard disk, or if your hard

disk is logically divided into more than one, the others are named

drive D, drive E, and so on.

Label

Insert this side into drive

Insert this side into drive

Label

Chapter 1 ♦ Welcome to C++

24

Disk size is measured in bytes, just as RAM is. Disks can hold

many millions of bytes of data. A 60-million-byte hard disk is

common. In computer terminology, a million bytes is called a

megabyte, or M. Therefore, if you have a 60-megabyte hard disk, it

can hold approximately 60 million characters of data before it runs

out of space.

The Monitor

The television-like screen is called the monitor. Sometimes the

monitor is called the CRT (which stands for the primary component

of the monitor, the cathode-ray tube). The monitor is one place where

the output of the computer can be sent. When you want to look at a

list of names and addresses, you could write a C++ program to list

the information on the monitor.

The advantage of screen output over printing is that screen

output is faster and does not waste paper. Screen output, however,

is not permanent. When text is scrolled off-screen (displaced by

additional text coming on-screen), it is gone and you might not

always be able to see it again.

All monitors have a cursor, which is a character such as a

blinking underline or a rectangle. The cursor moves when you type

letters on-screen, and always indicates the location of the next

character to be typed.

Monitors that can display pictures are called graphics monitors.
Most PC monitors are capable of displaying graphics and text, but

some can display only text. If your monitor cannot display colors, it

is called a monochrome monitor.

Your monitor plugs into a display adapter located in your system

unit. The display adapter determines the amount of resolution and

number of possible on-screen colors. Resolution refers to the number

of row and column intersections. The higher the resolution, the more

rows and columns are present on your screen and the sharper your

text and graphics appear. Some common display adapters are

MCGA, CGA, EGA, and VGA.

25

EXAMPLE
C++ By

The Printer

The printer provides a more permanent way of recording your

computer’s results. It is the “typewriter” of the computer. Your

printer can print C++ program output to paper. Generally, you can

print anything that appears on your screen. You can use your printer

to print checks and envelopes too, because most types of paper work

with computer printers.

The two most common PC printers are the dot-matrix printer

and the laser printer. A dot-matrix printer is inexpensive, fast, and

uses a series of small dots to represent printed text and graphics. A

laser printer is faster than a dot-matrix, and its output is much

sharper because a laser beam burns toner ink into the paper. For

many people, a dot-matrix printer provides all the speed and quality

they need for most applications. C++ can send output to either type

of printer.

The Keyboard

Figure 1.3 shows a typical PC keyboard. Most the keys are the

same as those on a standard typewriter. The letter and number keys

in the center of the keyboard produce their indicated characters on-

screen. If you want to type an uppercase letter, be sure to press one

of the Shift keys before typing the letter. Pressing the CapsLock key

shifts the keyboard to an uppercase mode. If you want to type one

of the special characters above a number, however, you must do so

with the Shift key. For instance, to type the percent sign (%), you

would press Shift-5.

Like the Shift keys, the Alt and Ctrl keys can be used with some

other keys. Some C++ programs require that you press Alt or Ctrl

before pressing another key. For instance, if your C++ program

prompts you to press Alt-F, you should press the Alt key, then press

F while still holding down Alt, then release both keys. Do not hold

them both down for long, however, or the computer keeps repeating

your keystrokes as if you typed them more than once.

The key marked Esc is called the escape key. In many C++

programs, you can press Esc to “escape,” or exit from, something

you started and then wanted to stop. For example, if you prompt

your C++ compiler for help and you no longer need the help

Chapter 1 ♦ Welcome to C++

26

message, you can press Esc to remove the help message from the

screen.

SpacebarShiftAltFunction keys ShiftSlash (/)

EnterControlEscape Backslash (\) Backspace

SpacebarShiftAltFunction keys ShiftSlash (/)

ControlTab Backslash (\)Enter Backspace Escape

Tab

Escape Function keys Backslash (\)Backspace

EnterShiftSpacebarControlTab
Slash (/)AltShift

Figure 1.3. The various PC keyboards.

Numeric keypad

Numeric keypad

Numeric keypad

27

EXAMPLE
C++ By

The group of numbers and arrows on the far right of the

keyboard is called the numeric keypad. People familiar with a 10-key

adding machine usually prefer to type numbers from the keypad

rather than from the top row of the alphabetic key section. The

numbers on the keypad work only when you press the NumLock

key. If you press NumLock a second time, you disable these number

keys and make the arrow keys work again. To prevent confusion,

many keyboards have separate arrow keys and a keypad used solely

for numbers.

The arrows help you move the cursor from one area of the

screen to another. To move the cursor toward the top of the screen,

you have to press the up arrow continuously. To move the cursor to

the right, you press the right-arrow, and so on. Do not confuse the

Backspace key with the left-arrow. Pressing Backspace moves the

cursor backward one character at a time—erasing everything as it

moves. The left-arrow simply moves the cursor backward, without

erasing.

The keys marked Insert and Delete (Ins and Del on some

keyboards) are useful for editing. Your C++ program editor prob-

ably takes advantage of these two keys. Insert and Delete work on

C++ programs in the same way they work on a word processor’s

text. If you do not have separate keys labeled Insert and Delete, you

probably have to press NumLock and use the keypad key 0 (for

Insert) and period (for Delete).

PgUp and PgDn are the keys to press when you want to scroll

the screen (that is, move your on-screen text either up or down).

Your screen acts like a camera that pans up and down your C++

programs. You can move the screen down your text by pressing

PgDn, and up by pressing PgUp. (Like Insert and Delete, you might

have to use the keypad for these operations.)

The keys labeled F1 through F12 (some keyboards go only to

F10) are called function keys. The function keys are located either

across the top of the alphabetic section or to the left of it. These keys

perform an advanced function, and when you press one of them,

you usually want to issue a complex command, such as searching for

a specific word in a program. The function keys in your C++

program, however, do not necessarily produce the same results as

they might in another program, such as a word processor. In other

words, function keys are application-specific.

Chapter 1 ♦ Welcome to C++

28

CAUTION: Computer keyboards have a key for number 1, so

do not substitute the lowercase l to represent the number 1, as

you might on a typewriter. To C++, a 1 is different from the

letter l. You should be careful also to use 0 when you mean zero,

and O when you want the uppercase letter O.

The Mouse

The mouse is a relatively new input device. The mouse moves

the cursor to any on-screen location. If you have never used a mouse

before, you should take a little time to become skillful in moving the

cursor with it. Your C++ editor (described in Chapter 2, “What is a

Program?”) might use the mouse for selecting commands from its

menus.

Mouse devices have two or three buttons. Most of the time,

pressing the third button produces the same results as simulta-

neously pressing both keys on a two-button mouse.

The Modem

A PC modem enables your PC to communicate with other

computers over telephone lines. Some modems, called external
modems, sit in a box outside your computer. Internal modems reside

inside the system unit. It does not matter which one you have,

because they operate identically.

Some people have modems so they can share data between

their computer and that of a long-distance friend or off-site co-

worker. You can write programs in C++ that communicate with

your modem.

A modem can be
used to communi-
cate between two
distant computers.

29

EXAMPLE
C++ By

A Modem by Any Other Name...

The term digital computer comes from the fact that your com-

puter operates on binary (on and off) digital impulses of

electricity. These digital states of electricity are perfect for your

computer’s equipment, but they cannot be sent over normal

telephone lines. Telephone signals are called analog signals,

which are much different from the binary digital signals in

your PC.

Therefore, before your computer can transmit data over a

telephone line, the information must be modulated (converted)

to analog signals. The receiving computer must have a way to

demodulate (convert back) those signals to digital.

The modem is the means by which computer signals are

modulated and demodulated from digital to analog and vice

versa. Thus, the name of the device that modulates and demodu-

lates these signals is modem.

Software

No matter how fast, large, and powerful your computer’s

hardware is, its software determines what work is done and how the

computer does it. Software is to a computer what music is to a stereo

system. You store software on the computer’s disk and load it in

your computer’s memory when you are ready to process the soft-

ware, just as you store music on a tape and play it when you want

to hear music.

Programs and Data

No doubt you have heard the phrase, data processing. This is

what computers actually do: they take data and manipulate it into

Chapter 1 ♦ Welcome to C++

30

meaningful output. The meaningful output is called information.
Figure 1.4 shows the input-process-output model, which is the foun-

dation of everything that happens in your computer.

Figure 1.4. Data processing at its most elementary level.

In Chapter 2, “What Is a Program?,” you learn the mechanics of

programs. For now, you should know that the programs you write

in C++ process the data that you input in the programs. Both data

and programs compose the software. The hardware acts as a vehicle

to gather the input and produce the output. Without software,

computers would be worthless, just as an expensive stereo would be

useless without some way of playing music so you can hear it.

The input comes from input devices, such as keyboards, mo-

dems, and disk drives. The CPU processes the input and sends the

results to the output devices, such as the printer and the monitor. A

C++ payroll program might receive its input (the hours worked)

from the keyboard. It would instruct the CPU to calculate the payroll

amounts for each employee in the disk files. After processing the

payroll, the program could print the checks.

MS-DOS

MS-DOS (Microsoft disk operating system) is a system that lets

your C++ programs interact with hardware. MS-DOS (commonly

called DOS) is always loaded into RAM when you turn on your

computer. DOS controls more than just the disks; DOS is there so

your programs can communicate with all the computer’s hardware,

including the monitor, keyboard, and printer.

Figure 1.5 illustrates the concept of DOS as the “go-between”

with your computer’s hardware and software. Because DOS under-

stands how to control every device hooked to your computer, it

stays in RAM and waits for a hardware request. For instance,

printing the words “C++ is fun!” on your printer takes many

computer instructions. However, you do not have to worry about all

31

EXAMPLE
C++ By

those instructions. When your C++ program wants to print some-

thing, it tells DOS to print it. DOS always knows how to send

information to your printer, so it takes your C++ program requests

and does the work of routing that data to the printer.

Figure 1.5. DOS interfaces between hardware and software.

Many people program computers for years and never take the

time to learn why DOS is there. You do not have to be an expert in

DOS, or even know more than a few simple DOS commands, to be

proficient with your PC. Nevertheless, DOS does some things that

C++ cannot do, such as formatting disks and copying files to your

disks. As you learn more about the computer, you might see the

need to better understand DOS. For a good introduction to using

DOS, refer to the book MS-DOS 5 QuickStart (Que).

Chapter 1 ♦ Welcome to C++

32

NOTE: As mentioned, DOS always resides in RAM and is

loaded when you start the computer. This is done automati-

cally, so you can use your computer and program in C++

without worrying about how to transfer DOS to RAM. It is

important to remember that DOS always uses some of your

total RAM.

Figure 1.6 shows you the placement of DOS, C++, and your

C++ data area in RAM. This formation is a typical way to represent

RAM—several boxes stacked on top of each other. Each memory

location (each byte) has a unique address, just as everybody’s resi-

dence has a unique address. The first address in memory begins at

0, the second RAM address is 1, and so on until the last RAM

location, many thousands of bytes later.

Figure 1.6. After MS-DOS and a C++ program, there is less RAM for
data.

Your operating system (whether you use MS-DOS, PC DOS,

DR DOS, or UNIX) takes part of the first few thousand bytes of

memory. The amount of RAM that DOS takes varies with each

computer’s configuration. When working in C++, the C++ system

sits on top of DOS, leaving you with the remainder of RAM for your

program and data. This explains why you might have a total of 512K

of RAM and still not have enough memory to run some programs—

DOS is using some of the RAM for itself.

33

EXAMPLE
C++ By

Review Questions
The answers to each chapter’s review questions are in Appen-

dix B, aptly named “Answers to Review Questions.”

1. What is the name of one of the programming languages

from which C was developed?

2. True or false: C++ is known as a “better C.”

3. In what decade was C++ developed?

4. True or false: C++ is too large to fit on many micro-

computers.

5. Which usually holds more data: RAM or the hard disk?

6. What device is needed for your PC to communicate over

telephone lines?

7. Which of the following device types best describes the

mouse?

a. Storage

b. Input

c. Output

d. Processing

8. What key would you press to turn off the numbers on the

numeric keypad?

9. What operating system is written almost entirely in C?

10. Why is RAM considered volatile?

11. True or false: The greater the resolution, the better the

appearance of graphics on-screen.

12. How many bytes is 512K?

13. What does modem stand for?

Chapter 1 ♦ Welcome to C++

34

Summary
C++ is an efficient, powerful, and popular programming lan-

guage. Whether you are new to C++ or an experienced programmer,

C++ is all you need to program the computer to work the way you

want it to.

This chapter presented the background of C++ by walking you

through the history of its predecessor, the C programming lan-

guage. C++ adds to C and offers some of the most advanced

programming language commands that exist today.

The rest of this book is devoted to teaching you C++. Chapter

2, “What Is a Program?,” explains program concepts so you can

begin to write C++ programs.

35

EXAMPLE
C++ By

2

What Is a
Program?

This chapter introduces you to fundamental programming con-

cepts. The task of programming computers has been described as

rewarding, challenging, easy, difficult, fast, and slow. Actually, it is

a combination of all these descriptions. Writing complex programs

to solve advanced problems can be frustrating and time-consuming,

but you can have fun along the way, especially with the rich

assortment of features that C++ has to offer.

This chapter also describes the concept of programming, from

a program’s inception to its execution on your computer. The most

difficult part of programming is breaking the problem into logical

steps that the computer can execute. Before you finish this chapter,

you will type and execute your first C++ program.

This chapter introduces you to

♦ The concept of programming

♦ The program’s output

♦ Program design

♦ Using an editor

♦ Using a compiler

Chapter 2 ♦ What Is a Program?

36

♦ Typing and running a C++ program

♦ Handling errors

After you complete this chapter, you should be ready to learn

the C++ programming language elements in greater detail.

Computer Programs
Before you can make C++ work for you, you must write a C++

program. You have seen the word program used several times in this

book. The following note defines a program more formally.

NOTE: A program is a list of instructions that tells the computer

to do things.

Keep in mind that computers are only machines. They’re not

smart; in fact, they’re quite the opposite! They don’t do anything

until they are given detailed instructions. A word processor, for

example, is a program somebody wrote—in a language such as

C++—that tells your computer exactly how to behave when you

type words into it.

You are familiar with the concept of programming if you have

ever followed a recipe, which is a “program,” or a list of instructions,

telling you how to prepare a certain dish. A good recipe lists these

instructions in their proper order and with enough description so

you can carry out the directions successfully, without assuming

anything.

If you want your computer to help with your budget, keep

track of names and addresses, or compute your gas mileage, it needs

a program to tell it how to do those things. You can supply that

program in two ways: buy a program somebody else wrote, or write

the program yourself.

Writing the program yourself has a big advantage for many

applications: The program does exactly what you want it to do. If you

buy one that is already written, you have to adapt your needs to

those of the author of the program. This is where C++ comes into

37

EXAMPLE
C++ By

play. With the C++ programming language (and a little studying),

you can make your computer carry out your own tasks precisely.

To give C++ programming instructions to your computer, you

need an editor and a C++ compiler. An editor is similar to a word

processor; it is a program that enables you to type a C++ program

into memory, make changes (such as moving, copying, inserting,

and deleting text), and save the program more permanently in a disk

file. After you use the editor to type the program, you must compile

it before you can run it.

The C++ programming language is called a compiled language.

You cannot write a C++ program and run it on your computer unless

you have a C++ compiler. This compiler takes your C++ language

instructions and translates them into a form that your computer can

read. A C++ compiler is the tool your computer uses to understand

the C++ language instructions in your programs. Many compilers

come with their own built-in editor. If yours does, you probably feel

that your C++ programming is more integrated.

To some beginning programmers, the process of compiling a

program before running it might seem like an added and meaning-

less step. If you know the BASIC programming language, you might

not have heard of a compiler or understand the need for one. That’s

because BASIC (also APL and some versions of other computer

languages) is not a compiled language, but an interpreted language.

Instead of translating the entire program into machine-readable

form (as a compiler does in one step), an interpreter translates each

program instruction—then executes it—before translating the next

one. The difference between the two is subtle, but the bottom line is

not: Compilers produce much more efficient and faster-running

programs than interpreters do. This seemingly extra step of compil-

ing is worth the effort (and with today’s compilers, there is not much

extra effort needed).

Because computers are machines that do not think, the instruc-

tions you write in C++ must be detailed. You cannot assume your

computer understands what to do if some instruction is not in your

program, or if you write an instruction that does not conform to C++

language requirements.

After you write and compile a C++ program, you have to run,
or execute, it. Otherwise, your computer would not know that you

Chapter 2 ♦ What Is a Program?

38

want it to follow the instructions in the program. Just as a cook must

follow a recipe’s instructions before making the dish, so too your

computer must execute a program’s instructions before it can ac-

complish what you want it to do. When you run a program, you are

telling the computer to carry out your instructions.

The Program and Its Output

While you are programming, remember the difference be-

tween a program and its output. Your program contains only

the C++ instructions that you write, but the computer follows

your instructions only after you run the program.

Throughout this book, you often see a program listing (that is,

the C++ instructions in the program) followed by the results

that occur when you run the program. The results are the

output of the program, and they go to an output device such as

the screen, the printer, or a disk file.

Program Design
You must plan your programs before typing them into your

C++ editor. When builders construct houses, for example, they don’t

immediately grab their lumber and tools and start building! They

first find out what the owner of the house wants, then they draw up

the plans, order the materials, gather the workers, and finally start

building the house.

The hardest part of writing a program is breaking it into logical

steps that the computer can follow. Learning the C++ language is a

requirement, but it is not the only thing to consider. There is a

method of writing programs, a formal procedure you should learn,

that makes your programming job easier. To write a program you

should:

1. Define the problem to be solved with the computer.

2. Design the program’s output (what the user should see).

Design your
programs before you
type them.

39

EXAMPLE
C++ By

3. Break the problem into logical steps to achieve this output.

4. Write the program (using the editor).

5. Compile the program.

6. Test the program to assure it performs as you expect.

As you can see from this procedure, the typing of your program

occurs toward the end of your programming. This is important,

because you first have to plan how to tell the computer how to

perform each task.

Your computer can perform instructions only step-by-step.

You must assume that your computer has no previous knowledge

of the problem, so it is up to you to provide that knowledge, which,

after all, is what a good recipe does. It would be a useless recipe for

a cake if all it said was: “Bake the cake.” Why? Because this assumes
too much on the part of the baker. Even if you write the recipe in

step-by-step fashion, proper care must be taken (through planning)

to be sure the steps are in sequence. Wouldn’t it be foolish also to

instruct a baker to put the ingredients into the oven before stirring

them?

This book adheres to the preceding programming procedure

throughout the book, as each program appears. Before you see the

actual program, the thought process required to write the program

appears. The goals of the program are presented first, then these

goals are broken into logical steps, and finally the program is

written.

Designing the program in advance guarantees that the entire

program structure is more accurate and keeps you from having to

make changes later. A builder, for example, knows that a room is

much harder to add after the house is built. If you do not properly

plan every step, it is going to take you longer to create the final,

working program. It is always more difficult to make major changes

after you write your program.

Planning and developing according to these six steps becomes

much more important as you write longer and more complicated

programs. Throughout this book, you learn helpful tips for program

design. Now it’s time to launch into C++, so you can experience the

satisfaction of typing your own program and seeing it run.

Chapter 2 ♦ What Is a Program?

40

Using a Program Editor
The instructions in your C++ program are called the source code.

You type source code into your computer’s memory by using your

program editor. After you type your C++ source code (your pro-

gram), you should save it to a disk file before compiling and running

the program. Most C++ compilers expect C++ source programs to be

stored in files with names ending in .CPP. For example, the follow-

ing are valid filenames for most C++ compilers:

MYPROG.CPP

SALESACT.CPP

EMPLYEE.CPP

ACCREC.CPP

Many C++ compilers include a built-in editor. Two of the most

popular C++ compilers (both conform to the AT&T C++ 2.1 stan-

dard and include their own extended language elements) are

Borland’s C++ and Microsoft’s C/C++ 7.0 compilers. These two

programs run in fully integrated environments that relieve the

programmer from having to worry about finding a separate pro-

gram editor or learning many compiler-specific commands.

Figure 2.1 shows a Borland C++ screen. Across the top of the

screen (as with Microsoft C/C++ 7.0) is a menu that offers pull-

down editing, compiling, and running options. The middle of the

screen contains the body of the program editor, and this is the area

where the program goes. From this screen, you type, edit, compile,

and run your C++ source programs. Without an integrated environ-
ment, you would have to start an editor, type your program, save the

program to disk, exit the editor, run the compiler, and only then run

the compiled program from the operating system. With Borland’s

C++ and Microsoft C/C++ 7.0, you simply type the program into the

editor, then—in one step—you select the proper menu option that

compiles and runs the program.

41

EXAMPLE
C++ By

Figure 2.1. Borland Turbo C++’s integrated environment.

If you do not own an integrated environment such as Borland

C++ or Microsoft C/C++, you have to find a program editor. Word

processors can act as editors, but you have to learn how to save and

load files in a true ASCII text format. It is often easier to use an editor

than it is to make a word processor work like one.

On PCs, DOS Version 5 comes with a nice, full-screen editor

called EDIT. It offers menu-driven commands and full cursor-

control capabilities. EDIT is a simple program to use, and is a good

beginner’s program editor. Refer to your DOS manual or a good

book on DOS, such as MS-DOS 5 QuickStart (Que), for more infor-

mation on this program editor.

Another editor, called EDLIN, is available for earlier versions

of DOS. EDLIN is a line editor that does not allow full-screen cursor

control, and it requires you to learn some cryptic commands. The

advantage to learning EDLIN is that it is always included with all

PCs that use a release of DOS prior to Version 5.

Chapter 2 ♦ What Is a Program?

42

If you use a computer other than a PC, such as a UNIX-based

minicomputer or a mainframe, you have to determine which editors

are available. Most UNIX systems include the vi editor. If you

program on a UNIX operating system, it would be worth your time

to learn vi. It is to UNIX what EDLIN is to PC operating systems, and

is available on almost every UNIX computer in the world.

Mainframe users have other editors available, such as the ISPF

editor. You might have to check with your systems department to

find an editor accessible from your account.

NOTE: Because this book teaches the generic AT&T C++

standard programming language, no attempt is made to tie in

editor or compiler commands—there are too many on the

market to cover them all in one book. As long as you write

programs specific to the AT&T C++, the tools you use to edit,

compile, and run those programs are secondary; your goal of

good programming is the result of whatever applications you

produce.

Using a C++ Compiler
After you type and edit your C++ program’s source code, you

have to compile the program. The process you use to compile your

program depends on the version of C++ and the computer you are

using. Borland C++ and Microsoft C/C++ users need only press Alt-

R to compile and run their programs. When you compile programs

on most PCs, your compiler eventually produces an executable file

with a name beginning with the same name as the source code, but

ends with an .EXE file extension. For example, if your source

program is named GRADEAVG.CPP, the PC would produce a

compiled file called GRADEAVG.EXE, which you could execute at

the DOS prompt by typing the name gradeavg.

43

EXAMPLE
C++ By

NOTE: Each program in this book contains a comment that

specifies a recommended filename for the source program. You

do not have to follow the file-naming conventions used in this

book; the filenames are only suggestions. If you use a main-

frame, you have to follow the dataset-naming conventions set

up by your system administrator. Each program name in the

sample disk (see the order form at the back of the book) matches

the filenames of the program listings.

UNIX users might have to use the cfront compiler. Most cfront

compilers actually convert C++ code into regular C code. The C code

is then compiled by the system’s C compiler. This produces an

executable file whose name (by default) is A.OUT. You can then run

the A.OUT file from the UNIX prompt. Mainframe users generally

have company-standard procedures for compiling C++ source pro-

grams and storing their results in a test account.

Unlike many other programming languages, your C++ pro-

gram must be routed through a preprocessor before it is compiled.

The preprocessor reads preprocessor directives that you enter in the

program to control the program’s compilation. Your C++ compiler

automatically performs the preprocessor step, so it requires no

additional effort or commands to learn on your part.

You might have to refer to your compiler’s reference manuals

or to your company’s system personnel to learn how to compile

programs for your programming environment. Again, learning the

programming environment is not as critical as learning the C++

language. The compiler is just a way to transform your program

from a source code file to an executable file.

Your program must go through one additional stage after

compiling and before running. It is called the linking, or the link
editing stage. When your program is linked, a program called the

linker supplies needed runtime information to the compiled pro-

gram. You can also combine several compiled programs into one

executable program by linking them. Most of the time, however,

Chapter 2 ♦ What Is a Program?

44

your compiler initiates the link editing stage (this is especially true

with integrated compilers such as Borland C++ and Microsoft C/

C++) and you do not have to worry about the process.

Figure 2.2 shows the steps that your C++ compiler and link

editor perform to produce an executable program.

Figure 2.2. Compiling C++ source code into an executable program.

Running a Sample Program
Before delving into the specifics of the C++ language, you

should take a few moments to become familiar with your editor and

C++ compiler. Starting with the next chapter, “Your First C++

Program,” you should put all your concentration into the C++

programming language and not worry about using a specific editor

or compiling environment.

45

EXAMPLE
C++ By

Therefore, start your editor of choice and type Listing 2.1,

which follows, into your computer. Be as accurate as possible—a

single typing mistake could cause the C++ compiler to generate a

series of errors. You do not have to understand the program’s

content at this point; the goal is to give you practice in using your

editor and compiler.

Listing 2.1. Practicing with the editor.

Comment the program with the program name.
Include the header file iostream.h so the output properly works.
Start of the main() function.

Define the BELL constant, which is the computer’s beep.
Initialize the integer variable ctr to 0.
Define the character array fname to hold 20 elements.
Print to the screen What is your first name?.
Accept a string from the keyboard.
Process a loop while the variable ctr is less than five.

Print the string accepted from the keyboard.
Increment the variable ctr by 1.

Print to the screen the character code that sounds the beep.
Return to the operating system.

// Filename: C2FIRST.CPP

// Requests a name, prints the name five times, and rings a bell.

#include <iostream.h>

main()

{

 const char BELL=’\a’; // Constant that rings the bell

 int ctr=0; // Integer variable to count through loop

 char fname[20]; // Define character array to hold name

 cout << “What is your first name? “; // Prompt the user

 cin >> fname; // Get the name from the keyboard

 while (ctr < 5) // Loop to print the name

Chapter 2 ♦ What Is a Program?

46

 { // exactly five times.

 cout << fname << “\n”;

 ctr++;

 }

 cout << BELL; // Ring the terminal’s bell

 return 0;

}

Be as accurate as possible. In most programming languages—

and especially in C++—the characters you type into a program must

be very accurate. In this sample C++ program, for instance, you see

parentheses, (), brackets, [], and braces, {}, but you cannot use them

interchangeably.

The comments (words following the two slashes, //) to the right

of some lines do not have to end in the same place that you see in the

listing. They can be as long or short as you need them to be.

However, you should familiarize yourself with your editor and

learn to space characters accurately so you can type this program

exactly as shown.

Compile the program and execute it. Granted, the first time you

do this you might have to check your reference manuals or contact

someone who already knows your C++ compiler. Do not worry

about damaging your computer: Nothing you do from the keyboard

can harm the physical computer. The worst thing you can do at this

point is erase portions of your compiler software or change the

compiler’s options—all of which can be easily corrected by reload-

ing the compiler from its original source. (It is only remotely likely

that you would do anything like this, even if you are a beginner.)

Handling Errors
Because you are typing instructions for a machine, you must be

very accurate. If you misspell a word, leave out a quotation mark, or

make another mistake, your C++ compiler informs you with an

error message. In Borland C++ and Microsoft C/C++, the error

probably appears in a separate window, as shown in Figure 2.3. The

most common error is a syntax error, and this usually implies a

misspelled word.

47

EXAMPLE
C++ By

Figure 2.3. The compiler reporting a program error.

When you get an error message (or more than one), you must

return to the program editor and correct the error. If you don’t

understand the error, you might have to check your reference

manual or scour your program’s source code until you find the

offending code line.

Getting the Bugs Out

One of the first computers, owned by the military, refused to

print some important data one day. After its programmers

tried for many hours to find the problem in the program, a

programmer by the name of Grace Hopper decided to check

the printer.

She found a small moth lodged between two important wires.

When she removed the moth, the printer started working

perfectly (although the moth did not have the same luck).

Chapter 2 ♦ What Is a Program?

48

Grace Hopper was an admiral from the Navy and, although

she was responsible for developing many important computer

concepts (she was the author of the original COBOL language),

she might be best known for discovering the first computer

bug.

Ever since Admiral Hopper discovered that moth, errors in

computer programs have been known as computer bugs. When

you test your programs, you might have to debug them—get the

bugs (errors) out by correcting your typing errors or changing

the logic so your program does exactly what you want it to do.

After you have typed your program correctly using the editor

(and you get no compile errors), the program should run properly

by asking for your first name, then printing it on-screen five times.

After it prints your name for the fifth time, you hear the computer’s

bell ring.

This example helps to illustrate the difference between a pro-

gram and its output. You must type the program (or load one from

disk), then run the program to see its output.

Review Questions
The answers to the review questions are in Appendix B,

“Answers to Review Questions.”

1. What is a program?

2. What are the two ways to obtain a program that does what

you want?

3. True or false: Computers can think.

4. What is the difference between a program and its output?

5. What do you use for typing C++ programs into the

computer?

49

EXAMPLE
C++ By

6. What filename extension do all C++ programs have?

7. Why is typing the program one of the last steps in the pro-

gramming process?

8. What does the term debug mean?

9. Why is it important to write programs that are compatible

with the AT&T C++?

10. True or false: You must link a program before compiling it.

Summary
After reading this chapter, you should understand the steps

necessary to write a C++ program. You know that planning makes

writing the program much easier, and that your program’s instruc-

tions produce the output only after you run the program.

You also learned how to use your program editor and compiler.

Some program editors are as powerful as word processors. Now

that you know how to run C++ programs, it is time to start learning

the C++ programming language.

Chapter 2 ♦ What Is a Program?

50

51

EXAMPLE
C++ By

3

Your First C++
Program

This chapter introduces you to some important C++ language

commands and other elements. Before looking at the language more

specifically, many people like to “walk through” a few simple

programs to get an overall feel for what a C++ program involves.

This is done here. The rest of the book covers these commands and

elements more formally.

This chapter introduces the following topics:

♦ An overview of C++ programs and their structure

♦ Variables and literals

♦ Simple math operators

♦ Screen output format

This chapter introduces a few general tools you need to become

familiar with the C++ programming language. The rest of the book

concentrates on more specific areas of the actual language.

Chapter 3 ♦ Your First C++ Program

52

Looking at a C++ Program
Figure 3.1 shows the outline of a typical small C++ program.

No C++ commands are shown in the figure. Although there is much

more to a program than this outline implies, this is the general

format of the beginning examples in this book.

Figure 3.1. A skeleton outline of a simple C++ program.

To acquaint yourself with C++ programs as fast as possible,

you should begin to look at a program in its entirety. The following

is a listing of a simple example C++ program. It doesn’t do much, but

it enables you to see the general format of C++ programming. The

next few sections cover elements from this and other programs. You

might not understand everything in this program, even after finish-

ing the chapter, but it is a good place to start.

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

Program goes here

Preprocessor directives
go here

Function name

#include <iostream.h>

main()

{

 .

 .

 .

}

Block

53

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}

For now, familiarize yourself with this overall program. See if

you can understand any part or all of it. If you are new to program-

ming, you should know that the computer reads each line of the

program, starting with the first line and working its way down, until

it has completed all the instructions in the program. (Of course, you

first have to compile and link the program, as described in Chap-

ter 2, “What Is a Program?”.)

The output of this program is minimal: It simply displays four

values on-screen after performing some assignments and calcula-

tions of arbitrary values. Just concentrate on the general format at

this point.

The Format of a C++ Program

Unlike some other programming languages, such as COBOL,

C++ is a free-form language, meaning that programming statements

C++ is a free-form
language.

Chapter 3 ♦ Your First C++ Program

54

can start in any column of any line. You can insert blank lines in a

program if you want. This sample program is called C3FIRST.CPP

(you can find the name of each program in this book in the first line

of each program listing). It contains several blank lines to help

separate parts of the program. In a simple program such as this, the

separation is not as critical as it might be in a longer, more complex

program.

Generally, spaces in C++ programs are free-form as well. Your

goal should not be to make your programs as compact as possible.

Your goal should be to make your programs as readable as possi-

ble. For example, the C3FIRST.CPP program shown in the previous

section could be rewritten as follows:

// Filename: C3FIRST.CPP Initial C++ program that demonstrates

// the C++ comments and shows a few variables and their

// declarations.

#include <iostream.h>

main(){int i,j;// These three lines declare four variables.

char c;float x;i=4;// i and j are both assigned integer literals.

j=i+7;c=’A’;// All character literals are enclosed in

//single quotations.

x=9.087;//x requires a floating-point value because it was

//declared as a floating-point variable.

x=x*4.5;//Change what was in x with a formula.

//Sends the values of the variables to the screen.

cout<<i<<“, “<<j<<“, “<<c<<“, “<<x<<“\n”;return 0;// ALWAYS

//end programs and functions with return. The 0 returns to

//the operating system and usually indicates no errors occurred.

}

To your C++ compiler, the two programs are exactly the same,

and they produce exactly the same result. However, to people who

have to read the program, the first style is much more readable.

Readability Is the Key

As long as programs do their job and produce correct output,

who cares how well they are written? Even in today’s world of fast

computers and abundant memory and disk space, you should still

55

EXAMPLE
C++ By

care. Even if nobody else ever looks at your C++ program, you might

have to change it at a later date. The more readable you make your

program, the faster you can find what needs changing, and change

it accordingly.

If you work as a programmer for a corporation, you can almost

certainly expect to modify someone else’s source code, and others

will probably modify yours. In programming departments, it is said

that long-term employees write readable programs. Given this new

global economy and all the changes that face business in the years

ahead, companies are seeking programmers who write for the

future. Programs that are straightforward, readable, abundant with

white space (separating lines and spaces), and devoid of hard-to-read

“tricks” that create messy programs are the most desirable.

Use ample white space so you can have separate lines and

spaces throughout your programs. Notice the first few lines of

C3FIRST.CPP start in the first column, but the body of the program

is indented a few spaces. This helps programmers “zero in” on the

important code. When you write programs that contain several

sections (called blocks), your use of white space helps the reader’s

eye follow and recognize the next indented block.

Uppercase Versus Lowercase

Your uppercase and lowercase letters are much more signifi-

cant in C++ than in most other programming languages. You can see

that most of C3FIRST.CPP is in lowercase. The entire C++ language

is in lowercase. For example, you must type the keywords int, char,

and return in programs using lowercase characters. If you use

uppercase letters, your C++ compiler would produce many errors

and refuse to compile the program until you correct the errors.

Appendix E, “Keyword and Function Reference,” shows a list of

every command in the C++ programming language. You can see

that none of the commands have uppercase letters.

Many C++ programmers reserve uppercase characters for

some words and messages sent to the screen, printer, or disk file;

they use lowercase letters for almost everything else. There is,

however, one exception to this rule in Chapter 4, “Variables and

Literals,” dealing with the const keyword.

Use lowercase
abundantly in C++!

Chapter 3 ♦ Your First C++ Program

56

Braces and main()

All C++ programs require the following lines:

main()

{

The statements that follow main() are executed first. The section

of a C++ program that begins with main(), followed by an opening

brace, {, is called the main function. A C++ program is actually a

collection of functions (small sections of code). The function called

main() is always required and always the first function executed.

In the sample program shown here, almost the entire program

is main() because the matching closing brace that follows main()’s

opening brace is at the end of the program. Everything between two

matching braces is called a block. You read more about blocks in

Chapter 16, “Writing C++ Functions.” For now, you only have to

realize that this sample program contains just one function, main(),

and the entire function is a single block because there is only one

pair of braces.

All executable C++ statements must have a semicolon (;) after

them so C++ is aware that the statement is ending. Because the

computer ignores all comments, do not put semicolons after your

comments. Notice that the lines containing main() and braces do not

end with semicolons either, because these lines simply define the

beginning and ending of the function and are not executed.

As you become better acquainted with C++, you learn when to

include the semicolon and when to leave it off. Many beginning C++

programmers learn quickly when semicolons are required; your

compiler certainly lets you know if you forget to include a semicolon

where one is needed.

Figure 3.2 repeats the sample program shown in Figure 3.1. It

contains additional markings to help acquaint you with these new

terms as well as other items described in the remainder of this

chapter.

All executable C++
statements must
end with a semi-
colon (;).

A C++ block is
enclosed in two
braces.

57

EXAMPLE
C++ By

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}End block

Body of program

Variable declarations

Begin block

Comments

Figure 3.2. The parts of the sample program.

Comments in C++

In Chapter 2, “What Is a Program?,” you learned the difference

between a program and its output. Most users of a program do not

see the actual program; they see the output from the execution of the

program’s instructions. Programmers, on the other hand, look at the

program listings, add new routines, change old ones, and update for

advancements in computer equipment.

Preprocessor directive

Chapter 3 ♦ Your First C++ Program

58

As explained earlier, the readability of a program is important

so you and other programmers can look through it easily. Neverthe-

less, no matter how clearly you write C++ programs, you can always

enhance their readability by adding comments throughout.

Comments are messages that you insert in your C++ programs,

explaining what is going on at that point in the program. For

example, if you write a payroll program, you might put a comment

before the check-printing routine that describes what is about to

happen. You never put C++ language statements inside a comment,

because a comment is a message for people—not computers. Your

C++ compiler ignores all comments in every program.

NOTE: C++ comments always begin with a // symbol and end

at the end of the line.

Some programmers choose to comment several lines. Notice in

the sample program, C3FIRST.CPP, that the first three lines are

comment lines. The comments explain the filename and a little about

the program.

Comments also can share lines with other C++ commands. You

can see several comments sharing lines with commands in the

C3FIRST.CPP program. They explain what the individual lines do.

Use abundant comments, but remember who they’re for: people,

not computers. Use comments to help explain your code, but do not

overcomment. For example, even though you might not be familiar

with C++, the following statement is easy: It prints “C++ By Ex-

ample” on-screen.

cout << “C++ By Example”; // Print C++ By Example on-screen.

This comment is redundant and adds nothing to your under-

standing of the line of code. It would be much better, in this case, to

leave out the comment. If you find yourself almost repeating the

C++ code, leave out that particular comment. Not every line of a

C++ program should be commented. Comment only when code

lines need explaining—in English—to the people looking at your

program.

It does not matter if you use uppercase, lowercase, or a mixture

of both in your comments because C++ ignores them. Most C++

Comments tell
people what the
program is doing.

59

EXAMPLE
C++ By

programmers capitalize the first letter of sentences in comments,

just as you would in everyday writing. Use whatever case seems

appropriate for the letters in your message.

C++ can also use C-style comments. These are comments that

begin with /* and end with */. For instance, this line contains a

comment in the C and C++ style:

netpay = grosspay - taxes; /* Compute take-home pay. */

Comment As You Go

Insert your comments as you write your programs. You are

most familiar with your program logic at the time you are

typing the program in the editor. Some people put off adding

comments until after the program is written. More often than

not, however, those comments are never added, or else they are

written halfheartedly.

If you comment as you write your code, you can glance back at

your comments while working on later sections of the pro-

gram—instead of having to decipher the previous code. This

helps you whenever you want to search for something earlier

in the program.

Examples

1. Suppose you want to write a C++ program that produces a

fancy boxed title containing your name with flashing dots

around it (like a marquee). The C++ code to do this might be

difficult to understand. Before such code, you might want to

insert the following comment so others can understand the

code later:

// The following few lines draw a fancy box around

// a name, then display flashing dots around the

// name like a Hollywood movie marquee.

Chapter 3 ♦ Your First C++ Program

60

This would not tell C++ to do anything because a comment

is not a command, but it would make the next few lines of

code more understandable to you and others. The comment

explains in English, for people reading the program, exactly

what the program is getting ready to do.

2. You should also put the disk filename of the program in one

of the first comments. For example, in the C3FIRST.CPP

program shown earlier, the first line is the beginning of a

comment:

// Filename: C3FIRST.CPP

The comment is the first of three lines, but this line tells you

in which disk file the program is stored. Throughout this

book, programs have comments that include a possible

filename under which the program can be stored. They

begin with Cx, where x is the chapter number in which they

appear (for example, C6VARPR.CPP and C10LNIN.CPP).

This method helps you find these programs when they are

discussed in another section of the book.

TIP: It might be a good idea to put your name at the top of a

program in a comment. If people have to modify your program

at a later date, they first might want to consult with you, as the

original programmer, before they change it.

Explaining the Sample
Program

Now that you have an overview of a C++ program, its struc-

ture, and its comments, the rest of this chapter walks you through

the entire sample program. Do not expect to become a C++ expert

just by completing this section—that is what the rest of the book is

for! For now, just sit back and follow this step-by-step description of

the program code.

61

EXAMPLE
C++ By

As described earlier, this sample program contains several

comments. The first three lines of the program are comments:

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

This comment lists the filename and explains the purpose of the

program. This is not the only comment in the program; others

appear throughout the code.

The next line beginning with #include is called a preprocessor

directive and is shown here:

#include <iostream.h>

This strange looking statement is not actually a C++ command, but

is a directive that instructs the C++ compiler to load a file from disk

into the middle of the current program. The only purpose for this

discussion is to ensure that the output generated with cout works

properly. Chapter 6, “Preprocessor Directives,” more fully explains

this directive.

The next two lines (following the blank separating line) are

shown here:

main()

{

This begins the main() function. Basically, the main() function’s

opening and closing braces enclose the body of this program and

main()’s instructions that execute. C++ programs often contain more

than one function, but they always contain a function called main().

The main() function does not have to be the first one, but it usually is.

The opening brace begins the first and only block of this program.

When a programmer compiles and runs this program, the

computer looks for main() and starts executing whatever instruction

follows main()’s opening brace. Here are the three lines that follow:

int i, j; // These three lines declare four variables.

char c;

float x;

Chapter 3 ♦ Your First C++ Program

62

These three lines declare variables. A variable declaration describes

variables used in a block of code. Variable declarations describe the

program’s data storage.

A C++ program processes data into meaningful results. All

C++ programs include the following:

♦ Commands

♦ Data

Data comprises variables and literals (sometimes called con-

stants). As the name implies, a variable is data that can change

(become variable) as the program runs. A literal remains the same.

In life, a variable might be your salary. It increases over time (if you

are lucky). A literal would be your first name or social security

number, because each remains with you throughout life and does

not (naturally) change.

Chapter 4, “Variables and Literals,” fully explains these con-

cepts. However, to give you an overview of the sample program’s

elements, the following discussion explains variables and literals in

this program.

C++ enables you to use several kinds of literals. For now, you

simply have to understand that a C++ literal is any number, charac-

ter, word, or phrase. The following are all valid C++ literals:

5.6

-45

‘Q’

“Mary”

18.67643

0.0

As you can see, some literals are numeric and some are

character-based. The single and double quotation marks around

two of the literals, however, are not part of the actual literals. A

single-character literal requires single quotation marks around it; a

string of characters, such as “Mary”, requires double quotation marks.

63

EXAMPLE
C++ By

Look for the literals in the sample program. You find these:

4

7

‘A’

9.087

4.5

A variable is like a box inside your computer that holds

something. That “something” might be a number or a character. You

can have as many variables as needed to hold changing data. After

you define a variable, it keeps its value until you change it or define

it again.

Variables have names so you can tell them apart. You use the

assignment operator, the equal sign (=), to assign values to variables.

The following statement,

sales=25000;

puts the literal value 25000 into the variable named sales. In the

sample program, you find the following variables:

i

j

c

x

The three lines of code that follow the opening brace of the

sample program declare these variables. This variable declaration

informs the rest of the program that two integer variables named i

and j as well as a character variable called c and a floating-point

variable called x appear throughout the program. The terms integer
and floating-point basically refer to two different types of numbers:

Integers are whole numbers, and floating-point numbers contain

decimal points.

The next few statements of the sample program assign values

to these variables.

Chapter 3 ♦ Your First C++ Program

64

i = 4; // i and j are both assigned integer literals.

j = i + 7;

c = ‘A’; // All character literals are

 // enclosed in single quotations.

x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

x = x * 4.5; // Change what was in x with a formula.

The first line puts 4 in the integer variable, i. The second line

adds 7 to the variable i’s value to get 11, which then is assigned to (or

put into) the variable called j. The plus sign (+) in C++ works just

like it does in mathematics. The other primary math operators are

shown in Table 3.1.

Table 3.1. The primary math operators.

Operator Meaning Example

+ Addition 4 + 5

– Subtraction 7 – 2

* Multiplication 12 * 6

/ Division 48 / 12

The character literal A is assigned to the c variable. The number

9.087 is assigned to the variable called x, then x is immediately

overwritten with a new value: itself (9.087) multiplied by 4.5. This

helps illustrate why computer designers use an asterisk (*) for

multiplication and not a lowercase x as people generally do to

show multiplication; the computer would confuse the variable x

with the multiplication symbol, x, if both were allowed.

TIP: If mathematical operators are on the right side of the

equal sign, the program completes the math before assigning

the result to a variable.

65

EXAMPLE
C++ By

The next line (after the comment) includes the following

special—and, at first, confusing—statement:

cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

When the program reaches this line, it prints the contents of the

four variables on-screen. The important part of this line is that the

four values for i, j, c, and x print on-screen.

The output from this line is

4, 11, A, 40.891499

Because this is the only cout in the program, this is the only

output the sample program produces. You might think the program

is rather long for such a small output. After you learn more about

C++, you should be able to write more useful programs.

The cout is not a C++ command. You might recall from Chapter

2, “What Is a Program?,” that C++ has no built-in input/output

commands. The cout is an operator, described to the compiler in the

#include file called iostream.h, and it sends output to the screen.

C++ also supports the printf() function for formatted output.

You have seen one function already, main(), which is one for which

you write the code. The C++ programming designers have already

written the code for the printf function. At this point, you can think

of printf as a command that outputs values to the screen, but it is

actually a built-in function. Chapter 7, “Simple Input/Output”

describes the printf function in more detail.

NOTE: To differentiate printf from regular C++ commands,

parentheses are used after the name, as in printf(). In C++, all

function names have parentheses following them. Sometimes

these parentheses have something between them, and some-

times they are blank.

The last two lines in the program are shown here:

return 0; // ALWAYS end programs and functions with return.

}

Put a return
statement at the end
of each function.

Chapter 3 ♦ Your First C++ Program

66

The return command simply tells C++ that this function is

finished. C++ returns control to whatever was controlling the pro-

gram before it started running. In this case, because there was only

one function, control is returned either to DOS or to the C++ editing

environment. C++ requires a return value. Most C++ programmers

return a 0 (as this program does) to the operating system. Unless you

use operating-system return variables, you have little use for a

return value. Until you have to be more specific, always return a 0

from main().

Actually, many return statements are optional. C++ would

know when it reached the end of the program without this state-

ment. It is a good programming practice, however, to put a return

statement at the end of every function, including main(). Because

some functions require a return statement (if you are returning

values), it is better to get in the habit of using them, rather than run

the risk of leaving one out when you really need it.

You will sometimes see parentheses around the return value,

as in:

return (0); // ALWAYS end programs and functions with return.

The parentheses are unnecessary and sometimes lead begin-

ning C++ students into thinking that return is a built-in function.

However, the parentheses are recommended when you want to

return an expression. You read more about returning values in

Chapter 19, “Function Return Values and Prototypes.”

The closing brace after the return does two things in this

program. It signals the end of a block (begun earlier with the open-

ing brace), which is the end of the main() function, and it signals

the end of the program.

Review Questions
The answers to the review questions are in Appendix B, aptly

named “Answers to Review Questions.”

1. What must go before each comment in a C++ program?

2. What is a variable?

3. What is a literal?

67

EXAMPLE
C++ By

4. What are four C++ math operators?

5. What operator assigns a variable its value? (Hint: It is called

the assignment operator.)

6. True or false: A variable can consist of only two types:

integers and characters.

7. What is the operator that writes output to the screen?

8. Is the following a variable name or a string literal?

city

9. What, if anything, is wrong with the following C++

statement?

RETURN;

Summary
This chapter focused on teaching you to write helpful and

appropriate comments for your programs. You also learned a little

about variables and literals, which hold the program’s data. Without

them, the term data processing would no longer be meaningful (there

would be no data to process).

Now that you have a feel for what a C++ program looks like, it

is time to begin looking at specifics of the commands. Starting with

the next chapter, you begin to write your own programs. The next

chapter picks up where this one left off; it takes a detailed look at

literals and variables, and better describes their uses and how to

choose their names.

Chapter 3 ♦ Your First C++ Program

68

69

EXAMPLE
C++ By

4

Variables and
Literals

To understand data processing with C++, you must understand

how C++ creates, stores, and manipulates data. This chapter teaches

you how C++ handles data by introducing the following topics:

♦ The concepts of variables and literals

♦ The types of C++ variables and literals

♦ Special literals

♦ Constant variables

♦ Naming and using variables

♦ Declaring variables

♦ Assigning values to variables

Now that you have seen an overview of the C++ programming

language, you can begin writing C++ programs. In this chapter, you

begin to write your own programs from scratch.

You learned in Chapter 3, “Your First C++ Program,” that C++

programs consist of commands and data. Datum is the heart of all

C++ programs; if you do not correctly declare or use variables and

literals, your data are inaccurate and your results are going to be

Garbage in, garbage
out!

Chapter 4 ♦ Variables and Literals

70

inaccurate as well. A computer adage says the if you put garbage in,

you are going to get garbage out. This is very true. People usually

blame computers for mistakes, but the computers are not always at

fault. Rather, their data are often not entered properly into their

programs.

This chapter spends a long time focusing on numeric variables

and numeric literals. If you are not a “numbers” person, do not fret.

Working with numbers is the computer’s job. You have to under-

stand only how to tell the computer what you want it to do.

Variables
Variables have characteristics. When you decide your program

needs another variable, you simply declare a new variable and C++

ensures that you get it. In C++, variable declarations can be placed

anywhere in the program, as long as they are not referenced until

after they are declared. To declare a variable, you must understand

the possible characteristics, which follow.

♦ Each variable has a name.

♦ Each variable has a type.

♦ Each variable holds a value that you put there, by assigning

it to that variable.

The following sections explain each of these characteristics in

detail.

Naming Variables

Because you can have many variables in a single program, you

must assign names to them to keep track of them. Variable names are

unique, just as house addresses are unique. If two variables have the

same name, C++ would not know to which you referred when you

request one of them.

Variable names can be as short as a single letter or as long as 32

characters. Their names must begin with a letter of the alphabet but,

after the first letter, they can contain letters, numbers, and under-

score (_) characters.

71

EXAMPLE
C++ By

TIP: Spaces are not allowed in a variable name, so use the

underscore character to separate parts of the name.

The following list of variable names are all valid:

salary aug91_sales i index_age amount

It is traditional to use lowercase letters for C++ variable names.

You do not have to follow this tradition, but you should know that

uppercase letters in variable names are different from lowercase

letters. For example, each of the following four variables is viewed

differently by your C++ compiler.

sales Sales SALES sALES

Be very careful with the Shift key when you type a variable

name. Do not inadvertently change the case of a variable name

throughout a program. If you do, C++ interprets them as distinct

and separate variables.

Variables cannot have the same name as a C++ command or

function. Appendix E, “Keyword and Function Reference,” shows

a list of all C++ command and function names.

The following are invalid variable names:

81_sales Aug91+Sales MY AGE printf

TIP: Although you can call a variable any name that fits the

naming rules (as long as it is not being used by another variable

in the program), you should always use meaningful variable

names. Give your variables names that help describe the values

they are holding.

For example, keeping track of total payroll in a variable called

total_payroll is much more descriptive than using the variable

name XYZ34. Even though both names are valid, total_payroll is

easier to remember and you have a good idea of what the

variable holds by looking at its name.

Do not give variables
the same name as a
command or built-in
function.

Chapter 4 ♦ Variables and Literals

72

Variable Types

Variables can hold different types of data. Table 4.1 lists the

different types of C++ variables. For instance, if a variable holds an

integer, C++ assumes no decimal point or fractional part (the part to

the right of the decimal point) exists for the variable’s value. A large

number of types are possible in C++. For now, the most important

types you should concentrate on are char, int, and float. You can

append the prefix long to make some of them hold larger values than

they would otherwise hold. Using the unsigned prefix enables them

to hold only positive numbers.

Table 4.1. Some C++ variable types.

Declaration Name Type

char Character

unsigned char Unsigned character

signed char Signed character (same as char)

int Integer

unsigned int Unsigned integer

signed int Signed integer (same as int)

short int Short integer

unsigned short int Unsigned short integer

signed short int Signed short integer (same as short int)

long Long integer

long int Long integer (same as long)

signed long int Signed long integer (same as long int)

unsigned long int Unsigned long integer

float Floating-point

double Double floating-point

long double Long double floating-point

73

EXAMPLE
C++ By

The next section more fully describes each of these types. For

now, you have to concentrate on the importance of declaring them

before using them.

Declaring Variables

There are two places you can declare a variable:

♦ Before the code that uses the variable

♦ Before a function name (such as before main() in the

program)

The first of these is the most common, and is used throughout

much of this book. (If you declare a variable before a function name,

it is called a global variable. Chapter 17, “Variable Scope,” addresses

the pros and cons of global variables.) To declare a variable, you

must state its type, followed by its name. In the previous chapter,

you saw a program that declared four variables in the following

way.

Start of the main() function.
Declare the variables i and j as integers.
Declare the variable c as a character.
Declare the variable x as a floating-point variable.

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 // The rest of program follows.

This declares two integer variables named i and j. You have no

idea what is inside those variables, however. You generally cannot

assume a variable holds zero—or any other number—until you

assign it a value. The first line basically tells C++ the following:

“I am going to use two integer variables somewhere in this

program. Be expecting them. I want them named i and j. When I

put a value into i or j, I ensure that the value is an integer.”

Declare all variables
in a C++ program
before you use them.

Chapter 4 ♦ Variables and Literals

74

Without such a declaration, you could not assign i or j a value

later. All variables must be declared before you use them. This does

not necessarily hold true in other programming languages, such as

BASIC, but it does for C++. You could declare each of these two

variables on its own line, as in the following code:

main()

{

 int i;

 int j;

 // The rest of program follows.

You do not gain any readability by doing this, however. Most

C++ programmers prefer to declare variables of the same type on the

same line.

The second line in this example declares a character variable

called c. Only single characters should be placed there. Next, a

floating-point variable called x is declared.

Examples

1. Suppose you had to keep track of a person’s first, middle,

and last initials. Because an initial is obviously a character, it

would be prudent to declare three character variables to

hold the three initials. In C++, you could do that with the

following statement:

main()

{

 char first, middle, last;

 // The rest of program follows.

This statement could go after the opening brace of main(). It

informs the rest of the program that you require these three

character variables.

2. You could declare these three variables also on three sepa-

rate lines, although it does not necessarily improve readabil-

ity to do so. This could be accomplished with:

75

EXAMPLE
C++ By

main()

{

 char first;

 char middle;

 char last;

 // The rest of program follows.

3. Suppose you want to keep track of a person’s age and

weight. If you want to store these values as whole numbers,

they would probably go in integer variables. The following

statement would declare those variables:

main()

{

 int age, weight;

 // The rest of program follows.

Looking at Data Types

You might wonder why it is important to have so many

variable types. After all, a number is just a number. C++ has more

data types, however, than almost all other programming languages.

The variable’s type is critical, but choosing the type among the many

offerings is not as difficult as it might first seem.

The character variable is easy to understand. A character

variable can hold only a single character. You cannot put more than

a single character into a character variable.

NOTE: Unlike many other programming languages, C++

does not have a string variable. Also, you cannot hold more

than a single character in a C++ character variable. To store a

string of characters, you must use an aggregate variable type

that combines other fundamental types, such as an array.

Chapter 5, “Character Arrays and Strings,” explains this more

fully.

Integers hold whole numbers. Although mathematicians might

cringe at this definition, an integer is actually any number that does

Chapter 4 ♦ Variables and Literals

76

not contain a decimal point. All the following expressions are

integers:

45 -932 0 12 5421

Floating-point numbers contain decimal points. They are known

as real numbers to mathematicians. Any time you have to store a

salary, a temperature, or any other number that might have a

fractional part (a decimal portion), you must store it in a floating-

point variable. All the following expressions are floating-point

numbers, and any floating-point variable can hold them:

45.12 -2344.5432 0.00 .04594

Sometimes you have to keep track of large numbers, and

sometimes you have to keep track of smaller numbers. Table 4.2

shows a list of ranges that each C++ variable type can hold.

CAUTION: All true AT&T C++ programmers know that

they cannot count on using the exact values in Table 4.2 on

every computer that uses C++. These ranges are typical on a

PC, but might be much different on another computer. Use this

table only as a guide.

Table 4.2. Typical ranges that C++ variables hold.

Type Range*

char –128 to 127

unsigned char 0 to 255

signed char –128 to 127

int –32768 to 32767

unsigned int 0 to 65535

signed int –32768 to 32767

short int –32768 to 32767

unsigned short int 0 to 65535

77

EXAMPLE
C++ By

signed short int –32768 to 32767

long int –2147483648 to 2147483647

signed long int –2147483648 to 2147483647

float –3.4E–38 to 3.4E+38

double –1.7E–308 to 1.7E+308

long double –3.4E–4932 to 1.1E+4932

* Use this table only as a guide; different compilers and different computers can have different
 ranges.

NOTE: The floating-point ranges in Table 4.2 are shown in

scientific notation. To determine the actual range, take the

number before the E (meaning Exponent) and multiply it by

10 raised to the power after the plus sign. For instance, a

floating-point number (type float) can contain a number as

small as –3.438.

Notice that long integers and long doubles tend to hold larger

numbers (and therefore, have a higher precision) than regular

integers and regular double floating-point variables. This is due to

the larger number of memory locations used by many of the C++

compilers for these data types. Again, this is usually—but not

always—the case.

Do Not Over Type a Variable

If the long variable types hold larger numbers than the regular

ones, you might initially want to use long variables for all your

data. This would not be required in most cases, and would

probably slow your program’s execution.

Type Range*

Chapter 4 ♦ Variables and Literals

78

As Appendix A, “Memory Addressing, Binary, and Hexadeci-

mal Review,” describes, the more memory locations used by

data, the larger that data can be. However, every time your

computer has to access more storage for a single variable (as is

usually the case for long variables), it takes the CPU much

longer to access it, calculate with it, and store it.

Use the long variables only if you suspect your data might

overflow the typical data type ranges. Although the ranges

differ between computers, you should have an idea of whether

you numbers might exceed the computer’s storage ranges.

If you are working with extremely large (or extremely small

and fractional) numbers, you should consider using the long

variables.

Generally, all numeric variables should be signed (the default)

unless you know for certain that your data contain only positive

numbers. (Some values, such as age and distances, are always

positive.) By making a variable an unsigned variable, you gain a

little extra storage range (as explained in Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review”). That range of

values must always be positive, however.

Obviously, you must be aware of what kinds of data your

variables hold. You certainly do not always know exactly what each

variable is holding, but you can have a general idea. For example, in

storing a person’s age, you should realize that a long integer variable

would be a waste of space, because nobody can live to an age that

can’t be stored by a regular integer.

At first, it might seem strange for Table 4.2 to state that

character variables can hold numeric values. In C++, integers and

character variables frequently can be used interchangeably. As

explained in Appendix A, “Memory Addressing, Binary, and Hexa-

decimal Review,” each ASCII table character has a unique number

that corresponds to its location in the table. If you store a number in

a character variable, C++ treats the data as if it were the ASCII

character that matched that number in the table. Conversely, you

can store character data in an integer variable. C++ finds that

79

EXAMPLE
C++ By

character’s ASCII number, and stores that number rather than the

character. Examples that help illustrate this appear later in the

chapter.

Designating Long, Unsigned, and Floating-Point Literals

When you type a number, C++ interprets its type as the

smallest type that can hold that number. For example, if you

print 63, C++ knows that this number fits into a signed integer

memory location. It does not treat the number as a long integer,

because 63 is not large enough to warrant a long integer literal

size.

However, you can append a suffix character to numeric literals

to override the default type. If you put an L at the end of an

integer, C++ interprets that integer as a long integer. The

number 63 is an integer literal, but the number 63L is a long

integer literal.

Assign the U suffix to designate an unsigned integer literal. The

number 63 is, by default, a signed integer literal. If you type 63U,

C++ treats it as an unsigned integer. The suffix UL indicates an

unsigned long literal.

C++ interprets all floating-point literals (numbers that contain

decimal points) as double floating-point literals (double float-

ing-point literals hold larger numbers than floating-point liter-

als). This process ensures the maximum accuracy in such

numbers. If you use the literal 6.82, C++ treats it as a double

floating-point data type, even though it would fit in a regular

float. You can append the floating-point suffix (F) or the long

double floating-point suffix (L) to literals that contain decimal

points to represent a floating-point literal or a long double

floating-point literal.

You may rarely use these suffixes, but if you have to assign a

literal value to an extended or unsigned variable, your literals

might be a little more accurate if you add U, L, UL, or F (their

lowercase equivalents work too) to their ends.

Chapter 4 ♦ Variables and Literals

80

Assigning Values to Variables

Now that you know about the C++ variable types, you are

ready to learn the specifics of assigning values to those variables.

You do this with the assignment statement. The equal sign (=) is used

for assigning values to variables. The format of the assignment

statement is

variable=expression;

The variable is any variable that you declared earlier. The

expression is any variable, literal, expression, or combination that

produces a resulting data type that is the same as the variable’s data

type.

TIP: Think of the equal sign as a left-pointing arrow. Loosely,

the equal sign means you want to take the number, variable, or

expression on the right side of the equal sign and put it into the

variable on the left side of the equal sign.

Examples

1. If you want to keep track of your current age, salary, and

dependents, you could store these values in three C++

variables. You first declare the variables by deciding on

correct types and good names for them. You then assign

values to them. Later in the program, these values might

change (for example, if the program calculates a new pay

increase for you).

Good variable names include age, salary, and dependents.

To declare these three variables, the first part of the main()

function would look like this:

// Declare and store three values.

main()

{

 int age;

 float salary;

 int dependents;

81

EXAMPLE
C++ By

Notice that you do not have to declare all integer variables

together. The next three statements assign values to the

variables.

 age=32;

 salary=25000.00;

 dependents=2;

 // Rest of program follows.

This example is not very long and doesn’t do much, but it

illustrates the using and assigning of values to variables.

2. Do not put commas in values that you assign to variables.

Numeric literals should never contain commas. The follow-

ing statement is invalid:

salary=25,000.00;

3. You can assign variables or mathematical expressions to

other variables. Suppose, earlier in a program, you stored

your tax rate in a variable called tax_rate, then decided to

use your tax rate for your spouse’s rate as well. At the

proper point in the program, you would code the following:

spouse_tax_rate = tax_rate;

(Adding spaces around the equal sign is acceptable to the

C++ compiler, but you do not have to do so.) At this point in

the program, the value in tax_rate is copied to a new variable

named spouse_tax_rate. The value in tax_rate is still there

after this line finishes. The variables were declared earlier in

the program.

If your spouse’s tax rate is 40 percent of yours, you can

assign an expression to the spouse’s variable, as in:

spouse_tax_rate = tax_rate * .40;

Any of the four mathematical symbols you learned in the

previous chapter, as well as the additional ones you learn

later in the book, can be part of the expression you assign to

a variable.

Chapter 4 ♦ Variables and Literals

82

4. If you want to assign character data to a character variable,

you must enclose the character in single quotation marks.

All C++ character literals must be enclosed in single quota-

tion marks.

The following section of a program declares three variables,

then assigns three initials to them. The initials are character

literals because they are enclosed in single quotation marks.

main()

{

 char first, middle, last;

 first = ‘G’;

 middle = ‘M’;

 last = ‘P’;

 // Rest of program follows.

Because these are variables, you can reassign their values

later if the program warrants it.

CAUTION: Do not mix types. C enables programmers to do

this, but C++ does not. For instance, in the middle variable

presented in the previous example, you could not have stored

a floating-point literal:

middle = 345.43244; // You cannot do this!

If you did so, middle would hold a strange value that would

seem to be meaningless. Make sure that values you assign to

variables match the variable’s type. The only major exception

to this occurs when you assign an integer to a character vari-

able, or a character to an integer variable, as you learn shortly.

Literals
As with variables, there are several types of C++ literals.

Remember that a literal does not change. Integer literals are whole

numbers that do not contain decimal points. Floating-point literals

83

EXAMPLE
C++ By

are numbers that contain a fractional portion (a decimal point with

an optional value to the right of the decimal point).

Assigning Integer Literals

You already know that an integer is any whole number without

a decimal point. C++ enables you to assign integer literals to vari-

ables, use integer literals for calculations, and print integer literals

using the cout operator.

A regular integer literal cannot begin with a leading 0. To C++,

the number 012 is not the number twelve. If you precede an integer

literal with a 0, C++ interprets it as an octal literal. An octal literal is

a base-8 number. The octal numbering system is not used much in

today’s computer systems. The newer versions of C++ retain octal

capabilities for compatibility with previous versions.

A special integer in C++ that is still greatly used today is the

base-16, or hexadecimal, literal. Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review,” describes the hexadecimal num-

bering system. If you want to represent a hexadecimal integer literal,

add the 0x prefix to it. The following numbers are hexadecimal

numbers:

0x10 0x2C4 0xFFFF 0X9

Notice that it does not matter if you use a lowercase or upper-

case letter x after the leading zero, or an uppercase or lowercase

hexadecimal digit (for hex numbers A through F). If you write

business-application programs in C++, you might think you never

have the need for using hexadecimal, and you might be correct. For

a complete understanding of C++ and your computer in general,

however, you should become a little familiar with the fundamentals

of hexadecimal numbers.

Table 4.3 shows a few integer literals represented in their

regular decimal, hexadecimal, and octal notations. Each row con-

tains the same number in all three bases.

An octal integer liter-
al contains a leading
0, and a hexadeci-
mal literal contains a
leading 0x.

Chapter 4 ♦ Variables and Literals

84

Table 4.3. Integer literals represented in three
bases.

Decimal Hexadecimal Octal
(Base 10) (Base 16) (Base 8)

16 0x10 020

65536 0x10000 0100000

25 0x19 031

NOTE: Floating-point literals can begin with a leading zero,

for example, 0.7. They are properly interpreted by C++. Only

integers can be hexadecimal or octal literals.

Your Computer’s Word Size Is Important

If you write many system programs that use hexadecimal

numbers, you probably want to store those numbers in un-
signed variables. This keeps C++ from improperly interpreting

positive numbers as negative numbers.

For example, if your computer stores integers in 2-byte words

(as most PCs do), the hexadecimal literal 0xFFFF represents

either –1 or 65535, depending on how the sign bit is interpreted.

If you declared an unsigned integer, such as

unsigned_int i_num = 0xFFFF;

C++ knows you want it to use the sign bit as data and not as the

sign. If you declared the same value as a signed integer,

however, as in

int i_num = 0xFFFF; /* The word “signed” is optional.*/

C++ thinks this is a negative number (–1) because the sign bit

is on. (If you were to convert 0xFFFF to binary, you would get

sixteen 1s.) Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” discusses these concepts in more detail.

85

EXAMPLE
C++ By

Assigning String Literals

One type of C++ literal, called the string literal, does not have a

matching variable. A string literal is always enclosed in double

quotation marks. Here are examples of string literals:

“C++ Programming” “123” “ “ “4323 E. Oak Road” “x”

Any string of characters between double quotation marks—

even a single character—is considered to be a string literal. A single

space, a word, or a group of words between double quotation marks

are all C++ string literals.

If the string literal contains only numeric digits, it is not a

number; it is a string of numeric digits that you cannot use to

perform mathematics. You can perform math only on numbers, not

on string literals.

NOTE: A string literal is any character, digit, or group of

characters enclosed in double quotation marks. A character

literal is any character enclosed in single quotation marks.

The double quotation marks are never considered part of the

string literal. The double quotation marks surround the string and

simply inform your C++ compiler that the code is a string literal and

not another type of literal.

It is easy to print string literals. Simply put the string literals in

a cout statement. The following code prints a string literal to the

screen:

The following code prints the string literal, C++ By Example.

cout << “C++ By Example”;

Examples

1. The following program displays a simple message on-screen.

No variables are needed because no datum is stored or

calculated.

A string literal is
always enclosed in
double quotation
marks.

Chapter 4 ♦ Variables and Literals

86

// Filename: C4ST1.CPP

// Display a string on-screen.

#include <iostream.h>

main()

{

 cout << “C++ programming is fun!”;

 return 0;

}

Remember to make the last line in your C++ program (be-

fore the closing brace) a return statement.

2. You probably want to label the output from your programs.

Do not print the value of a variable unless you also print a

string literal that describes that variable. The following

program computes sales tax for a sale and prints the tax.

Notice a message is printed first that tells the user what the

next number means.

// Filename: C4ST2.CPP

// Compute sales tax and display it with an appropriate

message.

#include <iostream.h>

main()

{

 float sale, tax;

 float tax_rate = .08; // Sales tax percentage

 // Determine the amount of the sale.

 sale = 22.54;

 // Compute the sales tax.

 tax = sale * tax_rate;

 // Print the results.

 cout << “The sales tax is “ << tax << “\n”;

 return 0;

}

87

EXAMPLE
C++ By

Here is the output from the program:

The sales tax is 1.8032

You later learn how to print accurately to two decimal places

to make the cents appear properly.

String-Literal Endings

An additional aspect of string literals sometimes confuses

beginning C++ programmers. All string literals end with a zero. You

do not see the zero, but C++ stores the zero at the end of the string

in memory. Figure 4.1 shows what the string “C++ Program” looks like

in memory.

Figure 4.1. In memory, a string literal always ends with 0.

You do not have to worry about putting the zero at the end of

a string literal; C++ does it for you every time it stores a string. If your

program contained the string “C++ Program”, for example, the com-

piler would recognize it as a string literal (from the double quotation

marks) and store the zero at the end.

Null zero

Chapter 4 ♦ Variables and Literals

88

The zero is important to C++. It is called the string delimiter.
Without it, C++ would not know where the string literal ended in

memory. (Remember that the double quotation marks are not stored

as part of the string, so C++ cannot use them to determine where the

string ends.)

The string-delimiting zero is not the same as the character zero.

If you look at the ASCII table in Appendix C, “ASCII Table,” you can

see that the first entry, ASCII number 0, is the null character. (If you

are unfamiliar with the ASCII table, you should read Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,” for a

brief description.) This string-delimiting zero is different from the

from the character ‘0’, which has an ASCII value of 48.

As explained in Appendix A, “Memory Addressing, Binary,

and Hexadecimal Review,” all memory locations in your computer

actually hold bit patterns for characters. If the letter A is stored in

memory, an A is not actually there; the binary bit pattern for the

ASCII A (01000001) is stored there. Because the binary bit pattern for

the null zero is 00000000, the string-delimiting zero is also called a

binary zero.
To illustrate this further, Figure 4.2 shows the bit patterns for

the following string literal when stored in memory: “I am 30”.

All string literals end
in a null zero (also
called binary zero or
ASCII zero).

String-terminating zero

Figure 4.2. The bit pattern showing that a null zero and a character zero
are different.

Figure 4.2 shows how a string is stored in your computer’s

memory at the binary level. It is important for you to recognize that

the character 0, inside the number 30, is not the same zero (at the bit

level) as the string-terminating null zero. If it were, C++ would think

this string ended after the 3, which would be incorrect.

89

EXAMPLE
C++ By

This is a fairly advanced concept, but you truly have to under-

stand it before continuing. If you are new to computers, reviewing

the material in Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” will help you understand this concept.

String Lengths

Many times, your program has to know the length of a string.

This becomes critical when you learn how to accept string input

from the keyboard. The length of a string is the number of characters

up to, but not including, the delimiting null zero. Do not include the

null character in that count, even though you know C++ adds it to

the end of the string.

Examples

1. The following are all string literals:

“0” “C” “A much longer string literal”

2. The following table shows some string literals and their

corresponding string lengths.

String Length

”C” 1

”0" 21

”Hello” 5

”” 0

”30 oranges” 10

Assigning Character Literals

All C character literals should be enclosed in single quotation

marks. The single quotation marks are not part of the character, but

they serve to delimit the character. The following are valid C++

character literals:

‘w’ ‘W’ ‘C’ ‘7’ ‘*’ ‘=’ ‘.’ ‘K’

The length of a
string literal does
not include the null
binary zero.

Chapter 4 ♦ Variables and Literals

90

C++ does not append a null zero to the end of character literals.

You should know that the following are different to C++.

‘R’ and “R”

‘R’ is a single character literal. It is one character long, because

all character literals (and variables) are one character long. “R” is a

string literal because it is delimited by double quotation marks. Its

length is also one, but it includes a null zero in memory so C++

knows where the string ends. Due to this difference, you cannot mix

character literals and character strings. Figure 4.3 shows how these

two literals are stored in memory.

Figure 4.3. The difference in memory between ‘R’ as a character
literal and “R” as a string literal.

All the alphabetic, numeric, and special characters on your

keyboard can be character literals. Some characters, however, can-

not be represented with your keyboard. They include some of

the higher ASCII characters (such as the Spanish Ñ). Because you do

not have keys for every character in the ASCII table, C++ enables you

to represent these characters by typing their ASCII hexadecimal

number inside single quotation marks.

For example, to store the Spanish Ñ in a variable, look up its

hexadecimal ASCII number from Appendix C, “ASCII Table.” You

find that it is A5. Add the prefix \x to it and enclose it in single

quotation marks, so C++ will know to use the special character. You

could do that with the following code:

char sn=’\xA5'; // Puts the Spanish Ñ into a variable called sn.

91

EXAMPLE
C++ By

This is the way to store (or print) any character from the ASCII table,

even if that character does not have a key on your keyboard.

The single quotation marks still tell C++ that a single character

is inside the quotation marks. Even though ‘\xA5’ contains four

characters inside the quotation marks, those four characters repre-

sent a single character, not a character string. If you were to include

those four characters inside a string literal, C++ would treat \xA5 as

a single character in the string. The following string literal,

“An accented a is \xA0”

is a C++ string that is 18 characters, not 21 characters. C++ interprets

the \xA0 character as the á, just as it should.

CAUTION: If you are familiar with entering ASCII charac-

ters by typing their ASCII numbers with the Alt-keypad com-

bination, do not do this in your C++ programs. They might

work on your computer (not all C++ compilers support this),

but your program might not be portable to another computer’s

C++ compiler.

Any character preceded by a backslash, \, (such as these have

been) is called an escape sequence, or escape character. Table 4.4 shows

some additional escape sequences that come in handy when you

want to print special characters.

TIP: Include “\n” in a cout if you want to skip to the next

line when printing your document.

Table 4.4. Special C++ escape-sequence
characters.

Escape Sequence Meaning

\a Alarm (the terminal’s bell)

\b Backspace

\f Form feed (for the printer)

continues

Chapter 4 ♦ Variables and Literals

92

\n Newline (carriage return and line feed)

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash (\)

\? Question mark

\’ Single quotation mark

\” Double quotation mark

\000 Octal number

\xhh Hexadecimal number

\0 Null zero (or binary zero)

Math with C++ Characters

Because C++ links characters so closely with their ASCII num-

bers, you can perform arithmetic on character data. The follow-

ing section of code,

char c;

c = ‘T’ + 5; // Add five to the ASCII character.

actually stores a Y in c. The ASCII value of the letter T is 84.

Adding 5 to 84 produces 89. Because the variable c is not an

integer variable, but is a character variable, C++ adds the ASCII

character for 89, not the actual number.

Conversely, you can store character literals in integer variables.

If you do, C++ stores the matching ASCII number for that

character. The following section of code

int i=’P’;

Table 4.4. Continued.

Escape Sequence Meaning

93

EXAMPLE
C++ By

does not put a letter P in i because i is not a character variable.

C++ assigns the number 80 in the variable because 80 is the

ASCII number for the letter P.

Examples

1. To print two names on two different lines, include the \n

between them.

Print the name Harry; drop the cursor down to a new line and
print Jerry.

cout << “Harry\nJerry”;

When the program reaches this line, it prints

Harry

Jerry

You also could separate the two names by appending more

of the cout operator, such as:

cout << “Harry” << “\n” << “Jerry”;

Because the \n only takes one byte of storage, you can output

it as a character literal by typing ‘\n’ in place of the preced-

ing “\n”.

2. The following short program rings the bell on your com-

puter by assigning the \a escape sequence to a variable, then

printing that variable.

// Filename: C4BELL.CPP

// Rings the bell

#include <iostream.h>

main()

{

 char bell=’\a’;

 cout << bell; // No newline needed here.

 return 0;

}

Chapter 4 ♦ Variables and Literals

94

Constant Variables
The term constant variable might seem like a contradiction. After

all, a constant never changes and a variable holds values that

change. In C++ terminology, you can declare variables to be con-

stants with the const keyword. Throughout your program, the

constants act like variables; you can use a constant variable any-

where you can use a variable, but you cannot change constant

variables. To declare a constant, put the keyword const in front of the

variable declaration, for instance:

const int days_of_week = 7;

C++ offers the const keyword as an improvement of the #define

preprocessor directive that C uses. Although C++ supports #define

as well, const enables you to specify constant values with specific

data types.

The const keyword is appropriate when you have data that

does not change. For example, the mathematical π is a good candi-

date for a constant. If you accidently attempt to store a value in a

constant, C++ will let you know. Most C++ programmers choose to

type their constant names in uppercase characters to distinguish

them from regular variables. This is the one time when uppercase

reigns in C++.

NOTE: This book reserves the name constant for C++ pro-

gram constants declared with the const keyword. The term

literal is used for numeric, character, and string data values.

Some books choose to use the terms constant and literal inter-

changeably, but in C++, the difference can be critical.

Example

Suppose a teacher wanted to compute the area of a circle for the

class. To do so, the teacher needs the value of π (mathematically, π
is approximately 3.14159). Because π remains constant, it is a good

candidate for a const keyword, as the following program shows:

95

EXAMPLE
C++ By

Comment for the program filename and description.

 Declare a constant value for π.

 Declare variables for radius and area.

Compute and print the area for both radius values.

// Filename: C4AREAC.CPP

// Computes a circle with radius of 5 and 20.

#include <iostream.h>

main()

{

 const float PI=3.14159;

 float radius = 5;

 float area;

 area = radius * radius * PI; // Circle area calculation

 cout << “The area is “ << area << “ with a radius of 5.\n”;

 radius = 20; // Compute area with new radius.

 area = radius * radius * PI;

 cout << “The area is “ << area << “ with a radius of 20.\n”;

 return 0;

}

Review Questions
The answers to the review questions are in Appendix B.

1. Which of the following variable names are valid?

my_name 89_sales sales_89 a-salary

2. Which of the following literals are characters, strings, inte-

gers, and floating-point literals?

0 -12.0 “2.0” “X” ‘X’ 65.4 -708 ‘0’

Chapter 4 ♦ Variables and Literals

96

3. How many variables do the following statements declare,

and what are their types?

int i, j, k;

char c, d, e;

float x=65.43;

4. With what do all string literals end?

5. True or false: An unsigned variable can hold a larger value

than a signed variable.

6. How many characters of storage does the following literal

take?

‘\x41’

7. How is the following string stored at the bit level?

“Order 10 of them.”

8. How is the following string (called a null string) stored at the

bit level? (Hint: The length is zero, but there is still a termi-

nating character.)

“”

9. What is wrong with the following program?

#include <iostream.h>

main()

{

 const int age=35;

 cout << age << “\n”;

 age = 52;

 cout << age << “\n”;

 return 0;

}

97

EXAMPLE
C++ By

Review Exercises
Now that you have learned some basic C++ concepts, the

remainder of the book will include this section of review exercises so

you can practice your programming skills.

1. Write the C++ code to store three variables: your weight

(you can fib), height in feet, and shoe size. Declare the

variables, then assign their values in the body of your

program.

2. Rewrite your program from Exercise 1, adding proper cout

statements to print the values to the screen. Use appropriate

messages (by printing string literals) to describe the numbers

that are printed.

3. Write a program that stores a value and prints each type of

variable you learned in this chapter.

4. Write a program that stores a value into every type of vari-

able C++ allows. You must declare each variable at the

beginning of your program. Give them values and print

them.

Summary
A firm grasp of C++’s fundamentals is critical to a better

understanding of the more detailed material that follows. This is one

of the last general-topic chapters in the book. You learned about

variable types, literal types, how to name variables, how to assign

variable values, and how to declare constants. These issues are

critical to understanding the remaining concepts in C++.

This chapter taught you how to store almost every type of

literal into variables. There is no string variable, so you cannot store

string literals in string variables (as you can in other programming

languages). However, you can “fool” C++ into thinking it has a string

variable by using a character array to hold strings. You learn this

important concept in the next chapter.

Chapter 4 ♦ Variables and Literals

98

99

EXAMPLE
C++ By

5

Character Arrays
and Strings

Even though C++ has no string variables, you can act as if C++ has

them by using character arrays. The concept of arrays might be new

to you, but this chapter explains how easy they are to declare and

use. After you declare these arrays, they can hold character strings—

just as if they were real string variables. This chapter includes

♦ Character arrays

♦ Comparison of character arrays and strings

♦ Examples of character arrays and strings

After you master this chapter, you are on your way to being

able to manipulate almost every type of variable C++ offers. Ma-

nipulating characters and words is one feature that separates your

computer from a powerful calculator; this capability gives comput-

ers true data-processing capabilities.

Chapter 5 ♦ Character Arrays and Strings

100

Character Arrays
Almost every type of data in C++ has a variable, but there is no

variable for holding character strings. The authors of C++ realized

that you need some way to store strings in variables, but instead of

storing them in a string variable (as some languages such as BASIC

or Pascal do) you must store them in an array of characters.

If you have never programmed before, an array might be new

to you. An array is a list (sometimes called a table) of variables, and

most programming languages allow the use of such lists. Suppose

you had to keep track of the sales records of 100 salespeople. You

could make up 100 variable names and assign a different salesperson’s

sales record to each one.

All those different variable names, however, are difficult to

track. If you were to put them in an array of floating-point variables,

you would have to keep track of only a single name (the array name)

and reference each of the 100 values by a numeric subscript.

The last few chapters of this book cover array processing in

more detail. However, to work with character string data in your

early programs, you have to become familiar with the concept of

character arrays.
Because a string is simply a list of one or more characters, a

character array is the perfect place to hold strings of information.

Suppose you want to keep track of a person’s full name, age, and

salary in variables. The age and salary are easy because there are

variable types that can hold such data. The following code declares

those two variables:

int age;

float salary;

You have no string variable to hold the name, but you can

create an appropriate array of characters (which is actually one or

more character variables in a row in memory) with the following

declaration:

char name[15];

This reserves a character array. An array declaration always

includes brackets ([]) that declare the space for the array. This array

is 15 characters long. The array name is name. You also can assign a

A string literal can be
stored in an array of
characters.

101

EXAMPLE
C++ By

value to the character array at the time you declare the array. The

following declaration statement not only declares the character

array, but also assigns the name “Michael Jones” at the same time:

Declare the character array called name as 15 characters long, and assign
Michael Jones to the array.

char name[15]=”Michael Jones”;

Figure 5.1 shows what this array looks like in memory. Each of

the 15 boxes of the array is called an element. Notice the null zero (the

string-terminating character) at the end of the string. Notice also that

the last character of the array contains no data. You filled only the

first 14 elements of the array with the data and the data’s null zero.

The 15th element actually has a value in it—but whatever follows

the string’s null zero is not a concern.

Figure 5.1. A character array after being declared and assigned a string
value.

You can access individual elements in an array, or you can

access the array as a whole. This is the primary advantage of an array

over the use of many differently named variables. You can assign

values to the individual array elements by putting the elements’

location, called a subscript, in brackets, as follows:

name[3]=’k’;

Chapter 5 ♦ Character Arrays and Strings

102

This overwrites the h in the name Michael with a k. The string now

looks like the one in Figure 5.2.

All array subscripts
begin at 0.

Figure 5.2. The array contents (see Figure 5.1) after changing one of the
elements.

All array subscripts start at zero. Therefore, to overwrite the

first element, you must use 0 as the subscript. Assigning name[3] (as

is done in Figure 5.2) changes the value of the fourth element in the

array.

You can print the entire string—or, more accurately, the entire

array—with a single cout statement, as follows:

cout << name;

Notice when you print an array, you do not include brackets

after the array name. You must be sure to reserve enough characters

in the array to hold the entire string. The following line,

char name[5]=”Michael Jones”;

is incorrect because it reserves only five characters for the array,

whereas the name and its null zero require 14 characters. However,

C++ does give you an error message for this mistake (illegal

initialization).

103

EXAMPLE
C++ By

CAUTION: Always reserve enough array elements to hold the

string, plus its null-terminating character. It is easy to forget the

null character, but don’t do it!

If your string contains 13 characters, it also must have a 14th for

the null zero or it will never be treated like a string. To help eliminate

this error, C++ gives you a shortcut. The following two character

array statements are the same:

char horse[9]=”Stallion”;

and

char horse[]=”Stallion”;

If you assign a value to a character array at the same time you declare

the array, C++ counts the string’s length, adds one for the null zero,

and reserves the array space for you.

If you do not assign a value to an array at the time it is declared,

you cannot declare it with empty brackets. The following statement,

char people[];

does not reserve any space for the array called people. Because you

did not assign a value to the array when you declared it, C++

assumes this array contains zero elements. Therefore, you have no

room to put values in this array later. Most compilers generate an

error if you attempt this.

Character Arrays
Versus Strings

In the previous section, you saw how to put a string in

a character array. Strings can exist in C++ only as string literals, or

as stored information in character arrays. At this point, you have

only to understand that strings must be stored in character arrays.

As you read through this book and become more familiar with

arrays and strings, however, you should become more comfortable

with their use.

Chapter 5 ♦ Character Arrays and Strings

104

NOTE: Strings must be stored in character arrays, but not all

character arrays contain strings.

Look at the two arrays shown in Figure 5.3. The first one, called

cara1, is a character array, but it does not contain a string. Rather than

a string, it contains a list of several characters. The second array,

called cara2, contains a string because it has a null zero at its end.

Figure 5.3. Two character arrays: Cara1 contains characters, and Cara2
contains a character string.

You could initialize these arrays with the following assignment

statements.

Null zero

105

EXAMPLE
C++ By

Declare the array cara1 with 10 individual characters.
Declare the array cara2 with the character string “Excellent”.

char cara1[10]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’,

 ‘j’};

char cara2[10]=”Excellent”;

If you want to put only individual characters in an array, you

must enclose the list of characters in braces, as shown. You could

initialize cara1 later in the program, using assignment statements, as

the following code section does.

char cara1[10];

cara1[0]=’a’;

cara1[1]=’b’;

cara1[2]=’c’;

cara1[3]=’d’;

cara1[4]=’e’;

cara1[5]=’f’;

cara1[6]=’g’;

cara1[7]=’h’;

cara1[8]=’i’;

cara1[9]=’j’; // Last element possible with subscript of nine.

Because the cara1 character array does not contain a null zero,

it does not contain a string of characters. It does contain characters

that can be stored in the array—and used individually—but they

cannot be treated in a program as if they were a string.

CAUTION: You cannot assign string values to character arrays

in a regular assignment statement, except when you first

declare the character arrays.

Because a character array is not a string variable (it can be used

only to hold a string), it cannot go on the left side of an equal (=) sign.

The program that follows is invalid:

Chapter 5 ♦ Character Arrays and Strings

106

#include <iostream.h>

main()

{

 char petname[20]; // Reserve space for the pet’s name.

 petname = “Alfalfa”; // INVALID!

 cout << petname; // The program will never get here.

 return;

}

Because the pet’s name was not assigned at the time the character
array was declared, it cannot be assigned a value later. The following

is allowed, however, because you can assign values individually to

a character array:

#include <iostream.h>

main()

{

 char petname[20]; // Reserve space for the pet’s name.

 petname[0]=’A’; // Assign values one element at a time.

 petname[1]=’l’;

 petname[2]=’f’;

 petname[3]=’a’;

 petname[4]=’l’;

 petname[5]=’f’;

 petname[6]=’a’;

 petname[7]=’\0'; // Needed to ensure this is a string!

 cout <<petname; // Now the pet’s name prints properly.

 return;

}

The petname character array now holds a string because the last

character is a null zero. How long is the string in petname? It is seven

characters long because the length of a string never includes the null

zero.

You cannot assign more than 20 characters to this array because

its reserved space is only 20 characters. However, you can store any

string of 19 (leaving one for the null zero) or fewer characters to the

array. If you assign the “Alfalfa” string in the array as shown, and

then assign a null zero to petname[3] as in:

petname[3]=’\0';

107

EXAMPLE
C++ By

the string in petname is now only three characters long. You have, in

effect, shortened the string. There are still 20 characters reserved for

petname, but the data inside it is the string “Alf” ending with a null

zero.

There are many other ways to assign a value to a string. You can

use the strcpy() function, for example. This is a built-in function that

enables you to copy a string literal in a string. To copy the “Alfalfa”

pet name into the petname array, you type:

strcpy(petname, “Alfalfa”); // Copies Alfalfa into the array.

The strcpy() (“string copy”) function assumes that the first

value in the parentheses is a character array name, and that the

second value is a valid string literal or another character array that

holds a string. You must be sure that the first character array in the

parentheses is long enough (in number of reserved elements) to hold

whatever string you copy into it.

NOTE: Place an #include <string.h> line before the main()

function in programs that use strcpy() or any other built-in

string functions mentioned in this book. Your compiler sup-

plies the string.h file to help the strcpy() function work prop-

erly. The #include files such as iostream.h and string.h will be

further explained as you progress through this book.

Other methods of initializing arrays are explored throughout

the rest of this book.

Examples

1. Suppose you want to keep track of your aunt’s name in a

program so you can print it. If your aunt’s name is Ruth Ann

Cooper, you have to reserve at least 16 elements—15 to hold

the name and one to hold the null character. The following

statement properly reserves a character array to hold her

name:

char aunt_name[16];

The strcpy()
function puts string
literals in string
arrays.

Chapter 5 ♦ Character Arrays and Strings

108

2. If you want to put your aunt’s name in the array at the same

time you reserve the array space, you could do it like this:

char aunt_name[16]=”Ruth Ann Cooper”;

You could also leave out the array size and allow C++ to

count the number needed:

char aunt_name[]=”Ruth Ann Cooper”;

3. Suppose you want to keep track of the names of three

friends. The longest name is 20 characters (including the null

zero). You simply have to reserve enough character-array

space to hold each friend’s name. The following code does

the trick:

char friend1[20];

char friend2[20];

char friend3[20];

These array declarations should appear toward the top of

the block, along with any integer, floating-point, or character

variables you have to declare.

4. The next example asks the user for a first and last name. Use

the cin operator (the opposite of cout) to retrieve data from

the keyboard. Chapter 7, “Simple I/O,” more fully explains

the cout and cin operators. The program then prints the

user’s initials on-screen by printing the first character of each

name in the array. The program must print each array’s 0

subscript because the first subscript of any array begins at 0,

not 1.

// Filename: C5INIT.CPP

// Print the user’s initials.

#include <iostream.h>

main()

{

 char first[20]; // Holds the first name

 char last[20]; // Holds the last name

 cout << “What is your first name? \n”;

 cin >> first;

109

EXAMPLE
C++ By

 cout << “What is your last name? \n”;

 cin >> last;

 // Print the initials

 cout << “Your initials are “ << first[0] << “ “

 << last[0];

 return 0;

}

5. The following program takes your three friends’ character

arrays and assigns them string values by using the three

methods shown in this chapter. Notice the extra #include file

used with the string function strcpy().

// Filename: C5STR.CPP

// Store and initialize three character arrays for three

friends.

#include <iostream.h>

#include <string.h>

main()

{

 // Declare all arrays and initialize the first one.

 char friend1[20]=”Jackie Paul Johnson”;

 char friend2[20];

 char friend3[20];

// Use a function to initialize the second array.

 strcpy(friend2, “Julie L. Roberts”);

 friend3[0]=’A’; // Initialize the last,

 friend3[1]=’d’; // an element at a time.

 friend3[2]=’a’;

 friend3[3]=’m’;

 friend3[4]=’ ‘;

 friend3[5]=’G’;

 friend3[6]=’.’;

 friend3[7]=’ ‘;

 friend3[8]=’S’;

 friend3[9]=’m’;

 friend3[10]=’i’;

Chapter 5 ♦ Character Arrays and Strings

110

 friend3[11]=’t’;

 friend3[12]=’h’;

 friend3[13]=’\0';

 // Print all three names.

 cout << friend1 << “\n”;

 cout << friend2 << “\n”;

 cout << friend3 << “\n”;

 return 0;

}

The last method of initializing a character array with a

string—one element at a time—is not used as often as the

other methods.

Review Questions
The answers to the review questions are in Appendix B.

1. How would you declare a character array called my_name that

holds the following string literal?

“This is C++”

2. How long is the string in Question 1?

3. How many bytes of storage does the string in Question 1

take?

4. With what do all string literals end?

5. How many variables do the following statements declare,

and what are their types?

char name[25];

char address[25];

6. True or false: The following statement assigns a string literal

to a character array.

myname[]=”Kim Langston”;

111

EXAMPLE
C++ By

7. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’, ‘\0’};

8. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’};

Review Exercises
1. Write the C++ code to store your weight, height (in feet),

shoe size, and name with four variables. Declare the vari-

ables, then assign their values in the body of your program.

2. Rewrite the program in Exercise 1, adding proper printf()

statements to print the values. Use appropriate messages (by

printing string literals) to describe the printed values.

3. Write a program to store and print the names of your two

favorite television programs. Store these programs in two

character arrays. Initialize one of the strings (assign it the

first program’s name) at the time you declare the array.

Initialize the second value in the body of the program with

the strcpy() function.

4. Write a program that puts 10 different initials in 10 elements

of a single character array. Do not store a null zero. Print the

list backward, one initial on each line.

Summary
This has been a short, but powerful chapter. You learned about

character arrays that hold strings. Even though C++ has no string

variables, character arrays can hold string literals. After you put a

string in a character array, you can print or manipulate it as if it were

a string.

Chapter 5 ♦ Character Arrays and Strings

112

Starting with the next chapter, you begin to hone the C++ skills

you are building. Chapter 6, “Preprocessor Directives,” introduces

preprocessor directives, which are not actually part of the C++

language but help you work with your source code before your

program is compiled.

113

EXAMPLE
C++ By

6

Preprocessor
Directives

As you might recall from Chapter 2, “What Is a Program?,” the C++

compiler routes your programs through a preprocessor before it

compiles them. The preprocessor can be called a “pre-compiler”

because it preprocesses and prepares your source code for compil-

ing before your compiler receives it.

Because this preprocess is so important to C++, you should

familiarize yourself with it before learning more specialized com-

mands in the language. Regular C++ commands do not affect the

preprocessor. You must supply special non-C++ commands, called

preprocessor directives, to control the preprocessor. These directives

enable you, for example, to modify your source code before the code

reaches the compiler. To teach you about the C++ preprocessor, this

chapter

♦ Defines preprocessor directives

♦ Introduces the #include preprocessor directive

♦ Introduces the #define preprocessor directive

♦ Provides examples of both

Chapter 6 ♦ Preprocessor Directives

114

Almost every proper C++ program contains preprocessor di-

rectives. This chapter teaches you the two most common: #include

and #define.

Understanding Preprocessor
Directives

Preprocessor directives are commands that you supply to the

preprocessor. All preprocessor directives begin with a pound sign

(#). Never put a semicolon at the end of preprocessor directives,

because they are preprocessor commands and not C++ commands.

Preprocessor directives typically begin in the first column of your

source program. They can begin in any column, of course, but you

should try to be consistent with the standard practice and start them

in the first column wherever they appear. Figure 6.1 illustrates a

program that contains three preprocessor directives.

// Filename: C6PRE.CPP

// C++ program that demonstrates preprocessor directives.

#include <iostream.h>

#define AGE 28

#define MESSAGE “Hello, world”

main()

{

 int i = 10, age; // i is assigned a value at declaration

 // age is still UNDEFINED

 age = 5; // Defines the variable, age, as five.

 i = i * AGE; // AGE is not the same as the variable, age.

 cout << i << “ “ << age << “ “ << AGE << “\n”; // 280 5 28

 cout << MESSAGE; // Prints “Hello world”.

 return 0;

}

Figure 6.1. Program containing three preprocessor directives.

Preprocessor
directives

115

EXAMPLE
C++ By

Preprocessor directives cause your C++ preprocessor to change

your source code, but these changes last only as long as the compi-

lation. When you look at your source code again, the preprocessor

is finished with your file and its changes are no longer in the file.

Your preprocessor does not in any way compile your program or

change your actual C++ commands. This concept confuses some

beginning C++ students, but just remember that your program has

yet to be compiled when your preprocessor directives execute.

It has been said that a preprocessor is nothing more than a text-

editor on your program. This analogy holds true throughout this

chapter.

The #include Directive
The #include preprocessor directive merges a disk file into your

source program. Remember that a preprocessor directive does

nothing more than a word processing command does to your

program; word processors also are capable of file merging. The

format of the #include preprocessor directive follows:

#include <filename>

or

#include “filename”

In the #include directive, the filename must be an ASCII text file

(as your source file must be) located somewhere on a disk. To better

illustrate this rule, it might help to leave C++ for just a moment. The

following example shows the contents of two files on disk. One is

called OUTSIDE and the other is called INSIDE.

These are the contents of the OUTSIDE file:

Now is the time for all good men

#include <INSIDE>

to come to the aid of their country.

Preprocessor
directives
temporarily change
your source code.

Chapter 6 ♦ Preprocessor Directives

116

The INSIDE file contains the following:

A quick brown fox jumped

over the lazy dog.

Assume you can run the OUTSIDE file through the C++

preprocessor, which finds the #include directive and replaces it with

the entire file called INSIDE. In other words, the C++ preprocessor

directive merges the INSIDE file into the OUTSIDE file—at the

#include location—and OUTSIDE expands to include the merged

text. After the preprocessing ends, OUTSIDE looks like this:

Now is the time for all good men

A quick brown fox jumped

over the lazy dog.

to come to the aid of their country.

The INSIDE file remains on disk in its original form. Only the

file containing the #include directive is changed. This change is only

temporary; that is, OUTSIDE is expanded by the included file only

for as long as it takes to compile the program.

A few real-life examples might help, because the OUTSIDE and

INSIDE files are not C++ programs. You might want to include a file

containing common code that you frequently use. Suppose you

print your name and address quite often. You can type the following

few lines of code in every program that prints your name and

address:

cout << “Kelly Jane Peterson\n”;

cout << “Apartment #217\n”;

cout << “4323 East Skelly Drive\n”;

cout << “New York, New York\n”;

cout << “ 10012\n”;

Instead of having to retype the same five lines again and again,

you type them once and save them in a file called MYADD.C. From

then on, you only have to type the single line:

#include <myadd.c>

117

EXAMPLE
C++ By

This not only saves typing, but it also maintains consistency

and accuracy. (Sometimes this kind of repeated text is known as a

boilerplate.)
You usually can use angled brackets, <>, or double quotation

marks, “”, around the included filename with the same results. The

angled brackets tell the preprocessor to look for the include file in a

default include directory, set up by your compiler. The double

quotation marks tell the preprocessor first to look for the include file

in the directory where the source code is stored, and then, to look for

it in the system’s include directory.

Most of the time, you do see angled brackets around the

included filename. If you want to include sections of code in other

programs, be sure to store that code in the system’s include directory

(if you use angled brackets).

Even though #include works well for inserted source code,

there are other ways to include common source code that are more

efficient. You learn about one technique, called writing external
functions, in Chapter 16, “Writing C++ Functions.”

This source code #include example serves well to explain what

the #include preprocessor directive does. Despite this fact, #include

seldom is used to include source code text, but is more often used to

include special system files called header files. These system files

help C++ interpret the many built-in functions that you use. Your

C++ compiler comes with its own header files. When you (or your

system administrator) installed your C++ compiler, these header

files were automatically stored on your hard drive in the system’s

include directory. Their filenames always end in .h to differentiate

them from regular C++ source code.

The most common header file is named iostream.h. This file

gives your C++ compiler needed information about the built-in cout

and cin operators, as well as other useful built-in routines that

perform input and output. The name “iostream.h” stands for input/
output stream header.

At this point, you don’t have to understand the iostream.h file.

You only have to place this file before main() in every program you

write. It is rare that a C++ program does not need the iostream.h file.

Even when the file is not needed, including it does no harm. Your

programs can work without iostream.h as long as they do not use

The #include
directive is most
often used for
system header files.

Chapter 6 ♦ Preprocessor Directives

118

an input or output operator defined there. Nevertheless, your

programs are more accurate and hidden errors come to the surface

much faster if you include this file.

Throughout this book, whenever a new built-in function is

described, the function’s matching header file is included. Because

almost every C++ program you write includes a cout to print to the

screen, almost every program contains the following line:

Include the built-in C++ header file called iostream.h.

#include <iostream.h>

In the last chapter, you saw the strcpy() function. Its header file

is called string.h. Therefore, if you write a program that contains

strcpy(), include its matching header file at the same time you

include <iostream.h>. These appear on separate lines, such as:

#include <iostream.h>

#include <string.h>

The order of your include files does not matter as long as you

include the files before the functions that need them. Most C++

programmers include all their needed header files before main().

These header files are simply text files. If you like, find a header

file such as stdio.h on your hard drive and look at it. The file might

seem complex at this point, but there is nothing “hidden” about it.

Don’t change the header file in any way while looking at it. If you do,

you might have to reload your compiler to restore the file.

Examples

1. The following program is short. It includes the name-and-

address printing routine described earlier. After printing the

name and address, it ends.

// Filename: C6INC1.CPP

// Illustrates the #include preprocessor directives.

#include <iostream.h>

119

EXAMPLE
C++ By

main()

{

#include “myadd.c”

return 0;

}

The double quotation marks are used because the file called

MYADD.C is stored in the same directory as the source file.

Remember that if you type this program into your computer

(after typing and saving the MYADD.C file) and then com-

pile your program, the MYADD.C file is included only as

long as it takes to compile the program. Your compiler does

not see this file. Your compiler acts as if you have typed the

following:

// Filename: C6INCL1.CPP

// Illustrates the #include preprocessor directive.

#include <iostream.h>

main()

{

cout(“Kelly Jane Peterson\n”;

cout(“Apartment #217\n”;

cout(“4323 East Skelly Drive\n”;

cout(“New York, New York\n”;

cout(“ 10012\n”;

return 0;

}

This explains what is meant by a preprocessor: The changes

are made to your source code before it’s compiled. Your

original source code is restored as soon as the compile is

finished. When you look at your program again, it appears

as originally typed, with the #include statement.

2. The following program copies a message into a character

array and prints it to the screen. Because the cout and

strcpy() built-in functions are used, both of their header files

are included.

Chapter 6 ♦ Preprocessor Directives

120

The #define
directive replaces
every occurrence of
a first argument with
a second argument.

// Filename: C6INCL3.CPP

// Uses two header files.

#include <iostream.h>

#include <string.h>

main()

{

 char message[20];

 strcpy(message, “This is fun!”);

 cout << message;

 return 0;

}

The #define Directive
The #define preprocessor directive is used in C++ program-

ming, although not nearly as frequently as it is in C. Due to the

const keyword (in C++) that enables you to define variables as

constants, #define is not used as much in C++. Nevertheless, #define

is useful for compatibility to C programs you are converting to C++.

The #define directive might seem strange at first, but it is similar to

a search-and-replace command on a word processor. The format of

#define follows:

#define ARGUMENT1 argument2

where ARGUMENT1 is a single word containing no spaces. Use the same

naming rules for the #define statement’s first argument as for vari-

ables (see Chapter 4, “Variables and Literals”). For the first argu-

ment, it is traditional to use uppercase letters—one of the only uses

of uppercase in the entire C++ language. At least one space separates

ARGUMENT1 from argument2. The argument2 can be any character, word,

or phrase; it also can contain spaces or anything else you can type on

the keyboard. Because #define is a preprocessor directive and not a

C++ command, do not put a semicolon at the end of its expression.

The #define preprocessor directive replaces the occurrence

of ARGUMENT1 everywhere in your program with the contents of

121

EXAMPLE
C++ By

argument2. In most cases, the #define directive should go before main()

(along with any #include directives). Look at the following #define

directive:

Define the AGELIMIT literal to 21.

#define AGELIMIT 21

If your program includes one or more occurrences of the term

AGELIMIT, the preprocessor replaces every one of them with the

number 21. The compiler then reacts as if you actually had typed 21

rather than AGELIMIT, because the preprocessor changes all occur-

rences of AGELIMIT to 21 before your compiler reads the source code.

But, again, the change is only temporary. After your program is

compiled, you see it as you originally typed it, with #define and

AGELIMIT still intact.

AGELIMIT is not a variable, because variables are declared and

assigned values only at the time when your program is compiled

and run. The preprocessor changes your source file before the time

it is compiled.

You might wonder why you would ever have to go to this much

trouble. If you want 21 everywhere AGELIMIT occurs, you could type

21 to begin with! But the advantage of using #define rather than

literals is that if the age limit ever changes (perhaps to 18), you have

to change only one line in the program, not every single occurrence

of the literal 21.

Because #define enables you easily to define and change liter-

als, the replaced arguments of the #define directive are sometimes

called defined literals. (C programmers say that #define “defines

constants,” but C++ programmers rarely use the word “constant”

unless they are discussing the use of const.) You can define any type

of literal, including string literals. The following program contains

a defined string literal that replaces a string in two places.

// Filename: C6DEF1.CPP

// Defines a string literal and uses it twice.

#include <iostream.h>

#define MYNAME “Phil Ward”

main()

The #define
directive creates
defined literals.

Chapter 6 ♦ Preprocessor Directives

122

{

 char name[]=MYNAME;

 cout << “My name is “ << name << “\n”; // Prints the array.

 cout << “My name is “ << MYNAME << “\n”; // Prints the

 // defined literal.

 return 0;

}

The first argument of #define is in uppercase to distinguish it

from variable names in the program. Variables are usually typed in

lowercase. Although your preprocessor and compiler will not con-

fuse the two, other users who look at your program can more quickly

scan through and tell which items are defined literals and which are

not. They will know when they see an uppercase word (if you follow

the recommended standard for this first #define argument) to look at

the top of the program for its actual defined value.

The fact that defined literals are not variables is even more clear

in the following program. This program prints five values. Try to

guess what those five values are before you look at the answer

following the program.

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X1 b+c

#define X2 X1 + X1

#define X3 X2 * c + X1 - d

#define X4 2 * X1 + 3 * X2 + 4 * X3

main()

{

 int b = 2; // Declares and initializes four variables.

 int c = 3;

 int d = 4;

 int e = X4;

 // Prints the values.

 cout << e << “, “ << X1 << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

123

EXAMPLE
C++ By

The output from this program is

44 5 10 17 44

If you treated X1, X2, X3, and X4 as variables, you would not

receive the correct answers. X1 through X4 are not variables; they are

defined literals. Before your program is compiled, the preprocessor

reads the first line and changes every occurrence of X1 to b+c. This

occurs before the next #define is processed. Therefore, after the first

#define, the source code looks like this:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X2 b+c + b+c

#define X3 X2 * c + b+c - d

#define X4 2 * b+c + 3 * X2 + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the first #define finishes, the second one takes over and

changes every occurrence of X2 to b+c + b+c. Your source code at that

point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

Chapter 6 ♦ Preprocessor Directives

124

#define X3 b+c + b+c * c + b+c - d

#define X4 2 * b+c + 3 * b+c + b+c + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the second #define finishes, the third one takes over and

changes every occurrence of X3 to b+c + b+c * c + b+c - d. Your source

code then becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X4 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << X4 << “\n”;

 return 0;

}

125

EXAMPLE
C++ By

The source code is growing rapidly! After the third #define

finishes, the fourth and last one takes over and changes every occur-

rence of X4 to 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d.

Your source code at this last point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << 2 * b+c + 3 * b+c + b+c + 4 * b+c +

 b+c * c + b+c - d << “\n”;

 return 0;

}

This is what your compiler actually reads. You did not type this

complete listing; you typed the original listing (shown first). The

preprocessor expanded your source code into this longer form, just

as if you had typed it this way.

This is an extreme example, but it serves to illustrate how

#define works on your source code and doesn’t define any variables.

The #define behaves like a word processor’s search-and-replace

command. Due to #define’s behavior, you can even rewrite the C++

language!

If you are used to BASIC, you might be more comfortable

typing PRINT rather than C++’s cout when you want to print on-

screen. If so, the following #define statement,

#define PRINT cout

enables you to print in C++ with these statements:

Chapter 6 ♦ Preprocessor Directives

126

PRINT << “This is a new printing technique\n”;

PRINT << “I could have used cout instead.”\n;

This works because by the time your compiler reads the pro-

gram, it reads only the following:

cout << “This is a new printing technique\n”;

cout << “I could have used cout instead.”\n;

In the next chapter, “Simple Input/Output,” you learn about

two functions sometimes used for input and output called printf()

and scanf(). You can just as easily redefine function names using

#define as you did with cout.

Also, remember that you cannot replace a defined literal if it

resides in another string literal. For example, you cannot use the

following #define statement:

#define AGE

to replace information in this cout:

cout << “AGE”;

because AGE is a string literal, and it prints literally just as it appears

inside the double quotation marks. The preprocessor can replace

only defined literals that do not appear in quotation marks.

Do Not Overdo #define

Many early C programmers enjoyed redefining parts of the

language to suit whatever they were used to in another lan-

guage. The cout to PRINT example was only one example of this.

You can redefine virtually any C++ statement or function to

“look” any way you like.

There is a danger to this, however, so be wary of using #define

for this purpose. Your redefining the language becomes con-

fusing to others who modify your program later. Also, as you

become more familiar with C++, you will naturally use the true

127

EXAMPLE
C++ By

C++ language more and more. When you are comfortable with

C++, older programs that you redefined will be confusing—

even to you!

If you are programming in C++, use the language conventions

that C++ provides. Shy away from trying to redefine com-

mands in the language. Think of the #define directive as a way

to define numeric and string literals. If those literals ever

change, you have to change only one line in your program.

“Just say no” to any temptation to redefine commands and

built-in functions. Better yet, modify any older C code that uses

#define, and replace the #define preprocessor directive with the

more useful const command.

Examples

1. Suppose you want to keep track of your company’s target

sales amount of $55,000.00. That target amount has not

changed for the previous two years. Because it probably will

not change soon (sales are flat), you decide to start using a

defined literal to represent this target amount. Then, if target

sales do change, you just have to change the amount on the

#define line to:

#define TARGETSALES 55000.00

which defines a floating-point literal. You can then assign

TARGETSALES to floating-point variables and print its value, just

as if you had typed 55000.00 throughout your program, as

these lines show:

amt = TARGETSALES

cout << TARGETSALES;

2. If you find yourself defining the same literals in many

programs, file the literals on disk and include them. Then,

you don’t have to type your defined literals at the beginning

Chapter 6 ♦ Preprocessor Directives

128

of every program. If you store these literals in a file called

MYDEFS.C in your program’s directory, you can include the

file with the following #include statement:

#include “mydefs.c”

(To use angled brackets, you have to store the file in your

system’s include directory.)

3. Defined literals are appropriate for array sizes. For example,

suppose you declare an array for a customer’s name. When

you write the program, you know you don’t have a cus-

tomer whose name is longer than 22 characters (including

the null). Therefore, you can do this:

#define CNMLENGTH 22

When you define the array, you can use this:

char cust_name[CNMLENGTH]

Other statements that need the array size also can use

CNMLENGTH.

4. Many C++ programmers define a list of error messages.

Once they define the messages with an easy-to-remember

name, they can print those literals if an error occurs and still

maintain consistency in their programs. The following error

messages (or a similar form) often appear at the beginning of

C++ programs.

#define DISKERR “Your disk drive seems not to be working”

#define PRNTERR “Your printer is not responding”

#define AGEERR “You cannot enter an age that small”

#define NAMEERR “You must enter a full name”

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You can define variables with the preprocessor

directives.

129

EXAMPLE
C++ By

2. Which preprocessor directive merges another file into your

program?

3. Which preprocessor directive defines literals throughout

your program?

4. True or false: You can define character, string, integer, and

floating-point literals with the #define directive.

5. Which happens first: your program is compiled or pre-

processed?

6. What C++ keyword is used to replace the #define prepro-

cessor directive?

7. When do you use the angled brackets in an #include, and

when do you use double quotation marks?

8. Which are easier to change: defined literals or literals that

you type throughout a program? Why?

9. Which header file should you include in almost every C++

program you write?

10. True or false: The #define in the following:

#define MESSAGE “Please press Enter to continue...”

changes this statement:

cout << “MESSAGE”;

11. What is the output from the following program?

// Filename: C6EXER,C

#include <iostream.h>

#define AMT1 a+a+a

#define AMT2 AMT1 - AMT1

main()

{

 int a=1;

 cout << “Amount is “ << AMT2 << “\n”;

 return 0;

}

Chapter 6 ♦ Preprocessor Directives

130

Even if you get this right, you will appreciate the side effects

of #define. The const keyword (discussed in Chapter 4,

“Variables and Literals”) before a constant variable has none

of the side effects that #define has.

Review Exercises
1. Write a program that prints your name to the screen. Use a

defined literal for the name. Do not use a character array,

and don’t type your actual name inside the cout.

2. Suppose your boss wanted you to write a program that

produced an “exception report.” If the company’s sales are

less than $100,000.00 or more than $750,000.00, your boss

wants your program to print the appropriate message. You

learn how to produce these types of reports later in the book,

but for now just write the #define statements that define

these two floating-point literals.

3. Write the cout statements that print your name and birth

date to the screen. Store these statements in their own file.

Write a second program that includes the first file and

prints your name and birth date. Be sure also to include

<iostream.h>, because the included file contains cout

statements.

4. Write a program that defines the ten digits, 0 through 9, as

literals ZERO through NINE. Add these ten defined digits and

print the result.

Summary
This chapter taught you the #include and #define preprocessor

directives. Despite the fact that these directives are not executed,

they temporarily change your source code by merging and defining

literals into your program.

131

EXAMPLE
C++ By

The next chapter, “Simple Input/Output,” explains input and

output in more detail. There are ways to control precision when

using cin and cout, as well as built-in functions that format input

and output.

Chapter 6 ♦ Preprocessor Directives

132

133

EXAMPLE
C++ By

7

Simple
Input/Output

You have already seen the cout operator. It prints values to the

screen. There is much more to cout than you have learned. Using cout

and the screen (the most common output device), you can print

information any way you want it. Your programs also become much

more powerful if you learn to receive input from the keyboard. cin

is an operator that mirrors the cout. Instead of sending output values

to the screen, cin accepts values that the user types at the keyboard.

The cout and cin operators offer the new C++ programmer

input and output operators they can use with relative ease. Both of

these operators have a limited scope, but they give you the ability to

send output from and receive input to your programs. There are

corresponding functions supplied with all C++ compilers called

printf() and scanf(). These functions are still used by C++ program-

mers due to their widespread use in regular C programs.

This chapter introduces you to

♦ The cout operator

♦ Control operators

♦ The cin operator

Chapter 7 ♦ Simple Input/Output

134

♦ The printf() output function

♦ The scanf() input function

You will be surprised at how much more advanced your

programs can be after you learn these input/output operators.

The cout Operator
The cout operator sends data to the standard output device. The

standard output device is usually the screen; you can, however,

redirect standard output to another device. If you are unfamiliar

with device redirection at the operating system level, don’t worry,

you learn more about it in this book. At this point, cout sends all

output to the screen.

The format of the cout is different from those of other C++

commands. The format for cout is

cout << data [<< data];

The data placeholder can be variables, literals, expressions, or

a combination of all three.

Printing Strings

To print a string constant, simply type the string constant after

the cout operator. For example, to print the string, The rain in Spain,

you would simply type this:

Print the sentence “The rain in Spain” to the screen.

cout << “The rain in Spain”;

You must remember, however, that cout does not perform an

automatic carriage return. This means the screen’s cursor appears

directly after the last printed character and subsequent couts begin

thereafter.

To better understand this concept, try to predict the output

from the following three cout operators:

cout sends output
to the screen.

135

EXAMPLE
C++ By

cout << “Line 1”;

cout << “Line 2”;

cout << “Line 3”;

These operators produce the following output:

Line 1Line 2Line 3

which is probably not what you intended. Therefore, you must

include the newline character, \n, whenever you want to move the

cursor to the next line. The following three cout operators produce

a three-line output:

cout << “Line 1\n”;

cout << “Line 2\n”;

cout << “Line 3\n”;

The output from these couts is

Line 1

Line 2

Line 3

The \n character sends the cursor to the next line no matter

where you insert it. The following three cout operators also produce

the correct three-line output:

cout << “Line 1”;

cout << “\nLine 2\n”;

cout “Line 3”;

The second cout prints a newline before it prints anything else.

It then prints its string followed by another newline. The third string

prints on the third line.

You also can print strings stored in character arrays by typing

the array name inside the cout. If you were to store your name in an

array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with the following cout:

cout << my_name;

Chapter 7 ♦ Simple Input/Output

136

The following section of code prints three string literals on

three different lines:

cout << “Nancy Carson\n”;

cout << “1213 Oak Street\n”;

cout << “Fairbanks, Alaska\n”;

The cout is often used to label output. Before printing an age,

amount, salary, or any other numeric data, you should print a string

constant that tells the user what the number means. The following

cout tells the user that the next number printed is an age. Without this

cout, the user would not know what the number represented.

cout << “Here is the age that was found in our files:”;

You can print a blank line by printing two newline characters,

\n, next to each other after your string, as in:

cout << “Prepare the invoices...\n\n”;

Examples

1. The following program stores a few values in three vari-

ables, then prints the results:

// Filename: C7PRNT1.CPP

// Prints values in variables.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << first << middle << last;

137

EXAMPLE
C++ By

 cout << age << dependents;

 cout << salary << bonus;

 return 0;

}

2. The last program does not help the user. The output is not

labeled, and it prints on a single line. Here is the same

program with a few messages included and some newline

characters placed where needed:

// Filename: C7PRNT2.CPP

// Prints values in variables with appropriate labels.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << “Here are the initials:\n”;

 cout << first << middle << last <<“\n”;

 cout << “The age and number of dependents are\n”;

 cout << age << “ “ << dependents << “\n\n”;

 cout << “The salary and bonus are\n”;

 cout << salary << ‘ ‘ << bonus;

 return 0;

}

The output from this program appears below:

Here are the initials:

EWC

The age and number of dependents are

32 2

Chapter 7 ♦ Simple Input/Output

138

The salary and bonus are

25000 575.25

The first floating-point values do not print with zeros, but

the number is correct. The next section shows you how to set

the number of leading and trailing zeros.

3. If you have to print a table of numbers, you can use the \t

tab character to do so. Place the tab character between each

of the printed numbers. The following program prints a list

of team names and number of hits for the first three weeks of

the season:

// Filename: C7TEAM.CPP

// Prints a table of team names and hits for three weeks.

#include <iostream.h>

main()

{

 cout << “Parrots\tRams\tKings\tTitans\tChargers\n”;

 cout << “3\t5\t3\t1\t0\n”;

 cout << “2\t5\t1\t0\t1\n”;

 cout << “2\t6\t4\t3\t0\n”;

 return 0;

}

This program produces the table shown below. You can see

that even though the names are different widths, the num-

bers print correctly beneath them. The \t character forces the

next name or value to the next tab position (every eight

characters).

Parrots Rams Kings Titans Chargers

3 5 3 1 0

2 5 1 0 1

2 6 4 3 0

139

EXAMPLE
C++ By

Control Operators

You have already seen the need for additional program-output

control. All floating-point numbers print with too many decimal

places for most applications. What if you want to print only dollars

and cents (two decimal places), or print an average with a single

decimal place?

You can specify how many print positions to use in printing a

number. For example, the following cout prints the number 456,

using three positions (the length of the data):

cout << 456;

If the 456 were stored in an integer variable, it would still use

three positions to print because the number of digits printed is three.

However, you can specify how many positions to print. The follow-

ing cout prints the number 456 in five positions (with two leading

spaces):

cout << setw(5) << setfill(‘ ‘) << 456;

You typically use the setw manipulator when you want to print

data in uniform columns. Be sure to include the iomanip.h header

file in any programs that use manipulators because iomanip.h

describes how the setw works to the compiler.

The following program shows you the importance of the width

number. Each cout output is described in the comment to its left.

// Filename: C7MOD1.CPP

// Illustrates various integer width cout modifiers.

#include <iostream.h>

#include <iomanip.h>

main()

{ // The output appears below.

 cout << 456 << 456 << 456 << “\n”; // Prints 456456456

 cout << setw(5) << 456 << setw(5) << 456 << setw(5) <<

 456 << “\n”; // Prints 456 456 456

 cout << setw(7) << 456 << setw(7) << 456 << setw(7) <<

 456 << “ \n”; // Prints 456 456 456

 return 0;

}

You can modify the
way numbers print.

Chapter 7 ♦ Simple Input/Output

140

When you use a setw manipulator inside a conversion charac-

ter, C++ right-justifies the number by the width you specify. When

you specify an eight-digit width, C++ prints a value inside those

eight digits, padding the number with leading blanks if the number

does not fill the whole width.

NOTE: If you do not specify a width large enough to hold the

number, C++ ignores your width request and prints the num-

ber in its entirety.

You can control the width of strings in the same manner with

the setw manipulator. If you don’t specify enough width to output

the full string, C++ ignores the width. The mailing list application in the

back of this book uses this technique to print names on mailing labels.

NOTE: setw() becomes more important when you print

floating-point numbers.

setprecision(2) prints a floating-point number with two deci-

mal places. If C++ has to round the fractional part, it does so. The

following cout:

cout << setw(6) << setprecision(2) << 134.568767;

produces the following output:

134.57

Without the setw o r setprecision manipulators, C++ would

have printed:

134.568767

TIP: When printing floating-point numbers, C++ always prints

the entire portion to the left of the decimal (to maintain as much

accuracy as possible) no matter how many positions you

specify. Therefore, many C++ programmers ignore the setw

manipulator for floating-point numbers and only specify the

precision, as in setprecision(2).

141

EXAMPLE
C++ By

Examples

1. If you want to control the width of your data, use a setw

manipulator. The following program is a revision of the

C7TEAM.CPP shown earlier. Instead of using the tab charac-

ter, \t, which is limited to eight spaces, this program uses the

width specifier to set the tabs. It ensures that each column is

10 characters wide.

// Filename: C7TEAMMD.CPP

// Prints a table of team names and hits for three weeks

// using width-modifying conversion characters.

#include <iostream.h>

#include <iomanip.h>

main()

{

 cout << setw(10) << “Parrots” << setw(10) <<

 “Rams” << setw(10) << “Kings” << setw(10) <<

 “Titans” << setw(10) << “Chargers” << “\n”;

 cout << setw(10) << 3 << setw(10) << 5 <<

 setw(10) << 2 << setw(10) << 1 <<

 setw(10) << 0 << “\n”;

 cout << setw(10) << 2 << setw(10) << 5 <<

 setw(10) << 1 << setw(10) << 0 <<

 setw(10) << 1 << “\n”;

 cout << setw(10) << 2 << setw(10) << 6 <<

 setw(10) << 4 << setw(10) << 3 <<

 setw(10) << 0 << “\n”;

 return 0;

}

2. The following program is a payroll program. The output is

in “dollars and cents” because the dollar amounts print

properly to two decimal places.

// Filename: C7PAY1.CPP

// Computes and prints payroll data properly in dollars

// and cents.

Chapter 7 ♦ Simple Input/Output

142

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setw(2) << setprecision(2)

 << gross_pay << “\n”;

 cout << “After taxes of: “ << setw(6) << setprecision(2)

 << taxes << “\n”;

 cout << “his take-home pay was $” << setw(8) <<

 setprecision(2) << net_pay << “\n”;

 return 0;

}

The output from this program follows. Remember that the

floating-point variables still hold the full precision (to six

decimal places), as they did in the previous program. The

modifying setw manipulators only affect how the variables

are output, not what is stored in them.

As of: 03/09/92

Larry Payton worked 43 hours

and got paid 333.25

After taxes of: 106.64

his take-home pay was $226.61

143

EXAMPLE
C++ By

3. Most C++ programmers do not use the setw manipulator

when printing dollars and cents. Here is the payroll program

again that uses the shortcut floating-point width method.

Notice the previous three cout statements include no setw

manipulator. C++ automatically prints the full number to

the left of the decimal and prints only two places to the right.

// Filename: C7PAY2.CPP

// Computes and prints payroll data properly

// using the shortcut modifier.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setprecision(2) << gross_pay

 << “\n”;

 cout << “After taxes of: “ << setprecision(2) << taxes

 << “\n”;

 cout << “his take-home pay was “ << setprecision(2) <<

 net_pay << “\n”;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

144

This program’s output is the same as the previous

program’s.

The cin Operator

You now understand how C++ represents data and variables,

and you know how to print the data. There is one additional part of

programming you have not seen: inputting data to your programs.

Until this point, you have not inputted data into a program. All

data you worked with was assigned to variables in the program.

However, this is not always the best way to transfer data to your

programs; you rarely know what your data is when you write your

programs. The data is known only when you run the programs (or

another user runs them).

The cin operator is one way to input from the keyboard. When

your programs reach the line with a cin, the user can enter values

directly into variables. Your program can then process those vari-

ables and produce output. Figure 7.1 illustrates the difference be-

tween cout and cin.

The cin operator
stores keyboard
input in variables.

Figure 7.1. The actions of cout and cin.

145

EXAMPLE
C++ By

The cin Function Fills Variables with Values

There is a major difference between cin and the assignment

statements (such as i = 17;). Both fill variables with values.

However, the assignment statement assigned specific values to

variables at programming time. When you run a program with

assignment statements, you know from the program’s listing

exactly what values go into the variables because you wrote the

program specifically to store those values. Every time you run

the program, the results are exactly the same because the same

values are assigned to the same variables.

You have no idea, when you write programs that use cin, what

values will be assigned to the cin’s variables because their

values are not known until the program runs and the user

enters those values. This means you have a more flexible

program that can be used by a variety of people. Every time the

program is run, different results are created, depending on the

values typed at each cin in the program.

The cin has its drawbacks. Therefore, in the next few chapters

you will use cin until you learn more powerful (and flexible) input

methods. The cin operator looks much like cout. It contains one or

more variables that appear to the right of the operator name. The

format of the cin is

cin >> value [>> values];

The iostream.h header file contains the information C++ needs

to use cin, so include it when using cin.

NOTE: The cin operator uses the same manipulators (setw and

setprecision) as the cout operator.

As mentioned earlier, cin poses a few problems. The cin opera-

tor requires that your user type the input exactly as cin expects it.

Because you cannot control the user’s typing, this cannot be en-

sured. You might want the user to enter an integer value followed

Chapter 7 ♦ Simple Input/Output

146

by a floating-point value and your cin operator call might expect it

too, but your user might decide to enter something else! If this

happens, there is not much you can do because the resulting input

is incorrect and your C++ program has no reliable method for testing

user accuracy. Before every cin, print a prompt that explains exactly

what you expect the user to type.

For the next few chapters, you can assume that the user knows

to enter the proper values, but for your “real” programs, read on for

better methods to receive input, starting with Chapter 21, “Device

and Character Input/Output.”

Examples

1. If you wanted a program that computed a seven percent

sales tax, you could use the cin statement to figure the sales,

compute the tax, and print the results as the following

program shows:

// Filename: C7SLTX1.CPP

// Prompt for a sales amount and print the sales tax.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 cout << “What is the total amount of the sale? “;

 // Receive the sales amount from user.

 cin >> total_sale;

 // Calculate sales tax.

 stax = total_sale * .07;

The cin operator
requires that the user
type correct input.
This is not always
possible to
guarantee!

147

EXAMPLE
C++ By

 cout << “The sales tax for “ << setprecision(2) <<

 total_sale << “ is “ << setprecision (2) << stax;

 return 0;

}

Because the first cout does not contain a newline character,

\n, the user’s response to the prompt appears to the right of

the question mark.

2. When inputting keyboard strings into character arrays with

cin, you are limited to receiving one word at a time. The cin

does not enable you to type more than one word in a single

character array at a time. The following program asks the

user for his or her first and last name. The program has to

store those two names in two different character arrays

because cin cannot input both names at once. The program

then prints the names in reverse order.

// Filename: C7PHON1.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char first[20], last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 cout << “\n\n”; // Prints two blank lines.

 cout << “In a phone book, your name would look like this:\n”;

 cout << last << “, “ << first;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

148

3. Suppose you want to write a program that does simple

addition for your seven-year-old daughter. The following

program prompts her for two numbers. The program then

waits for her to type an answer. When she gives her answer,

the program displays the correct result so she can see how

well she did.

// Filename: C7MATH.CPP

// Program to help children with simple addition.

// Prompt child for two values after printing

// a title message.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int num1, num2, ans;

 int her_ans;

 cout << “*** Math Practice ***\n\n\n”;

 cout << “What is the first number? “;

 cin >> num1;

 cout << “What is the second number? “;

 cin >> num2;

 // Compute answer and give her a chance to wait for it.

 ans = num1 + num2;

 cout << “\nWhat do you think is the answer? “;

 cin >> her_ans; // Nothing is done with this.

 // Prints answer after a blank line.

 cout << “\n” << num1 << “ plus “ << num2 << “ is “

 << ans << “\n\nHope you got it right!”;

 return 0;

}

149

EXAMPLE
C++ By

printf() and scanf()
Before C++, C programmers had to rely on function calls to

perform input and output. Two of those functions, printf() and

scanf(), are still used frequently in C++ programs, although cout and

cin have advantages over them. printf() (like cout) prints values to

the screen and scanf() (like cin) inputs values from the keyboard.

printf() requires a controlling format string that describes the data

you want to print. Likewise, scanf() requires a controlling format

string that describes the data the program wants to receive from the

keyboard.

NOTE: cout is the C++ replacement to printf() and cin is the

C++ replacement to scanf().

Because you are concentrating on C++, this chapter only briefly

covers printf() and scanf(). Throughout this book, a handful of

programs use these functions to keep you familiar with their format.

printf() and scanf() are not obsolete in C++, but their use will

diminish dramatically when programmers move away from C and

to C++. cout and cin do not require controlling strings that describe

their data; cout and cin are intelligent enough to know how to treat

data. Both printf() and scanf() are limited—especially scanf()—but

they do enable your programs to send output and to receive input.

The printf() Function
printf() sends data to the standard output device, which is

generally the screen. The format of printf() is different from those of

regular C++ commands. The values that go inside the parentheses

vary, depending on the data you are printing. However, as a general

rule, the following printf() format holds true:

printf(control_string [, one or more values]);

Notice printf() always requires a control_string. This is a

string, or a character array containing a string, that determines how

the rest of the values (if any are listed) print. These values can be

variables, literals, expressions, or a combination of all three.

The printf()
function sends
output to the screen.

Chapter 7 ♦ Simple Input/Output

150

TIP: Despite its name, printf() sends output to the screen and

not to the printer.

The easiest data to print with printf() are strings. To print a

string constant, you simply type that string constant inside the

printf() function. For example, to print the string The rain in Spain,

you would simply type the following:

Print the phrase “The rain in Spain” to the screen.

printf(“The rain in Spain”);

printf(), like cout, does not perform an automatic carriage

return. Subsequent printf()s begin next to that last printed charac-

ter. If you want a carriage return, you must supply a newline

character, as so:

printf(“The rain in Spain\n”);

You can print strings stored in character arrays also by typing

the array name inside the printf(). For example, if you were to store

your name in an array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with this printf():

printf(my_name);

You must include the stdio.h header file when using printf()

and scanf() because stdio.h determines how the input and output

functions work in the compiler. The following program assigns a

message in a character array, then prints that message.

// Filename: C7PS2.CPP

// Prints a string stored in a character array.

#include <stdio.h>

main()

{

 char message[] = “Please turn on your printer”;

 printf(message);

 return 0;

}

151

EXAMPLE
C++ By

Conversion Characters
Inside most printf() control strings are conversion characters.

These special characters tell printf() exactly how the data (following

the characters) are to be interpreted. Table 7.1 shows a list of

common conversion characters. Because any type of data can go

inside the printf()’s parentheses, these conversion characters are

required any time you print more than a single string constant. If you

don’t want to print a string, the string constant must contain at least

one of the conversion characters.

Table 7.1. Common printf() conversion characters.

Conversion

Character Output

%s String of characters (until null zero is reached)

%c Character

%d Decimal integer

%f Floating-point numbers

%u Unsigned integer

%x Hexadecimal integer

%% Prints a percent sign (%)

Note: You can insert an l (lowercase l) or L before the integer and floating-point conversion characters

(such as %ld and %Lf) to indicate that a long integer or long double floating-point is to be printed.

NOTE: Characters other than those shown in the table print

exactly as they appear in the control string.

When you want to print a numeric constant or variable, you

must include the proper conversion character inside the printf()

control string. If i, j, and k are integer variables, you cannot print

them with the printf() that follows.

printf(i,j,k);

Chapter 7 ♦ Simple Input/Output

152

Because printf() is a function and not a command, this printf()

function has no way of knowing what type the variables are. The

results are unpredictable, and you might see garbage on your

screen—if anything appears at all.

When you print numbers, you must first print a control string

that includes the format of those numbers. The following printf()

prints a string. In the output from this line, a string appears with an

integer (%d) and a floating-point number (%f) printed inside that

string.

printf(“I am Betty, I am %d years old, and I make %f\n”,

 35, 34050.25);

This produces the following output:

I am Betty, I am 35 years old, and I make 34050.25

Figure 7.2 shows how C interprets the control string and the

variables that follow. Be sure you understand this example before

moving on. It is the foundation of the printf() function.

Figure 7.2. Control string in action.

You also can print integer and floating-point variables in the

same manner.

Examples

1. The following program stores a few values in three vari-

ables, then prints the results.

153

EXAMPLE
C++ By

// Filename: C7PRNTF.CPP

// Prints values in variables with appropriate labels.

#include <stdio.h>

main()

{

 char first=’E’; // Store some character, integer,

 char middle=’W’; // and floating-point variable.

 char last=’C’;

 int age=32;

 int dependents=2;

 float salary=25000.00;

 float bonus=575.25;

 /* Prints the results. */

 printf(“Here are the initials\n”);

 printf(“%c%c%c\n\n”, first, middle, last);

 printf(“The age and number of dependents are\n”);

 printf(“%d %d\n\n”, age, dependents);

 printf(“The salary and bonus are\n”);

 printf(“%f %f”, salary, bonus);

 return 0;

}

The output from this program is

Here are the initials

EWC

The age and number of dependents are

32 2

The salary and bonus are

25000.000000 575.250000

2. The floating-point values print with too many zeros, of

course, but the numbers are correct. You can limit the num-

ber of leading and trailing zeros that is printed by adding a

width specifier in the control string. For instance, the following

printf() prints the salary and bonus with two decimal places:

printf(“%.2f %.2f”, salary, bonus);

Chapter 7 ♦ Simple Input/Output

154

Make sure your printed values match the control string

supplied with them. The printf() function cannot fix prob-

lems resulting from mismatched values and control strings.

Don’t try to print floating-point values with character-string

control codes. If you list five integer variables in a printf(),

be sure to include five %d conversion characters in the

printf() as well.

Printing ASCII Values

There is one exception to the rule of printing with matching

conversion characters. If you want to print the ASCII value of

a character, you can print that character (whether it is a constant

or a variable) with the integer %d conversion character. Instead

of printing the character, printf() prints the matching ASCII

number for that character.

Conversely, if you print an integer with a %c conversion char-

acter, you see the character that matches that integer’s value

from the ASCII table.

The following printf()s illustrate this fact:

printf(“%c”, 65); // Prints the letter A.

printf(“%d”, ‘A’); // Prints the number 65.

The scanf() Function
The scanf() function reads input from the keyboard. When

your programs reach the line with a scanf(), the user can enter values

directly into variables. Your program can then process the variables

and produce output.

The scanf() function looks much like printf(). It contains a

control string and one or more variables to the right of the control

string. The control string informs C++ exactly what the incoming

keyboard values look like, and what their types are. The format of

scanf() is

scanf(control_string, one or more values);

The scanf()
function stores
keyboard input to
variables.

155

EXAMPLE
C++ By

The scanf() control_string uses almost the same conversion

characters as the printf() control_string, with two slight differences.

You should never include the newline character, \n, in a scanf()

control string. The scanf() function “knows” when the input is

finished when the user presses Enter. If you supply an additional

newline code, scanf() might not terminate properly. Also, always

put a beginning space inside every scanf() control string. This does

not affect the user’s input, but scanf() sometimes requires it to work

properly. Later examples in this chapter clarify this fact.

As mentioned earlier, scanf() poses a few problems. The scanf()

function requires that your user type the input exactly the way

control_string specifies. Because you cannot control your user’s

typing, this cannot always be ensured. For example, you might

want the user to enter an integer value followed by a floating-point

value (your scanf() control string might expect it too), but your user

might decide to enter something else! If this happens, there is not

much you can do. The resulting input is incorrect, but your C

program has no reliable method for testing user accuracy before

your program is run.

CAUTION: The user’s keyboard input values must match, in

number and type, the control string contained in each scanf().

Another problem with scanf() is not as easy for beginners to

understand as the last. The scanf() function requires that you use

pointer variables, not regular variables, in its parentheses. Although

this sounds complicated, it doesn’t have to be. You should have no

problem with scanf()’s pointer requirements if you remember these

two simple rules:

1. Always put an ampersand (&) before variable names inside a

scanf().

2. Never put an ampersand (&) before an array name inside a

scanf().

Despite these strange scanf() rules, you can learn this function

quickly by looking at a few examples.

The scanf()
function requires
that your user type
accurately. This is
not always possible
to guarantee!

Chapter 7 ♦ Simple Input/Output

156

Examples

1. If you want a program that computes a seven percent sales

tax, you could use the scanf() statement to receive the sales,

compute the tax, and print the results as the following

program shows.

// Filename: C7SLTXS.CPP

// Compute a sales amount and print the sales tax.

#include <stdio.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 printf(“What is the total amount of the sale? “);

 // Compute the sales amount from user.

 scanf(“ %f”, &total_sale); // Don’t forget the beginning

 // space and an &.

 stax = total_sale * .07; // Calculate the sales tax.

 printf(“The sales tax for %.2f is %.2f”, total_sale, stax);

 return 0;

}

If you run this program, the program waits for you to enter a

value for the total sale. Remember to use the ampersand in

front of the total_sale variable when you enter it in the

scanf() function. After pressing the Enter key, the program

calculates the sales tax and prints the results.

If you entered 10.00 as the sale amount, you would receive

the following output :

The sales tax for 10.00 is 0.70

2. Use the string %s conversion character to input keyboard

strings into character arrays with scanf(). As with cin, you

are limited to inputting one word at a time, because you

157

EXAMPLE
C++ By

cannot type more than one word into a single character array

with scanf(). The following program is similar to

C7PHON1.CPP except the scanf() function, rather than cin,

is used. It must store two names in two different character

arrays, because scanf() cannot input both names at once. The

program then prints the names in reverse order.

// Filename: C7PHON2.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <stdio.h>

main()

{

 char first[20], last[20];

 printf(“What is your first name? “);

 scanf(“ %s”, first);

 printf(“What is your last name? “);

 scanf(“ %s”, last);

 printf(“\n\n”); // Prints two blank lines.

 printf(“In a phone book, your name would look like”

 “this:\n”);

 printf(“%s, %s”, last, first);

 return 0;

}

3. How many values are entered with the following scanf(),

and what are their types?

scanf(“ %d %d %f %s”, &i, &j, &k, l);

Review Questions
The answers to the Review Questions are in Appendix B.

] 1. What is the difference between cout and cin?

2. Why is a prompt message important before using cin for

input?

Chapter 7 ♦ Simple Input/Output

158

3. How many values do you enter with the following cin?

cin >> i >> j >> k >> l;

4. Because they both assign values to variables, is there any

difference between assigning values to variables and using

cin to give them values?

5. True or false: The %s conversion character is usually not

required in printf() control strings.

6. Which types of variables do not require the ampersand (&)

character in scanf() functions?

7. What is the output produced by the following cout?

cout << “The backslash \”\\\” character is special”;

8. What is the result of the following cout?

cout << setw(8) << setprecision(3) << 123.456789;

Review Exercises
1. Write a program that prompts the user for his or her name

and weight. Store these values in separate variables and

print them on-screen.

2. Assume you are a college professor and have to average

grades for 10 students. Write a program that prompts you

for 10 different grades, then displays an average of them.

3. Modify the program in Exercise 2 to ask for each student’s

name as well as her grade. Print the grade list to the screen,

with each student’s name and grade in two columns. Make

sure the columns align by using a setw manipulator on the

grade. At the bottom, print the average of the grades. (Hint:
Store the 10 names and 10 grades in different variables with

different names.) This program is easy, but takes thirty or so

lines, plus appropriate comments and prompts. Later, you

learn ways to streamline this program.

159

EXAMPLE
C++ By

4. This exercise tests your understanding of the backslash

conversion character: Write a program that uses cout opera-

tors to produce the following picture on-screen:

 +

 /*\

 |||

 * |||

 ** |||

 /\ __* |||

 / \|| /|||\

 / | / * \

 / |======|\ ***

 | + + | *

 | || |

 ____|_+||+_|______________/================_______

Summary
You now can print almost anything to the screen. By studying

the manipulators and how they behave, you can control your output

more thoroughly than ever before. Also, because you can receive

keyboard values, your programs are much more powerful. No

longer do you have to know your data values when you write the

program. You can ask the user to enter values into variables with cin.

You have the tools to begin writing programs that fit the data

processing model of INPUT->PROCESS->OUTPUT. This chapter

concludes the preliminary discussion of the C++ language. This part

of the book attempted to give you an overview of the language and

to teach you enough of the language elements so you can begin

writing helpful programs.

Chapter 8, “Using C++ Math Operators and Precedence,”

begins a new type of discussion. You learn how C++’s math and

relational operators work on data, and the importance of the prece-

dence table of operators.

Chapter 7 ♦ Simple Input/Output

160

Part II
Using C++ Operators

163

EXAMPLE
C++ By

8

Using C++ Math
Operators and
Precedence

If you are dreading this chapter because you don’t like math—relax,

C++ does all your math for you! It is a misconception that you have

to be good at math to understand how to program computers. In

fact, programming practice assumes the opposite is true! Your

computer is your “slave,” to follow your instructions, and to do all

the calculations for you. This chapter explains how C++ computes

by introducing you to

♦ Primary math operators

♦ Order of operator precedence

♦ Assignment statements

♦ Mixed data type calculations

♦ Type casting

Chapter 8 ♦ Using C++ Math Operators and Precedence

164

Many people who dislike math actually enjoy learning how the

computer handles it. After learning the math operators and a few

simple ways in which C++ uses them, you should feel comfortable

using calculations in your programs. Computers are fast, and they

can perform math operations much faster than you can!

C++’s Primary Math
Operators

A C++ math operator is a symbol used for adding, subtracting,

multiplying, dividing, and other operations. C++ operators are not

always mathematical in nature, but many are. Table 8.1 lists these

operator symbols and their primary meanings.

Table 8.1. C++ primary operators.

Symbol Meaning

* Multiplication

/ Division and Integer Division

% Modulus or Remainder

+ Addition

- Subtraction

Most of these operators work in the familiar way you expect

them to. Multiplication, addition, and subtraction produce the same

results (and the division operator usually does) as those produced

with a calculator. Table 8.2 illustrates four of these simple operators.

Table 8.2. Typical operator results.

Formula Result

4 * 2 8

64 / 4 16

80 - 15 65

12 + 9 21

165

EXAMPLE
C++ By

Table 8.2 contains examples of binary operations performed with

the four operators. Don’t confuse binary operations with binary
numbers. When an operator is used between two literals, variables,

or a combination of both, it is called a binary operator because it

operates using two values. When you use these operators (when

assigning their results to variables, for example), it does not matter

in C++ whether you add spaces to the operators or not.

CAUTION: For multiplication, use the asterisk (*), not an x as

you might normally do. An x cannot be used as the multiplica-

tion sign because C++ uses x as a variable name. C++ interprets

x as the value of a variable called x.

The Unary Operators

A unary operator operates on, or affects, a single value. For

instance, you can assign a variable a positive or negative number by

using a unary + or –.

Examples

1. The following section of code assigns four variables a posi-

tive or a negative number. The plus and minus signs are all

unary because they are not used between two values.

The variable a is assigned a negative 25 value.
The variable b is assigned a positive 25 value.
The variable c is assigned a negative a value.
The variable d is assigned a positive b value.

a = -25;// Assign ‘a’ a negative 25.

b = +25;// Assign ‘b’ a positive 25 (+ is not needed).

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = +b; // Assign ‘d’ the positive of ‘b’ (25, + not needed).

Chapter 8 ♦ Using C++ Math Operators and Precedence

166

2. You generally do not have to use the unary plus sign. C++

assumes a number or variable is positive, even if it has no

plus sign. The following four statements are equivalent to

the previous four, except they do not contain plus signs.

a = -25; // Assign ‘a’ a negative 25.

b = 25; // Assign ‘b’ a positive 25.

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = b; // Assign ‘d’ the positive of ‘b’ (25).

3. The unary negative comes in handy when you want to

negate a single number or variable. The negative of a nega-

tive is positive. Therefore, the following short program

assigns a negative number (using the unary –) to a variable,

then prints the negative of that same variable. Because it had

a negative number to begin with, the cout produces a posi-

tive result.

// Filename: C8NEG.CPP

// The negative of a variable that contains a negative value.

#include <iostream.h>

main()

{

 signed int temp=-12; // ‘signed’ is not needed because

 // it is the default.

 cout << -temp << “\n”; // Produces a 12 on-screen.

 return 0;

}

The variable declaration does not need the signed prefix,

because all integer variables are signed by default.

4. If you want to subtract the negative of a variable, make sure

you put a space before the unary minus sign. For example,

the following line:

new_temp + new_temp- -inversion_factor;

temporarily negates the inversion_factor and subtracts that

negated value from new_temp.

167

EXAMPLE
C++ By

Division and Modulus

The division sign, /, and the modulus operator, %, might behave

in ways unfamiliar to you. They’re as easy to use, however, as the

other operators you have just seen.

The forward slash (/) is always used for division. However, it

produces an integer called divide if integer values (literals, variables,

or a combination of both) appear on both sides of the slash. If there

is a remainder, C++ discards it.

The percent sign (%) produces a modulus, or a remainder, of an

integer division. It requires that integers be on both sides of the

symbol, or it does not work.

Examples

1. Suppose you want to compute your weekly pay. The follow-

ing program asks for your yearly pay, divides it by 52, and

prints the results to two decimal places.

// Filename: C8DIV.CPP

// Displays user’s weekly pay.

#include <stdio.h>

main()

{

 float weekly, yearly;

 printf(“What is your annual pay? “); // Prompt user.

 scanf(“%f”, &yearly);

 weekly = yearly/52; // Computes the weekly pay.

 printf(“\n\nYour weekly pay is $%.2f”, weekly);

 return 0;

}

Because a floating-point number is used in the division, C++

produces a floating-point result. Here is a sample output

from such a program:

What is your annual pay? 38000.00

Your weekly pay is $730.77

The modulus (%)
computes
remainders in
division.

Chapter 8 ♦ Using C++ Math Operators and Precedence

168

Because this program used scanf() and printf() (to keep you
familiar with both ways of performing input and output),
the stdio.h header file is included rather than iostream.h.

2. Integer division does not round its results. If you divide two
integers and the answer is not a whole number, C++ ignores
the fractional part. The following printf()s help show this.
The output that results from each printf() appears in the

comment to the right of each line.

printf(“%d \n”, 10/2); // 5 (no remainder)

printf(“%d \n”, 300/100); // 3 (no remainder)

printf(“%d \n”, 10/3); // 3 (discarded remainder)

printf(“%d \n”, 300/165); // 1 (discarded remainder)

The Order of Precedence
Understanding the math operators is the first of two steps toward

understanding C++ calculations. You must also understand the order of
precedence. The order of precedence (sometimes called the math hierarchy
or order of operators) determines exactly how C++ computes formulas.
The precedence of operators is exactly the same concept you learned in
high school algebra courses. (Don’t worry, this is the easy part of
algebra!) To see how the order of precedence works, try to determine

the result of the following simple calculation:

2 + 3 * 2

If you said 10, you are not alone; many people respond with 10.
However, 10 is correct only if you interpret the formula from the left.
What if you calculated the multiplication first? If you took the value
of 3 * 2 and got an answer of 6, then added the 2, you receive an
answer of 8—which is exactly the same answer that C++ computes
(and happens to be the correct way)!

C++ always performs multiplication, division, and modulus
first, then addition and subtraction. Table 8.3 shows the order of the
operators you have seen so far. Of course, there are many more
levels to C++’s precedence table of operators than the ones shown in
Table 8.3. Unlike most computer languages, C++ has 20 levels of
precedence. Appendix D, “C++ Precedence Table,” contains the
complete precedence table. Notice in this appendix that multiplica-
tion, division, and modulus reside on level 8, one level higher than

C++ performs
multiplication,
division, and
modulus before
addition and
subtraction.

169

EXAMPLE
C++ By

level 9’s addition and subtraction. In the next few chapters, you learn
how to use the remainder of this precedence table in your C++

programs.

Table 8.3. Order of precedence for primary operators.

Order Operator

First Multiplication, division, modulus remainder (*, /, %)

Second Addition, subtraction (+, -)

Examples

1. It is easy to follow C++’s order of operators if you follow the

intermediate results one at a time. The three calculations in

Figure 8.1 show you how to do this.

6 + 2 * 3 - 4 / 2

6 + 6 - 4 / 2

6 + 6 - 2

 12 - 2

 10

3 * 4 / 2 + 3 - 1

 12 / 2 + 3 - 1

 6 + 3 - 1

 9 - 1

 8

20 / 3 + 5 % 2

 6 + 5 % 2

 6 + 1

 7

Figure 8.1. C++’s order of operators with lines indicating precedence.

Chapter 8 ♦ Using C++ Math Operators and Precedence

170

2. Looking back at the order of precedence table, you might

notice that multiplication, division, and modulus are on the

same level. This implies there is no hierarchy on that level. If

more than one of these operators appear in a calculation,

C++ performs the math from the left. The same is true of

addition and subtraction—C++ performs the operation on

the extreme left first.

Figure 8.2 illustrates an example showing this process.

10 / 5 * 2 - 2 + 1

 2 * 2 - 2 + 1

 4 - 2 + 1

 2 + 1

 3

Figure 8.2. C++’s order of operators from the left, with lines indicating
precedence.

Because the division appears to the left of the multiplication,
it is computed first.

You now should be able to follow the order of these C++
operators. You don’t have to worry about the math because C++
does the actual work. However, you should understand this order
of operators so you know how to structure your calculations. Now
that you have mastered this order, it’s time to learn how you can

override it with parentheses!

Using Parentheses

If you want to override the order of precedence, you can add
parentheses to the calculation. The parentheses actually reside on a
level above the multiplication, division, and modulus in the prece-
dence table. In other words, any calculation in parentheses—whether
it is addition, subtraction, division, or whatever—is always calcu-
lated before the rest of the line. The other calculations are then
performed in their normal operator order.

171

EXAMPLE
C++ By

The first formula in this chapter, 2 + 3 * 2, produced an 8 because
the multiplication was performed before addition. However, by
adding parentheses around the addition, as in (2 + 3) * 2, the answer
becomes 10.

In the precedence table shown in Appendix D, “C++ Prece-
dence Table,” the parentheses reside on level 3. Because they are
higher than the other levels, the parentheses take precedence over

multiplication, division, and all other operators.

Examples

1. The calculations shown in Figure 8.3 illustrate how paren-

theses override the regular order of operators. These are the

same three formulas shown in the previous section, but their

results are calculated differently because the parentheses

override the normal order of operators.

6 + 2 * (3 - 4) / 2

 6 + 2 * -1 / 2

 6 + -2 / 2

 6 + -1

 5

3 * 4 / 2 + (3 - 1)

3 * 4 / 2 + 2

 12 / 2 + 2

 6 + 2

 8

20 / (3 + 5) % 2

20 / 8 % 2

 2 % 2

 0

Figure 8.3. Example of parentheses as the highest precedence level
with lines indicating precedence.

Parentheses override
the usual order of
math.

Chapter 8 ♦ Using C++ Math Operators and Precedence

172

2. If an expression contains parentheses-within-parentheses,

C++ evaluates the innermost parentheses first. The expres-

sions in Figure 8.4 illustrate this.

5 * (5 + (6 - 2) + 1)

 5 * (5 + 4 + 1)

 5 * (9 + 1)

 5 * 10

 50

Figure 8.4. Precedence example of parentheses-within-parentheses
with lines indicating precedence.

3. The following program produces an incorrect result, even

though it looks as if it will work. See if you can spot the

error!

Comments to identify your program.
Include the header file iostream.h so cout works.
Declare the variables avg, grade1, grade2, and grade3 as floating-
point variables.
The variable avg becomes equal to grade3 divided by 3.0 plus
grade2 plus grade1.
Print to the screen The average is and the average of the three
grade variables.
Return to the operating system.

// Filename: C8AVG1.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

173

EXAMPLE
C++ By

 avg = grade1 + grade2 + grade3 / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

The problem is that division is performed first. Therefore,

the third grade is divided by 3.0 first, then the other two

grades are added to that result. To correct this problem, you

simply have to add one set of parentheses, as shown in the

following:

// Filename: C8AVG2.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

 avg = (grade1 + grade2 + grade3) / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

TIP: Use plenty of parentheses in your C++ programs to clarify

the order of operators, even when you don’t have to override

their default order. Using parentheses makes the calculations

easier to understand later, when you might have to modify the

program.

Shorter Is Not Always Better

When you program computers for a living, it is much more

important to write programs that are easy to understand than

programs that are short or include tricky calculations.

Chapter 8 ♦ Using C++ Math Operators and Precedence

174

Maintainability is the computer industry’s word for the chang-

ing and updating of programs previously written in a simple

style. The business world is changing rapidly, and the pro-

grams companies have used for years must often be updated to

reflect this changing environment. Businesses do not always

have the resources to write programs from scratch, so they

usually modify the ones they have.

Years ago when computer hardware was much more expen-

sive, and when computer memories were much smaller, it was

important to write small programs, which often meant relying

on clever, individualized tricks and shortcuts. Unfortunately,

such programs are often difficult to revise, especially if the

original programmers leave and someone else (you!) must

modify the original code.

Companies are realizing the importance of spending time to

write programs that are easy to modify and that do not rely on

tricks, or “quick and dirty” routines that are hard to follow. You

can be a much more valuable programmer if you write clean

programs with ample white space, frequent remarks, and

straightforward code. Use parentheses in formulas if it makes

the formulas clearer, and use variables for storing results in

case you need the same answer later in the program. Break

long calculations into several smaller ones.

Throughout the remainder of this book, you can read tips on

writing maintainable programs. You and your colleagues will

appreciate these tips when you incorporate them in your own

C++ programs.

The Assignment Statements
In C++, the assignment operator, =, behaves differently from

what you might be used to in other languages. So far, you have used

it to assign values to variables, which is consistent with its use in

most other programming languages.

However, the assignment operator also can be used in other

ways, such as multiple assignment statements and compound as-

signments, as the following sections illustrate.

175

EXAMPLE
C++ By

Multiple Assignments

If two or more equal signs appear in an expression, each

performs an assignment. This fact introduces a new aspect of the

precedence order you should understand. Consider the following

expression:

a=b=c=d=e=100;

This might at first seem confusing, especially if you know other

computer languages. To C++, the equal sign always means: Assign

the value on the right to the variable on the left. This right-to-left

order is described in Appendix D’s precedence table. The third

column in the table is labeled Associativity, which describes the

direction of the operation. The assignment operator associates from

the right, whereas some of the other C++ operators associate from

the left.

Because the assignment associates from the right, the previous

expression assigns 100 to the variable named e. This assignment

produces a value, 100, for the expression. In C++, all expressions

produce values, typically the result of assignments. Therefore, 100 is

assigned to the variable d. The value, 100, is assigned to c, then to b,

and finally to a. The old values of these variables are replaced by 100

after the statement finishes.

Because C++ does not automatically set variables to zero before

you use them, you might want to do so before you use the variables

with a single assignment statement. The following section of vari-

able declarations and initializations is performed using multiple

assignment statements.

main()

{

 int ctr, num_emp, num_dep;

 float sales, salary, amount;

 ctr=num_emp=num_dep=0;

 sales=salary=amount=0;

 // Rest of program follows.

In C++, you can include the assignment statement almost

anywhere in a program, even in another calculation. For example,

consider this statement:

Chapter 8 ♦ Using C++ Math Operators and Precedence

176

value = 5 + (r = 9 - c);

which is a perfectly legal C++ statement. The assignment operator

resides on the first level of the precedence table, and always pro-

duces a value. Because its associativity is from the right, the r is

assigned 9 - c because the equal sign on the extreme right is

evaluated first. The subexpression (r = 9 - c) produces a value (and

places that value in r), which is then added to 5 before storing the

answer in value.

Example

Because C++ does not initialize variables to zero before you use

them, you might want to include a multiple assignment operator to

do so before using the variables. The following section of code

ensures that all variables are initialized before the rest of the pro-

gram uses them.

main()

{

 int num_emp, dependents, age;

 float salary, hr_rate, taxrate;

 // Initialize all variables to zero.

 num_emp=dependents=age=hours=0;

 salary=hr_rate=taxrate=0.0;

 // Rest of program follows.

Compound Assignments

Many times in programming, you might want to update the

value of a variable. In other words, you have to take a variable’s

current value, add or multiply that value by an expression, then

reassign it to the original variable. The following assignment state-

ment demonstrates this process:

salary=salary*1.2;

177

EXAMPLE
C++ By

This expression multiplies the old value of salary by 1.2 (in

effect, raising the value in salary by 20 percent), then reassigns it to

salary. C++ provides several operators, called compound operators,
that you can use any time the same variable appears on both sides

of the equal sign. The compound operators are shown in Table 8.4.

Table 8.4. C++’s compound operators.

Operator Example Equivalent

+= bonus+=500; bonus=bonus+500;

-= budget-=50; budget=budget-50;

= salary=1.2; salary=salary*1.2;

/= factor/=.50; factor=factor/.50;

%= daynum%=7; daynum=daynum%7;

The compound operators are low in the precedence table. They

typically are evaluated last or near-last.

Examples

1. You have been storing your factory’s production amount

in a variable called prod_amt, and your supervisor has just

informed you that a new addition has to be applied to the

production value. You could code this update in a statement,

as follows:

prod_amt = prod_amt + 2.6; // Add 2.6 to current production.

Instead of using this formula, use C++’s compound addition

operator by coding it like this:

prod_amt += 2.6; // Add 2.6 to current production.

2. Suppose you are a high school teacher who wants to raise

your students’ grades. You gave a test that was too difficult,

and the grades were not what you expected. If you had

stored each of the student’s grades in variables named

grade1, grade2, grade3, and so on, you can update the grades

in a program with the following section of compound

assignments.

Chapter 8 ♦ Using C++ Math Operators and Precedence

178

grade1*=1.1; // Increase each student’s grade by 10.

percent.

grade2*=1.1;

grade3*=1.1;

// Rest of grade changes follow.

3. The precedence of the compound operators requires impor-

tant consideration when you decide how to code compound

assignments. Notice from Appendix D, “C++ Precedence

Table,” that the compound operators are on level 19, much

lower than the regular math operators. This means you must

be careful how you interpret them.

For example, suppose you want to update the value of a

sales variable with this formula:

4-factor+bonus

You can update the sales variable with the following

statement:

sales = *4 - factor + bonus;

This statement adds the quantity 4-factor+bonus to sales. Due

to operator precedence, this statement is not the same as the

following one:

sales = sales *4 - factor + bonus;

Because the *= operator is much lower in the precedence

table than * or -, it is performed last, and with right-to-left

associativity. Therefore, the following are equivalent, from a

precedence viewpoint:

sales *= 4 - factor + bonus;

and

sales = sales * (4 - factor + bonus);

Mixing Data Types
in Calculations

You can mix data types in C++. Adding an integer and a

floating-point value is mixing data types. C++ generally converts

179

EXAMPLE
C++ By

the smaller of the two types into the other. For instance, if you add

a double to an integer, C++ first converts the integer into a double

value, then performs the calculation. This method produces the

most accurate result possible. The automatic conversion of data

types is only temporary; the converted value is back in its original

data type as soon as the expression is finished.

If C++ converted two different data types to the smaller value’s

type, the higher-precision value is truncated, or shortened, and

accuracy is lost. For example, in the following short program, the

floating-point value of sales is added to an integer called bonus.

Before C++ computes the answer, it converts bonus to floating-point,

which results in a floating-point answer.

// Filename: C8DATA.CPP

// Demonstrate mixed data type in an expression.

#include <stdio.h>

main()

{

 int bonus=50;

 float salary=1400.50;

 float total;

 total=salary+bonus; // bonus becomes floating-point

 // but only temporarily.

 printf(“The total is %.2f”, total);

 return 0;

}

Type Casting

Most of the time, you don’t have to worry about C++’s auto-

matic conversion of data types. However, problems can occur if you

mix unsigned variables with variables of other data types. Due to

differences in computer architecture, unsigned variables do not

always convert to the larger data type. This can result in loss of

accuracy, and even incorrect results.

You can override C++’s default conversions by specifying your

own temporary type change. This process is called type casting.
When you type cast, you temporarily change a variable’s data type

C++ attempts to
convert the smaller
data type to the
larger one in a
mixed data-type
expression.

Chapter 8 ♦ Using C++ Math Operators and Precedence

180

from its declared data type to a new one. There are two formats of

the type cast. They are

(data type) expression

and

data type(expression)

where data type can be any valid C++ data type, such as int or float,

and the expression can be a variable, literal, or an expression that

combines both. The following code temporarily type casts the

integer variable age into a double floating-point variable, so it can be

multiplied by the double floating-point factor. Both formats of the

type cast are illustrated.

The variable age_factor is assigned the value of the variable age (now
treated like a double floating-point variable) multiplied by the variable
factor.

age_factor = (double)age * factor; // Temporarily change age

 // to double.

The second way of type casting adds the parentheses around

the variable rather than the data type, as so:

age_factor = double(age) * factor; // Temporarily change age

 // to double.

NOTE: Type casting by adding the parentheses around the

expression and not the data type is new to C++. C programmers

do not have the option—they must put the data type in paren-

theses. The second method “feels” like a function call and

seems to be more natural for this language. Therefore, becom-

ing familiar with the second method will clarify your code.

181

EXAMPLE
C++ By

Examples

1. Suppose you want to verify the interest calculation used by

your bank on a loan. The interest rate is 15.5 percent, stored

as .155 in a floating-point variable. The amount of interest

you owe is computed by multiplying the interest rate by the

amount of the loan balance, then multiplying that by the

number of days in the year since the loan originated. The

following program finds the daily interest rate by dividing

the annual interest rate by 365, the number of days in a year.

C++ must convert the integer 365 to a floating-point literal

automatically, because it is used in combination with a

floating-point variable.

// Filename: C8INT1.CPP

// Calculate interest on a loan.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/365; // Compute floating-

 // point value.

 // Because days is int, it too is converted to float.

 daily_interest = principle * daily_interest * days;

 principle+=daily_interest;//Update principle with interest.

 printf(“The balance you owe is %.2f\n”, principle);

 return 0;

}

The output of this program follows:

The balance you owe is 3566.88

Chapter 8 ♦ Using C++ Math Operators and Precedence

182

2. Instead of having C++ perform the conversion, you might

want to type cast all mixed expressions to ensure they

convert to your liking. Here is the same program as in the

first example, except type casts are used to convert the

integer literals to floating-points before they are used.

// Filename: C8INT2.CPP

// Calculate interest on a loan using type casting.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/float(365); // Type cast days

 // to float.

 // Because days is integer, convert it to float also.

 daily_interest = principle * daily_interest * float(days);

 principle+=daily_interest;// Update principle with interest.

 printf(“The balance you owe is %.2f”, principle);

 return 0;

}

The output from this program is exactly the same as the

previous one.

Review Questions
The answers to the review questions are in Appendix B.

1. What is the result for each of the following expressions?

a. 1 + 2 * 4 / 2

b. (1 + 2) * 4 / 2

c. 1 + 2 * (4 / 2)

183

EXAMPLE
C++ By

2. What is the result for each of the following expressions?

a. 9 % 2 + 1

b. (1 + (10 - (2 + 2)))

3. Convert each of the following formulas into its C++ assign-

ment equivalents.

3 + 3

a. a =

4 + 4

b. x = (a - b)*(a - c)2

a2

c. f =

b3

(8 - x2) (4 * 2 - 1)

d. d = -

 (x - 9) x3

4. Write a short program that prints the area of a circle, when

its radius equals 4 and equals 3.14159. (Hint: The area of a

circle is computed by * radius2.)

5. Write the assignment and printf() statements that print the

remainder of 100/3.

Review Exercises
1. Write a program that prints each of the first eight powers

of 2 (21, 22, 23,...28). Please write comments and include

your name at the top of the program. Print string literals

that describe each answer printed. The first two lines of

your output should look like this:

2 raised to the first power is 2

2 raised to the second power is 4

Chapter 8 ♦ Using C++ Math Operators and Precedence

184

2. Change C8PAY.CPP so it computes and prints a bonus of 15

percent of the gross pay. Taxes are not to be taken out of the

bonus. After printing the four variables, gross_pay, tax_rate,

bonus, and gross_pay, print a check on-screen that looks like

a printed check. Add string literals so it prints the check-

holder and put your name as the payer at the bottom of the

check.

3. Store the weights and ages of three people in variables. Print

a table, with titles, of the weights and ages. At the bottom of

the table, print the averages.

4. Assume that a video store employee works 50 hours. He is

paid $4.50 for the first 40 hours, time-and-a-half (1.5 times

the regular pay rate) for the first five hours over 40, and

double-time pay for all hours over 45. Assuming a 28 per-

cent tax rate, write a program that prints his gross pay, taxes,

and net pay to the screen. Label each amount with appropri-

ate titles (using string literals) and add appropriate com-

ments in the program.

Summary
You now understand C++’s primary math operators and the

importance of the precedence table. Parentheses group operations

so they can override the default precedence levels. Unlike some

other programming languages, every operator in C++ has a mean-

ing, no matter where it appears in an expression. This fact enables

you to use the assignment operator (the equal sign) in the middle of

other expressions.

When you perform math with C++, you also must be aware of

how C++ interprets data types, especially when you mix them in the

same expression. Of course, you can temporarily type cast a variable

or literal so you can override its default data type.

This chapter has introduced you to a part of the book concerned

with C++ operators. The following two chapters (Chapter 9, “Rela-

tional Operators,” and Chapter 10, “Logical Operators”) extend this

introduction to include relational and logical operators. They enable

you to compare data and compute accordingly.

185

EXAMPLE
C++ By

9

Relational
Operators

Sometimes you won’t want every statement in your C++ program to

execute every time the program runs. So far, every program in this

book has executed from the top and has continued, line-by-line,

until the last statement completes. Depending on your application,

you might not always want this to happen.

Programs that don’t always execute by rote are known as data-
driven programs. In data-driven programs, the data dictates what

the program does. You would not want the computer to print every

employee’s paychecks for every pay period, for example, because

some employees might be on vacation, or they might be paid on

commission and not have made a sale during that period. Printing

paychecks with zero dollars is ridiculous. You want the computer to

print checks only for employees who have worked.

This chapter shows you how to create data-driven programs.

These programs do not execute the same way every time. This is

possible through the use of relational operators that conditionally
control other statements. Relational operators first “look” at the

literals and variables in the program, then operate according to what

they “find.” This might sound like difficult programming, but it is

actually straightforward and intuitive.

Chapter 9 ♦ Relational Operators

186

This chapter introduces you to

♦ Relational operators

♦ The if statement

♦ The else statement

Not only does this chapter introduce these comparison com-

mands, but it prepares you for much more powerful programs,

possible once you learn the relational operators.

Defining Relational Operators
In addition to the math operators you learned in Chapter 8,

“Using C++ Math Operators and Precedence,” there are also opera-

tors that you use for data comparisons. They are called relational
operators, and their task is to compare data. They enable you to

determine whether two variables are equal, not equal, and which

one is less than the other. Table 9.1 lists each relational operator and

its meaning.

Table 9.1. The relational operators.

Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

The six relational operators form the foundation of data com-

parison in C++ programming. They always appear with two literals,

variables, expressions (or some combination of these), one on each

side of the operator. These relational operators are useful and you

should know them as well as you know the +, -, *, /, and % mathemati-

cal operators.

Relational operators
compare data.

187

EXAMPLE
C++ By

NOTE: Unlike many programming languages, C++ uses a

double equal sign (==) as a test for equality. The single equal

sign (=) is reserved for assignment of values.

Examples

1. Assume that a program initializes four variables as follows:

int a=5;

int b=10;

int c=15;

int d=5;

The following statements are then True:

a is equal to d, so a == d

b is less than c, so b < c

c is greater than a, so c > a

b is greater than or equal to a, so b >= a

d is less than or equal to b, so d <= b

b is not equal to c, so b != c

These are not C++ statements; they are statements of com-

parison (relational logic) between values in the variables.

Relational logic is easy.

Relational logic always produces a True or False result. In

C++, unlike some other programming languages, you can

directly use the True or False result of relational operators

inside other expressions. You will soon learn how to do this;

but for now, you have to understand only that the following

True and False evaluations are correct:

♦ A True relational result evaluates to 1.

♦ A False relational result evaluates to 0.

Chapter 9 ♦ Relational Operators

188

Each of the statements presented earlier in this example

evaluates to a 1, or True, result.

2. If you assume the same values as stated for the previous

example’s four variables, each of the value’s statements is

False (0):

a == b

b > c

d < a

d > a

a != d

b >= c

c <= b

Study these statements to see why each is False and evalu-

ates to 0. The variables a and d, for example, are exactly

equal to the same value (5), so neither is greater or less than

the other.

You use relational logic in everyday life. Think of the follow-

ing statements:

“The generic butter costs less than the name brand.”

“My child is younger than Johnny.”

“Our salaries are equal.”

“The dogs are not the same age.”

Each of these statements can be either True or False. There is

no other possible answer.

Watch the Signs!

Many people say they are “not math-inclined” or “not logical,”

and you might be one of them. But, as mentioned in Chapter 8,

you do not have to be good in math to be a good computer

programmer. Neither should you be frightened by the term

189

EXAMPLE
C++ By

“relational logic,” because you just saw how you use it in every-

day life. Nevertheless, symbols confuse some people.

The two primary relational operators, less than (<) and greater
than (>), are easy to remember. You probably learned this

concept in school, but might have forgotten it. Actually, their

signs tell you what they mean.

The arrow points to the lesser of the two values. Notice how, in

the previous Example 1, the arrow (the point of the < or >)

always points to the lesser number. The larger, open part of the

arrow points to the larger number.

The relation is False if the arrow is pointing the wrong way. In

other words, 4 > 9 is False because the operator symbol is

pointing to the 9, which is not the lesser number. In English this

statement says, “4 is greater than 9,” which is clearly false.

The if Statement
You incorporate relational operators in C++ programs with the

if statement. Such an expression is called a decision statement because

it tests a relationship—using the relational operators—and, based

on the test’s result, makes a decision about which statement to

execute next.

The if statement appears as follows:

if (condition)

 { block of one or more C++ statements }

The condition includes any relational comparison, and it must

be enclosed in parentheses. You saw several relational comparisons

earlier, such as a==d, c<d, and so on. The block of one or more C++

statements is any C++ statement, such as an assignment or printf(),

enclosed in braces. The block of the if, sometimes called the body of

the if statement, is usually indented a few spaces for readability.

This enables you to see, at a glance, exactly what executes if condition

is True.

Chapter 9 ♦ Relational Operators

190

If only one statement follows the if, the braces are not required

(but it is always good to include them). The block executes only if

condition is True. If condition is False, C++ ignores the block and

simply executes the next appropriate statement in the program that

follows the if statement.

Basically, you can read an if statement in the following way: “If

the condition is True, perform the block of statements inside the

braces. Otherwise, the condition must be False; so do not execute

that block, but continue executing the remainder of the program as

though this if statement did not exist.”

The if statement is used to make a decision. The block of

statements following the if executes if the decision (the result of the

relation) is True, but the block does not execute otherwise. As with

relational logic, you also use if logic in everyday life. Consider the

statements that follow.

“If the day is warm, I will go swimming.”

“If I make enough money, we will build a new house.”

“If the light is green, go.”

“If the light is red, stop.”

Each of these statements is conditional. That is, if and only if the

condition is true do you perform the activity.

CAUTION: Do not type a semicolon after the parentheses of

the relational test. Semicolons appear after each statement

inside the block.

Expressions as the Condition

C++ interprets any nonzero value as True, and zero always as

False. This enables you to insert regular nonconditional expres-

sions in the if logic. To understand this concept, consider the

following section of code:

The if statement
makes a decision.

191

EXAMPLE
C++ By

main()

{

 int age=21; // Declares and assigns age as 21.

 if (age=85)

 { cout << “You have lived through a lot!”; }

 // Remaining program code goes here.

At first, it might seem as though the printf() does not execute,

but it does! Because the code line used a regular assignment

operator (=) (not a relational operator, ==), C++ performs the

assignment of 85 to age. This, as with all assignments you saw

in Chapter 8, “Using C++ Math Operators and Precedence,”

produces a value for the expression of 85. Because 85 is nonzero,

C++ interprets the if condition as True and then performs the

body of the if statement.

Confusing the relational equality test (==) with the regular

assignment operator (=) is a common error in C++ programs,

and the nonzero True test makes this bug even more difficult to

find.

The designers of C++ didn’t intend for this to confuse you.

They want you to take advantage of this feature whenever you

can. Instead of putting an assignment before an if and testing

the result of that assignment, you can combine the assignment

and if into a single statement.

Test your understanding of this by considering this: Would

C++ interpret the following condition as True or False?

if (10 == 10 == 10)...

Be careful! At first glance, it seems True; but C++ interprets it

as False! Because the == operator associates from the left, the

program compares the first 10 to the second. Because they are

equal, the result is 1 (for True) and the 1 is then compared to the

third 10—which results in a 0 (for False)!

Chapter 9 ♦ Relational Operators

192

Examples

1. The following are examples of valid C++ if statements.

If (the variable sales is greater than 5000), then the variable bonus
becomes equal to 500.

if (sales > 5000)

 { bonus = 500; }

If this is part of a C++ program, the value inside the variable

sales determines what happens next. If sales contains more

than 5000, the next statement that executes is the one inside

the block that initializes bonus. If, however, sales contains

5000 or less, the block does not execute, and the line follow-

ing the if’s block executes.

If (the variable age is less than or equal to 21) then print You are a
minor. to the screen and go to a new line, print What is your
grade? to the screen, and accept an integer from the keyboard.

if (age <= 21)

 { cout << “You are a minor.\n”;

 cout << “What is your grade? “;

 cin >> grade; }

If the value in age is less than or equal to 21, the lines of code

within the block execute next. Otherwise, C++ skips the

entire block and continues with the remaining program.

If (the variable balance is greater than the variable low_balance),
then print Past due! to the screen and move the cursor to a new
line.

if (balance > low_balance)

 {cout << “Past due!\n”; }

If the value in balance is more than that in low_balance, execu-

tion of the program continues at the block and the message

“Past due!” prints on-screen. You can compare two variables

to each other (as in this example), or a variable to a literal (as

in the previous examples), or a literal to a literal (although

this is rarely done), or a literal to any expression in place of

any variable or literal. The following if statement shows an

expression included in the if.

193

EXAMPLE
C++ By

If (the variable pay multiplied by the variable tax_rate equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If (pay * tax_rate == minimum)

 { low_salary = 1400.60; }

The precedence table of operators in Appendix D, “C++

Precedence Table,” includes the relational operators. They

are at levels 11 and 12, lower than the other primary math

operators. When you use expressions such as the one shown

in this example, you can make these expressions much more

readable by enclosing them in parentheses (even though

C++ does not require it). Here is a rewrite of the previous if

statement with ample parentheses:

If (the variable pay (multiplied by the variable tax_rate) equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If ((pay * tax_rate) == minimum)

 { low_salary = 1400.60; }

2. The following is a simple program that computes a

salesperson’s pay. The salesperson receives a flat rate of

$4.10 per hour. In addition, if sales are more than $8,500, the

salesperson also receives an additional $500 as a bonus. This

is an introductory example of conditional logic, which

depends on a relation between two values, sales and $8500.

// Filename: C9PAY1.CPP

// Calculates a salesperson’s pay based on his or her sales.

#include <iostream.h>

#include <stdio.h>

main()

{

 char sal_name[20];

 int hours;

 float total_sales, bonus, pay;

 cout << “\n\n”; // Print two blank lines.

 cout << “Payroll Calculation\n”;

 cout << “-------------------\n”;

Chapter 9 ♦ Relational Operators

194

 // Ask the user for needed values.

 cout << “What is salesperson’s last name? “;

 cin >> sal_name;

 cout << “How many hours did the salesperson work? “;

 cin >> hours;

 cout << “What were the total sales? “;

 cin >> total_sales;

 bonus = 0; // Initially, there is no bonus.

 // Compute the base pay.

 pay = 4.10 * (float)hours; // Type casts the hours.

 // Add bonus only if sales were high.

 if (total_sales > 8500.00)

 { bonus = 500.00; }

 printf(“%s made $%.2f \n”, sal_name, pay);

 printf(“and got a bonus of $%.2f”, bonus);

 return 0;

}

This program uses cout, cin, and printf() for its input and

output. You can mix them. Include the appropriate header

files if you do (stdio.h and iostream.h).

The following output shows the result of running this

program twice, each time with different input values. Notice

that the program does two different things: It computes a

bonus for one employee, but doesn’t for the other. The $500

bonus is a direct result of the if statement. The assignment

of $500 to bonus executes only if the value in total_sales is

more than $8500.

Payroll Calculation

What is salesperson’s last name? Harrison

How many hours did the salesperson work? 40

What were the total sales? 6050.64

Harrison made $164.00

and got a bonus of $0.00

195

EXAMPLE
C++ By

Payroll Calculation

What is salesperson’s last name? Robertson

How many hours did the salesperson work? 40

What were the total sales? 9800

Robertson made $164.00

and got a bonus of $500.00

3. When programming the way users input data, it is wise to

program data validation on the values they type. If they enter

a bad value (for instance, a negative number when the input

cannot be negative), you can inform them of the problem

and ask them to reenter the data.

Not all data can be validated, of course, but most of it can be

checked for reasonableness. For example, if you write a

student record-keeping program, to track each student’s

name, address, age, and other pertinent data, you can check

whether the age falls in a reasonable range. If the user enters

213 for the age, you know the value is incorrect. If the user

enters -4 for the age, you know this value is also incorrect.

Not all erroneous input for age can be checked, however. If

the user is 21, for instance, and types 22, your program has

no way of knowing whether this is correct, because 22 falls

in a reasonable age range for students.

The following program is a routine that requests an age, and

makes sure it is more than 10. This is certainly not a fool-

proof test (because the user can still enter incorrect ages), but

it takes care of extremely low values. If the user enters a bad

age, the program asks for it again inside the if statement.

// Filename: C9AGE.CPP

// Program that ensures age values are reasonable.

#include <stdio.h>

main()

{

 int age;

 printf(“\nWhat is the student’s age? “);

 scanf(“ %d”, &age); // With scanf(), remember the &

Chapter 9 ♦ Relational Operators

196

 if (age < 10)

 { printf(“%c”, ‘\x07’); // BEEP

 printf(“*** The age cannot be less than 10 ***\n”);

 printf(“Try again...\n\n”);

 printf(“What is the student’s age? “);

 scanf(“ %d”, &age);

 }

 printf(“Thank you. You entered a valid age.”);

 return 0;

}

This routine can also be a section of a longer program. You

learn later how to prompt repeatedly for a value until a valid

input is given. This program takes advantage of the bell

(ASCII 7) to warn the user that a bad age was entered.

Because the \a character is an escape sequence for the alarm

(see Chapter 4, “Variables and Literals” for more informa-

tion on escape sequences), \a can replace the \x07 in this

program.

If the entered age is less than 10, the user receives an error

message. The program beeps and warns the user about the

bad age before asking for it again.

The following shows the result of running this program.

Notice that the program “knows,” due to the if statement,

whether age is more than 10.

What is the student’s age? 3

*** The age cannot be less than 10 ***

Try again...

What is the student’s age? 21

Thank you. You entered a valid age.

4. Unlike many languages, C++ does not include a square math

operator. Remember that you “square” a number by multi-

plying it times itself (3*3, for example). Because many com-

puters do not allow for integers to hold more than the square

of 180, the following program uses if statements to make

sure the number fits as an integer.

197

EXAMPLE
C++ By

The program takes a value from the user and prints its

square—unless it is more than 180. The message * Square is

not allowed for numbers over 180 * appears on-screen if the

user types a huge number.

// Filename: C9SQR1.CPP

// Print the square of the input value

// if the input value is less than 180.

#include <iostream.h>

main()

{

 int num, square;

 cout << “\n\n”; // Print two blank lines.

 cout << “What number do you want to see the square of? “;

 cin >> num;

 if (num <= 180)

 { square = num * num;

 cout << “The square of “ << num << “ is “ <<

 square << “\n”;

 }

 if (num > 180)

 { cout << ‘\x07’; // BEEP

 cout << “\n* Square is not allowed for numbers over 180 *”;

 cout << “\nRun this program again trying a smaller value.”;

 }

 cout << “\nThank you for requesting square roots.\n”;

 return 0;

}

The following output shows a couple of sample runs with

this program. Notice that both conditions work: If the user

enters a number less than 180, the calculated square appears,

but if the user enters a larger number, an error message

appears.

Chapter 9 ♦ Relational Operators

198

What number do you want to see the square of? 45

The square of 45 is 2025

Thank you for requesting square roots.

What number do you want to see the square of? 212

* Square is not allowed for numbers over 180 *

Run this program again trying a smaller value.

Thank you for requesting square roots.

You can improve this program with the else statement,

which you learn later in this chapter. This code includes a

redundant check of the user’s input. The variable num must

be checked once to print the square if the input number is

less than or equal to 180, and checked again for the error

message if it is greater than 180.

5. The value of 1 and 0 for True and False, respectively, can

help save you an extra programming step, which you are not

necessarily able to save in other languages. To understand

this, examine the following section of code:

commission = 0; // Initialize commission

if (sales > 10000)

 { commission = 500.00; }

pay = net_pay + commission; // Commission is 0 unless

 // high sales.

You can make this program more efficient by combining the

if’s relational test because you know that if returns 1 or 0:

pay = net_pay + (commission = (sales > 10000) * 500.00);

This single line does what it took the previous four lines to

do. Because the assignment on the extreme right has prece-

dence, it is computed first. The program compares the

variable sales to 10000. If it is more than 10000, a True result

of 1 returns. The program then multiplies 1 by 500.00 and

stores the result in commission. If, however, the sales were not

199

EXAMPLE
C++ By

more than 10000, a 0 results and the program receives 0 from

multiplying 0 by 500.00.

Whichever value (500.00 or 0) the program assigns to commis-

sion is then added to net_pay and stored in pay.

The else Statement
The else statement never appears in a program without an if

statement. This section introduces the else statement by showing

you the popular if-else combination statement. Its format is

if (condition)

 { A block of 1 or more C++ statements }

else

 { A block of 1 or more C++ statements }

The first part of the if-else is identical to the if statement. If

condition is True, the block of C++ statements following the if

executes. However, if condition is False, the block of C++ statements

following the else executes instead. Whereas the simple if statement

determines what happens only when the condition is True, the if-

else also determines what happens if the condition is False. No

matter what the outcome is, the statement following the if-else

executes next.

The following describes the nature of the if-else:

♦ If the condition test is True, the entire block of statements

following the if executes.

♦ If the condition test is False, the entire block of statements

following the else executes.

NOTE: You can also compare characters, in addition to num-

bers. When you compare characters, C++ uses the ASCII table

to determine which character is “less than” the other (lower in

the ASCII table). But you cannot compare character strings or

arrays of character strings directly with relational operators.

Chapter 9 ♦ Relational Operators

200

Examples

1. The following program asks the user for a number. It then

prints whether or not the number is greater than zero, using

the if-else statement.

// Filename: C9IFEL1.CPP

// Demonstrates if-else by printing whether an

// input value is greater than zero or not.

#include <iostream.h>

main()

{

 int num;

 cout << “What is your number? “;

 cin >> num; // Get the user’s number.

 if (num > 0)

 { cout << “More than 0\n”; }

 else

 { cout << “Less or equal to 0\n”; }

 // No matter what the number was, the following executes.

 cout << “\n\nThanks for your time!\n”;

 return 0;

}

There is no need to test for both possibilities when you use

an else. The if tests whether the number is greater than zero,

and the else automatically handles all other possibilities.

2. The following program asks the user for his or her first

name, then stores it in a character array. The program checks

the first character of the array to see whether it falls in the

first half of the alphabet. If it does, an appropriate message is

displayed.

// Filename: C9IFEL2.CPP

// Tests the user’s first initial and prints a message.

#include <iostream.h>

main()

{

201

EXAMPLE
C++ By

 char last[20]; // Holds the last name.

 cout << “What is your last name? “;

 cin >> last;

 // Test the initial

 if (last[0] <= ‘P’)

 { cout << “Your name is early in the alphabet.\n”;}

 else

 { cout << “You have to wait a while for “

 << “YOUR name to be called!\n”;}

 return 0;

}

Notice that because the program is comparing a character

array element to a character literal, you must enclose the

character literal inside single quotation marks. The data type

on each side of each relational operator must match.

3. The following program is a more complete payroll routine

than the other one. It uses the if statement to illustrate how

to compute overtime pay. The logic goes something like this:

If employees work 40 hours or fewer, they are paid regular

pay (their hourly rate times the number of hours worked). If

employees work between 40 and 50 hours, they receive one-

and-a-half times their hourly rate for those hours over 40, in

addition to their regular pay for the first 40. All hours over

50 are paid at double the regular rate.

// Filename: C9PAY2.CPP

// Compute the full overtime pay possibilities.

#include <iostream.h>

#include <stdio.h>

main()

{

 int hours;

 float dt, ht, rp, rate, pay;

 cout << “\n\nHow many hours were worked? “;

 cin >> hours;

 cout << “\nWhat is the regular hourly pay? “;

 cin >> rate;

Chapter 9 ♦ Relational Operators

202

 // Compute pay here

 // Double-time possibility

 if (hours > 50)

 { dt = 2.0 * rate * (float)(hours - 50);

 ht = 1.5 * rate * 10.0;} // Time + 1/2 for 10 hours.

 else

 { dt = 0.0; }// Either none or double for hours over 50.

 // Time and a half.

 if (hours > 40)

 { ht = 1.5 * rate * (float)(hours - 40); }

 // Regular Pay

 if (hours >= 40)

 { rp = 40 * rate; }

 else

 { rp = (float)hours * rate; }

 pay = dt + ht + rp; // Add three components of payroll.

 printf(“\nThe pay is %.2f”, pay);

 return 0;

}

4. The block of statements following the if can contain any

valid C++ statement—even another if statement! This

sometimes is handy, as the following example shows.

You can even use this program to award employees for their

years of service to your company. In this example, you are

giving a gold watch to those with more than 20 years of

service, a paperweight to those with more than 10 years, and

a pat on the back to everyone else!

// Filename: C9SERV.CPP

// Prints a message depending on years of service.

#include <iostream.h>

main()

{

 int yrs;

 cout << “How many years of service? “;

 cin >> yrs; // Determine the years they have worked.

203

EXAMPLE
C++ By

 if (yrs > 20)

 { cout << “Give a gold watch\n”; }

 else

 { if (yrs > 10)

 { cout << “Give a paper weight\n”; }

 else

 { cout << “Give a pat on the back\n”; }

 }

 return 0;

}

Don’t rely on the if within an if to handle too many condi-

tions, because more than three or four conditions can add

confusion. You might mess up your logic, such as: “If this is

True, and if this is also True, then do something; but if not

that, but something else is True, then...” (and so on). The

switch statement that you learn about in a later chapter

handles these types of multiple if selections much better

than a long if within an if statement does.

Review Questions
The answers to the review questions are in Appendix B.

1. Which operator tests for equality?

2. State whether each of these relational tests is True or False:

a. 4 >= 5

b. 4 == 4

c. 165 >= 165

d. 0 != 25

3. True or false: C++ is fun prints on-screen when the following

statement executes.

Chapter 9 ♦ Relational Operators

204

if (54 <= 54)

 { printf(“C++ is fun”); }

4. What is the difference between an if and an if-else state-

ment?

5. Does the following printf() execute?

if (3 != 4 != 1)

 { printf(“This will print”); }

6. Using the ASCII table (see Appendix C, “ASCII Table”), state

whether these character relational tests are True or False:

a. ‘C’ < ‘c’

b. ‘0’ > ‘0’

c. ‘?’ > ‘)’

Review Exercises
1. Write a weather-calculator program that asks for a list of the

previous five days’ temperatures, then prints Brrrr! every

time a temperature falls below freezing.

2. Write a program that asks for a number and then prints the

square and cube (the number multiplied by itself three

times) of the number you input, if that number is more than

1. Otherwise, the program does not print anything.

3. In a program, ask the user for two numbers. Print a message

telling how the first one relates to the second. In other

words, if the user enters 5 and 7, your program prints “5 is

less than 7.”

4. Write a program that prompts the user for an employee’s

pre-tax salary and prints the appropriate taxes. The taxes are

10 percent if the employee makes less than $10,000; 15

percent if the employee earns $10,000 up to, but not includ-

ing, $20,000; and 20 percent if the employee earns $20,000 or

more.

205

EXAMPLE
C++ By

Summary
You now have the tools to write powerful data-checking pro-

grams. This chapter showed you how to compare literals, variables,

and combinations of both by using the relational operators. The if

and the if-else statements rely on such data comparisons to deter-

mine which code to execute next. You can now conditionally execute
statements in your programs.

The next chapter takes this one step further by combining

relational operators to create logical operators (sometimes called

compound conditions). These logical operators further improve your

program’s capability to make selections based on data comparisons.

Chapter 9 ♦ Relational Operators

206

207

EXAMPLE
C++ By

10

Logical Operators

C++’s logical operators enable you to combine relational operators

into more powerful data-testing statements. The logical operators

are sometimes called compound relational operators. As C++’s prece-

dence table shows, relational operators take precedence over logical

operators when you combine them. The precedence table plays an

important role in these types of operators, as this chapter empha-

sizes.

This chapter introduces you to

♦ The logical operators

♦ How logical operators are used

♦ How logical operators take precedence

This chapter concludes your study of the conditional testing

that C++ enables you to perform, and it illustrates many examples

of if statements in programs that work on compound conditional

tests.

Defining Logical Operators
There may be times when you have to test more than one set of

variables. You can combine more than one relational test into a

compound relational test by using C++’s logical operators, as shown in

Table 10.1.

Chapter 10 ♦ Logical Operators

208

Table 10.1. Logical operators.

Operator Meaning

&& AND

|| OR

! NOT

The first two logical operators, && and ||, never appear by

themselves. They typically go between two or more relational tests.

Table 10.2 shows you how each logical operator works. These

tables are called truth tables because they show you how to achieve

True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table

(Both sides must be True)

True AND True = True

True AND False = False

False AND True = False

False AND False = False

The OR (||) truth table

(One or the other side must be True)

True OR True = True

True OR False = True

False OR True = True

False OR False = False

The NOT (!) truth table

(Causes an opposite relation)

NOT True = False

NOT False = True

Logical operators
enable the user to
compute compound
relational tests.

209

EXAMPLE
C++ By

Logical Operators and
Their Uses

The True and False on each side of the operators represent a

relational if test. The following statements, for example, are valid if

tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((a < b) && (c > d))

 { cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, c must

be greater than d for the printf() to execute. The if statement still

requires parentheses around its complete conditional test. Consider

this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))

 { bonus=500; }

The sales must be more than 5000, or the hrs_worked must be

more than 81, before the assignment executes.

if (!(sales < 2500))

 { bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This

illustrates an important programming tip: Use ! sparingly. Or, as

some professionals so wisely put it: “Do not use ! or your programs

will not be !(unclear).” It is much clearer to rewrite the previous

example by turning it into a positive relational test:

if (sales >= 2500)

 { bonus 500; }

But the ! operator is sometimes helpful, especially when testing

for end-of-file conditions for disk files, as you learn in Chapter 30,

“Sequential Files.” Most the time, however, you can avoid using ! by

using the reverse logic shown in the following:

The || is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(!) operator:

Chapter 10 ♦ Logical Operators

210

!(var1 == var2) is the same as (var1 != var2)

!(var1 <= var2) is the same as (var1 > var2)

!(var1 >= var2) is the same as (var1 < var2)

!(var1 != var2) is the same as (var1 == var2)

!(var1 > var2) is the same as (var1 <= var2)

!(var1 < var2) is the same as (var1 >= var2)

Notice that the overall format of the if statement is retained

when you use logical operators, but the relational test expands to

include more than one relation. You even can have three or more, as

in the following statement:

if ((a == B) && (d == f) || (l = m) || !(k <> 2)) ...

This is a little too much, however, and good programming

practice dictates using at most two relational tests inside a single if

statement. If you have to combine more than two, use more than one

if statement to do so.

As with other relational operators, you also use the following

logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go

to Italy this summer.”

“If you take the trash out or clean your room, you can watch

TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at

the bit level. For example, take the if test:

if (a == 6) ...

to determine the truth of the relation, (a==6). The computer

takes a binary 6, or 00000110, and compares it, bit-by-bit, to

the variable a. If a contains 7, a binary 00000111, the result of

this equal test is False, because the right bit (called the least-
significant bit) is different.

211

EXAMPLE
C++ By

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you

combine multiple relational tests with one of the logical operators,

C++ does not always interpret the full expression. This ultimately

makes your programs run faster, but there are dangers! For ex-

ample, if your program is given the conditional test:

if ((5 > 4) || (sales < 15) && (15 != 15))...

C++ only evaluates the first condition, (5 > 4), and realizes it does

not have to look further. Because (5 > 4) is True and because || (OR)

anything that follows it is still True, C++ does not bother with the

rest of the expression. The same holds true for the following state-

ment:

if ((7 < 3) && (age > 15) && (initial == ‘D’))...

Here, C++ evaluates only the first condition, which is False.

Because the && (AND) anything else that follows it is also False, C++

does not interpret the expression to the right of (7 < 3). Most of the

time, this doesn’t pose a problem, but be aware that the following

expression might not fulfill your expectations:

if ((5 > 4) || (num = 0))...

The (num = 0) assignment never executes, because C++ has to

interpret only (5 > 4) to determine whether the entire expression is

True or False. Due to this danger, do not include assignment

expressions in the same condition as a logical test. The following

single if condition:

if ((sales > old_sales) || (inventory_flag = ‘Y’))...

should be broken into two statements, such as:

inventory_flag) = ‘Y’;

if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the ‘Y’ value, no matter how

the (sales > old_sales) expression tests.

Chapter 10 ♦ Logical Operators

212

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken

every 10 years, in each year that is evenly divisible by 10.

The following short program asks for a year, and then tells

the user if it is a year of the summer Olympics, a year of the

census, or both. It uses relational operators, logical opera-

tors, and the modulus operator to determine this output.

// Filename: C10YEAR.CPP

// Determines if it is Summer Olympics year,

// U.S. Census year, or both.

#include <iostream.h>

main()

{

 int year;

 // Ask for a year

 cout << “What is a year for the test? “;

 cin >> year;

 // Test the year

 if (((year % 4)==0) && ((year % 10)==0))

 { cout << “Both Olympics and U.S. Census!”;

 return 0; } // Quit program, return to operating

 // system.

 if ((year % 4)==0)

 { cout << “Summer Olympics only”; }

 else

 { if ((year % 10)==0)

 { cout << “U.S. Census only”; }

 }

 return 0;

}

2. Now that you know about compound relations, you can

write an age-checking program like the one called

C9AGE.CPP presented in Chapter 9, “Relational Operators.”

That program ensured the age would be above 10. This is

another way you can validate input for reasonableness.

213

EXAMPLE
C++ By

The following program includes a logical operator in its if to

determine whether the age is greater than 10 and less than

100. If either of these is the case, the program concludes that

the user did not enter a valid age.

// Filename: C10AGE.CPP

// Program that helps ensure age values are reasonable.

#include <iostream.h>

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 if ((age < 10) || (age > 100))

 { cout << “ \x07 \x07 \n”; // Beep twice

 cout << “*** The age must be between 10 and”

 “100 ***\n”; }

 else

 { cout << “You entered a valid age.”; }

 return 0;

}

3. The following program could be used by a video store to

calculate a discount, based on the number of rentals people

transact as well as their customer status. Customers are

classified either R for Regular or S for Special. Special custom-

ers have been members of the rental club for more than one

year. They automatically receive a 50-cent discount on all

rentals. The store also holds “value days” several times a

year. On value days, all customers receive the 50-cent dis-

count. Special customers do not receive an additional 50

cents off during value days, because every day is a discount

for them.

The program asks for each customer’s status and whether or

not it is a value day. It then uses the || relation to test for the

discount. Even before you started learning C++, you would

probably have looked at this problem with the following

idea in mind.

Chapter 10 ♦ Logical Operators

214

“If a customer is Special or if it is a value day, deduct 50

cents from the rental.”

That’s basically the idea of the if decision in the following

program. Even though Special customers do not receive an

additional discount on value days, there is one final if test

for them that prints an extra message at the bottom of the

screen’s indicated billing.

// Filename: C10VIDEO.CPP

// Program that computes video rental amounts and gives

// appropriate discounts based on the day or customer status.

#include <iostream.h>

#include <stdio.h>

main()

{

 float tape_charge, discount, rental_amt;

 char first_name[15];

 char last_name[15];

 int num_tapes;

 char val_day, sp_stat;

 cout << “\n\n *** Video Rental Computation ***\n”;

 cout << “ ------------------------\n”;

 // Underline title

 tape_charge = 2.00;

 // Before-discount tape fee-per tape.

 // Receive input data.

 cout << “\nWhat is customer’s first name? “;

 cin >> first_name;

 cout << “What is customer’s last name? “;

 cin >> last_name;

 cout << “\nHow many tapes are being rented? “;

 cin >> num_tapes;

 cout << “Is this a Value day (Y/N)? “;

 cin >> val_day;

 cout << “Is this a Special Status customer (Y/N)? “;

 cin >> sp_stat;

 // Calculate rental amount.

215

EXAMPLE
C++ By

 discount = 0.0; // Increase discount if they are eligible.

 if ((val_day == ‘Y’) || (sp_stat == ‘Y’))

 { discount = 0.5;

 rental_amt=(num_tapes*tape_charge)

 (discount*num_tapes); }

 // Print the bill.

 cout << “\n\n** Rental Club **\n\n”;

 cout << first_name << “ “ << last_name << “ rented “

 << num_tapes << “ tapes\n”;

 printf(“The total was %.2f\n”, rental_amt);

 printf(“The discount was %.2f per tape\n”, discount);

 // Print extra message for Special Status customers.

 if (sp_stat == ‘Y’)

 { cout << “\nThank them for being a Special “

 << “Status customer\n”;}

 return 0;

}

The output of this program appears below. Notice that

Special customers have the extra message at the bottom of

the screen. This program, due to its if statements, performs

differently depending on the data entered. No discount is

applied for Regular customers on nonvalue days.

*** Video Rental Computation ***

What is customer’s first name? Jerry

What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y

** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 ♦ Logical Operators

216

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,

“Using C++ Math Operators and Precedence,” did not include the

logical operators. To be complete, you should be familiar with the

entire order of precedence, as presented in Appendix D, “C++

Precedence Table.”

You might wonder why the relational and logical operators are

included in a precedence table. The following statement helps show

you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impossible to

determine how such a statement would execute. According to the

precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-

cations are performed first, followed by the relations < and >. The &&

is performed last because it is lowest in the precedence order of

operators.

To avoid such ambiguous problems, be sure to use ample

parentheses—even if the default precedence order is your intention.

It is also wise to resist combining too many expressions inside a

single if relational test.

Notice that || (OR) has lower precedence than && (AND).

Therefore, the following if tests are equivalent:

if ((first_initial==’A’) && (last_initial==’G’) || (id==321)) ...

if (((first_initial==’A’) && (last_initial==’G’)) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence

table makes them identical.

217

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. What are the three logical operators?

2. The following compound relational tests produce True or

False comparisons. Determine which are True and which are

False.

a. ! (True || False)

b. (True && False) && (False || True)

c. ! (True && False)

d. True || (False && False) || False

3. Given the statement:

int i=12, j=10, k=5;

What are the results (True or False) of the following state-

ments? (Hint: Remember that C++ interprets any nonzero

statement as True.)

a. i && j

b. 12 - i || k

c. j != k && i != k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of

the ||.)

// Filename: C10LOGO.CPP

// Logical operator test

#include <iostream.h>

main()

{

 int f, g;

 g = 5;

 f = 8;

 if ((g = 25) || (f = 35))

Chapter 10 ♦ Logical Operators

218

 { cout << “g is “ << g << “ and f got changed to “ << f; }

 return 0;

}

5. Using the precedence table, determine whether the follow-

ing statements produce a True or False result. After this, you

should appreciate the abundant use of parentheses!

a. 5 == 4 + 1 || 7 * 2 != 12 - 1 && 5 == 8 / 2

b. 8 + 9 != 6 - 1 || 10 % 2 != 5 + 0

c. 17 - 1 > 15 + 1 && 0 + 2 != 1 == 1 || 4 != 1

d. 409 * 0 != 1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (!0)

 { cout << “C++ By Example \n”; }

Review Exercises
1. Write a program (by using a single compound if state-

ment) to determine whether the user enters an odd positive

number.

2. Write a program that asks the user for two initials. Print a

message telling the user if the first initial falls alphabetically

before the second.

3. Write a number-guessing game. Assign a value to a variable

called number at the top of the program. Give a prompt that

asks for five guesses. Receive the user’s five guesses with a

single scanf() for practice with scanf(). Determine whether

any of the guesses match the number and print an appropriate

message if one does.

4. Write a tax-calculation routine, as follows: A family pays no

tax if its income is less than $5,000. It pays a 10 percent tax if

its income is $5,000 to $9,999, inclusive. It pays a 20 percent

tax if the income is $10,000 to $19,999, inclusive. Otherwise,

it pays a 30 percent tax.

219

EXAMPLE
C++ By

Summary
This chapter extended the if statement to include the &&, ||, and

! logical operators. These operators enable you to combine several

relational tests into a single test. C++ does not always have to

look at every relational operator when you combine them in an ex-

pression.

This chapter concludes the explanation of the if statement. The

next chapter explains the remaining regular C++ operators. As you

saw in this chapter, the precedence table is still important to the C++

language. Whenever you are evaluating expressions, keep the pre-

cedence table in the back of your mind (or at your fingertips) at all

times!

Chapter 10 ♦ Logical Operators

220

221

EXAMPLE
C++ By

11

Additional C++
Operators

C++ has several other operators you should learn besides those you

learned in Chapters 9 and 10. In fact, C++ has more operators than

most programming languages. Unless you become familiar with

them, you might think C++ programs are cryptic and difficult to

follow. C++’s heavy reliance on its operators and operator prece-

dence produces the efficiency that enables your programs to run

more smoothly and quickly.

This chapter teaches you the following:

♦ The ?: conditional operator

♦ The ++ increment operator

♦ The –– decrement operator

♦ The sizeof operator

♦ The (,) comma operator

♦ The Bitwise Operators (&, |, and ^)

Chapter 11 ♦ Additional C++ Operators

222

Most the operators described in this chapter are unlike those

found in any other programming language. Even if you have

programmed in other languages for many years, you still will be

surprised by the power of these C++ operators.

The Conditional Operator
The conditional operator is C++’s only ternary operator, requir-

ing three operands (as opposed to the unary’s single-and the binary’s

double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is

a two-part symbol, ?:, with a format as follows:

conditional_expression ? expression1 : expression2;

The conditional_expression is any expression in C++ that results

in a True (nonzero) or False (zero) answer. If the result of

conditional_expression is True, expression1 executes. Otherwise, if

the result of conditional_expression is False, expression2 executes.

Only one of the expressions following the question mark ever

executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-

lon. Figure 11.1 illustrates the conditional operator more clearly.

The conditional
operator is a ternary
operator.

Figure 11.1. Format of the conditional operator.

223

EXAMPLE
C++ By

If you require simple if-else logic, the conditional operator

usually provides a more direct and succinct method, although you

should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the

section of code that follows.

if (a > b)

 { ans = 10; }

else

 { ans = 25; }

You can easily rewrite this kind of if-else code by using a single

conditional operator.

If the variable a is greater than the variable b, make the variable ans
equal to 10; otherwise, make ans equal to 25.

a > b ? (ans = 10) : (ans = 25);

A l t h o u g h p a r e n t h e s e s a r e n o t r e q u i r e d a r o u n d

conditional_expression to make it work, they usually improve read-

ability. This statement’s readability is improved by using parenthe-

ses, as follows:

(a > b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the

value being assigned—this statement could be even more succinct,

without loss of readability, by assigning ans the answer to the left of

the conditional:

ans = (a > b) ? (10) : (25);

This expression says: If a is greater than b, assign 10 to ans;

otherwise, assign 25 to ans. Almost any if-else statement can be

rewritten as a conditional, and vice versa. You should practice

converting one to the other to familiarize yourself with the condi-

tional operator’s purpose.

NOTE: A n y v a l i d if C + + s t a t e m e n t a l s o c a n b e a

conditional_expression, including all relational and logical op-

erators as well as any of their possible combinations.

Chapter 11 ♦ Additional C++ Operators

224

Examples

1. Suppose you are looking over your early C++ programs, and

you notice the following section of code.

if (production > target)

 { target *= 1.10; }

else

 { target *= .90; }

You should realize that such a simple if-else statement can

be rewritten using a conditional operator, and that more

efficient code results. You can therefore change it to the

following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find

the minimum value between two variables. This is some-

times called a minimum routine. The statement to do this is

minimum = (var1 < var2) ? var1 : var2;

If var1 is less than var2, the value of var1 is assigned to mini-

mum. If var2 is less, the value of var2 is assigned to minimum. If

the variables are equal, the value of var2 is assigned to

minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:

maximum = (var1 > var2) ? var1 : var2;

4. Taking the previous examples a step further, you can also

test for the sign of a variable. The following conditional

expression assigns –1 to the variable called sign if testvar is

less than 0; 0 to sign if testvar is zero; and +1 to sign if testvar

is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a –1,

but the second part of the expression can be confusing. This

works well due to C++’s 1 and 0 (for True and False, respec-

tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

225

EXAMPLE
C++ By

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)

or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional

operator. It might also help you understand if you write the

statement using typical if-else logic. Here is the same

problem written with a typical if-else statement:

if (testvar < 0)

 { sign = -1; }

else

 { sign = (testvar > 0); } // testvar can only be

 // 0 or more here.

The Increment and
Decrement Operators

C++ offers two unique operators that add or subtract 1 to or

from variables. These are the increment and decrement operators: ++

and ––. Table 11.1 shows how these operators relate to other types of

expressions you have seen. Notice that the ++ and –– can appear on

either side of the modified variable. If the ++ or –– appears on the left,

it is known as a prefix operator. If the operator appears on the right,

it is a postfix operator.

Table 11.1. The ++ and –– operators.

Operator Example Description Equivalent Statements

++ i++; postfix i = i + 1; i += 1;

++ ++i; prefix i = i + 1; i += 1;

–– i––; postfix i = i - 1; i -= 1;

–– ––i; prefix i = i - 1; i -= 1;

Any time you have to add 1 or subtract 1 from a variable, you

can use these two operators. As Table 11.1 shows, if you have to

increment or decrement only a single variable, these operators

enable you to do so.

The ++ operator
adds 1 to a variable.
The –– operator
subtracts 1 from a
variable.

Chapter 11 ♦ Additional C++ Operators

226

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,

efficient methods for adding 1 to a variable and subtracting 1

from a variable. You often have to do this during counting or

processing loops, as discussed in Chapter 12, “The while Loop”

and beyond.

These two operators compile directly into their assembly lan-

guage equivalents. Almost all computers include, at their

lowest binary machine-language commands, increment and

decrement instructions. If you use C++’s increment and decre-

ment operators, you ensure that they compile to these low-level

equivalents.

If, however, you code expressions to add or subtract 1 (as you

do in other programming languages), such as the expression

i = i - 1, you do not actually ensure that C++ compiles

this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are

incrementing or decrementing single variables on lines by them-

selves. However, when you combine these two operators with other

operators in a single expression, you must be aware of their differ-

ences. Consider the following program section. Here, all variables

are integers because the increment and decrement operators work

only on integer variables.

Make a equal to 6. Increment a, subtract 1 from it, then assign the result
to b.

a = 6;

b = ++a - 1;

What are the values of a and b after these two statements finish?

The value of a is easy to determine: it is incremented in the second

statement, so it is 7. However, b is either 5 or 6 depending on when

the variable a increments. To determine when a increments, consider

the following rule:

227

EXAMPLE
C++ By

♦ If a variable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the

variable’s value is used in the remainder of the expression.

♦ If a variable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the

variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,

its value is first incremented to 7, then 1 is subtracted from 7, and the

result (6) is assigned to b. If a postfix increment is used, as in

a = 6;

b = a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment

to 7 until after its value is used in the expression. The precedence

table in Appendix D, “C++ Precedence Table,” shows that prefix

operators contain much higher precedence than almost every other

operator, especially low-precedence postfix increments and decre-

ments.

TIP: If the order of prefix and postfix confuses you, break

your expressions into two lines of code and type the increment

or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the

previous example as follows:

a = 6;

b = a - 1;

a++;

There is now no doubt as to when a is incremented: a incre-

ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider

the following statement.

x = p + (((amt++)));

Chapter 11 ♦ Additional C++ Operators

228

There are too many unneeded parentheses here, but even the

redundant parentheses are not enough to increment amt before

adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

CAUTION: Do not attempt to increment or decrement an

expression. You can apply these operators only to variables.

The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. As you should with all other C++ operators, keep the prece-

dence table in mind when you evaluate expressions that

increment and decrement. Figures 11.2 and 11.3 show you

some examples that illustrate these operators.

2. The precedence table takes on even more meaning when you

see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,

what you know about C++’s relational efficiencies—what is

the value of the ans in the following section of code?

int i=1, j=20, k=-1, l=0, m=1, n=0, o=2, p=1;

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

This, at first, seems to be extremely complicated. Neverthe-

less, you can simply glance at it and determine the value of

ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores

the right side of the || if the left value is True (any nonzero

value is True). Because any nonzero value is True, C++ does

229

EXAMPLE
C++ By

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

int i=1;

int j=2;

int k=3;

ans = i++ * j - ––k;

 |
 i++ * j - 2

 2 - 2

 0

ans = 0, then i increments by 1 to its final value of 2.

int i=1;

int j=2;

int k=3;

ans = ++i * j - k––;

 |
 2 * j - k––

 4 - k––

 1

ans = 1, then k decrements by 1 to its final value of 2.

not evaluate the values on the right. Therefore, C++ per-

forms this expression as shown:

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

 |
 1 (TRUE)

Chapter 11 ♦ Additional C++ Operators

230

int i=0;

int j=-1;

int k=0;

int m=1

ans = i++ && ++j || k || m++;

 |
 i++ && 0 || k || m++

 0 || k || m++

 0 || m++

 1

ans = 1, then i increments by 1 to its final value of 1,

and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression

as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++

ignores the other expressions, only ans is changed by this

expression. The other variables, j through p, are never

incremented or decremented, even though several of them

contain increment and decrement operators. If you use rela-

tional operators, be aware of this problem and break out all

increment and decrement operators into statements by them-

selves, placing them on lines before the relational statements

that use their values.

The sizeof Operator
There is another operator in C++ that does not look like an

operator at all. It looks like a built-in function, but it is called the

231

EXAMPLE
C++ By

sizeof operator. In fact, if you think of sizeof as a function call, you

might not become confused because it works in a similar way. The

format of sizeof follows:

sizeof data

or

sizeof(data type)

The sizeof operator is unary, because it operates on a single

value. This operator produces a result that represents the size, in

bytes, of the data or data type specified. Because most data types and

variables require different amounts of internal storage on different

computers, the sizeof operator enables programs to maintain con-

sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the

sizeof argument, whether that argument is data or data type .
Because you must use parentheses around data type arguments

and you can use them around data arguments, it doesn’t hurt to

always use them.

The sizeof operator is sometimes called a compile-time operator.
At compile time, rather than runtime, the compiler replaces each

occurrence of sizeof in your program with an unsigned integer

value. Because sizeof is used more in advanced C++ programming,

this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the

number of bytes you originally reserved for that array. Data inside

the array have nothing to do with its returned sizeof value—even if

it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-

point variables for your computer. You can determine

this by entering the keyword float in parentheses—after

sizeof—as shown in the following program.

The sizeof
operator returns its
argument’s size in
bytes.

Chapter 11 ♦ Additional C++ Operators

232

// Filename: C11SIZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main()

{

 cout << “The size of floating-point variables on \n”;

 cout << “this computer is “ << sizeof(float) << “\n”;

 return 0;

}

This program might produce different results on different

computers. You can use any valid data type as the sizeof

argument. On most PCs, this program probably produces

this output:

The size of floating-point variables on

this computer is: 4

The Comma Operator
Another C++ operator, sometimes called a sequence point, works

a little differently. This is the comma operator (,), which does not

directly operate on data, but produces a left-to-right evaluation of

expressions. This operator enables you to put more than one expres-

sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when

you learned how to declare and initialize variables. In the following

section of code, the comma separates statements. Because the comma

associates from the left, the first variable, i, is declared and initial-

ized before the second variable.

main()

{

 int i=10, j=25;

 // Remainder of the program follows.

233

EXAMPLE
C++ By

However, the comma is not a sequence point when it is used

inside function parentheses. Then it is said to separate arguments,

but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, i, i++, ++i);

Many results are possible from such a statement. The commas

serve only to separate arguments of the printf(), and do not generate

the left-to-right sequence that they otherwise do when they aren’t

used in functions. With the statement shown here, you are not

ensured of any order! The postfix i++ might possibly be performed

before the prefix ++i, even though the precedence table does not

require this. Here, the order of evaluation depends on how your

compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators

in function calls because you cannot predict the order in which

they execute.

Examples

1. You can put more than one expression on a line, using the

comma as a sequence point. The following program does

this.

// Filename: C11COM1.CPP

// Illustrates the sequence point.

#include <iostream.h>

main()

{

 int num, sq, cube;

 num = 5;

 // Calculate the square and cube of the number.

 sq = (num * num), cube = (num * num * num);

 cout << “The square of “ << num << “ is “ << sq <<

 “ and the cube is “ << cube;

 return 0;

}

Chapter 11 ♦ Additional C++ Operators

234

This is not necessarily recommended, however, because it

doesn’t add anything to the program and actually decreases

its readability. In this example, the square and cube are

probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider

the following section of code.

i = 10

j = (i = 12, i + 8);

When this code finishes executing, j has the value of 20—

even though this is not necessarily clear. In the first state-

ment, i is assigned 10. In the second statement, the comma

causes i to be assigned a value of 12, then j is assigned the

value of i + 8, or 20.

3. In the following section of code, ans is assigned the value

of 12, because the assignment before the comma is per-

formed first. Despite this right-to-left associativity of the

assignment operator, the comma’s sequence point forces

the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and

ans also contains 12.

Bitwise Operators
The bitwise operators manipulate internal representations of

data and not just “values in variables” as the other operators do.

These bitwise operators require an understanding of Appendix A’s

binary numbering system, as well as a computer’s memory. This

section introduces the bitwise operators. The bitwise operators are

used for advanced programming techniques and are generally used

in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the

bitwise operators. Nevertheless, understanding them can help you

improve a program’s efficiency and enable you to operate at a more

advanced level than many other programming languages allow.

235

EXAMPLE
C++ By

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in

Table 11.2. These operators work on the binary representations of

integer data. This enables systems programmers to manipulate

internal bits in memory and in variables. The bitwise operators are

not just for systems programmers, however. Application program-

mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

~ Bitwise 1’s complement

Each of the bitwise operators makes a bit-by-bit comparison of

internal data. Bitwise operators apply only to character and integer

variables and constants, and not to floating-point data. Because

binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are

compared to each other to produce the desired result for each

bitwise operator.

Before you study the examples, you should understand Table

11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.

Bitwise AND (&)

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Bitwise operators
make bit-by-bit
comparisons of
internal data.

continues

Chapter 11 ♦ Additional C++ Operators

236

Table 11.3. Continued.

Bitwise inclusive OR (|)

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

Bitwise exclusive OR (^)

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Bitwise 1’s complement (~)

~0 = 1

~1 = 0

In bitwise truth tables, you can replace the 1 and 0 with True

and False, respectively, if it helps you to understand the result better.

For the bitwise AND (&) truth table, both bits being compared by the

& operator must be True for the result to be True. In other words,

“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might

be able to relate the bitwise operators to the regular logical

operators, && and ||, that you use for if comparisons.

The | bitwise operator is sometimes called the bitwise inclusive
OR operator. If one side of the | operator is 1 (True)—or if both sides

are 1—the result is 1 (True).

The ̂ operator is called bitwise exclusive OR. It means that either

side of the ^ operator must be 1 (True) for the result to be 1 (True), but

both sides cannot be 1 (True) at the same time.

For bitwise ^, one
side or the other—
but not both—must
be 1.

237

EXAMPLE
C++ By

The ~ operator, called bitwise 1’s complement, reverses each bit to

its opposite value.

NOTE: Bitwise 1’s complement does not negate a number. As

Appendix A, “Memory Addressing, Binary, and Hexadecimal

Review,” shows, most computers use a 2’s complement to

negate numbers. The bitwise 1’s complement reverses the bit

pattern of numbers, but it doesn’t add the additional 1 as the 2’s

complement requires.

You can test and change individual bits inside variables to

check for patterns of data. The following examples help to illustrate

each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you

receive a result of 8. Figure 11.4 shows you why this is so.

When the binary values of 9 (1001) and 14 (1110) are com-

pared on a bitwise & basis, the resulting bit pattern is 8

(1000).

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as

follows.

Make result equal to the binary value of 9 (1001) ANDed to the
binary value of 14 (1110).

result = 9 & 14;

Chapter 11 ♦ Additional C++ Operators

238

The result variable holds 8, which is the result of the bitwise

&. The 9 (binary 1001) or 14 (binary 1110)—or both—also can

be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and

14, you get 15. When the binary values of 9 (1001) and 14

(1110) are compared on a bitwise | basis, the resulting bit

pattern is 15 (1111). result’s bits are 1 (True) in every posi-

tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 | 14;

The result variable holds 15, which is the result of the

bitwise |. The 9 or 14 (or both) also can be stored in

variables.

3. The bitwise ^ applied to 9 and 14 produces 7. Bitwise ^ sets

the resulting bits to 1 if one number or the other’s bit is 1, but

not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 ^ 14;

The result variable holds 7 (binary 0111), which is the result

of the bitwise ^. The 9 or 14 (or both) also can be stored in

variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise

operator because you can apply it to only a single value at

any one time. The bitwise ~ applied to 9 results in 6, as

shown in Figure 11.5.

Figure 11.5. Performing bitwise ~ on the number 9.

239

EXAMPLE
C++ By

In a C++ program, you can code this bitwise operation like

this:

result = ~9;

The result variable holds 6, which is the result of the bit-

wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform

tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an

odd or even number (assuming integers are being input).

You can use the modulus operator (%) to determine whether

the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-

der is 1, the number is odd.

The bitwise operators are more efficient than other operators

because they directly compare bit patterns without using

any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and

odd if its bit pattern ends in 1, you also can test for odd or

even numbers by applying the bitwise & to the data and to a

binary 1. This is more efficient than using the modulus

operator. The following program informs users if their input

value is odd or even using this technique.

Identify the file and include the input/output header file. This
program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is 0, tell the user that the
number is even.

// Filename: C11ODEV.CPP

// Uses a bitwise & to determine whether a

// number is odd or even.

#include <iostream.h>

main()

{

Chapter 11 ♦ Additional C++ Operators

240

Only bit 6
is different

 int input; // Will hold user’s number

 cout << “What number do you want me to test? “;

 cin >> input;

 if (input & 1) // True if result is 1;

 // otherwise it is false (0)

 { cout << “The number “ << input << “ is odd\n”; }

 else

 { cout << “The number “ << input << “ is even\n”; }

 return 0;

}

6. The only difference between the bit patterns for uppercase

and lowercase characters is bit number 5 (the third bit from

the left, as shown in Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review”). For lowercase letters, bit

5 is a 1. For uppercase letters, bit 5 is a 0. Figure 11.6 shows

how A and B differ from a and b by a single bit.

Only bit 6
is different

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCII letters.

To convert a character to uppercase, you have to turn off

(change to a 0) bit number 5. You can apply a bitwise & to the

input character and 223 (which is 11011111 in binary) to turn

off bit 5 and convert any input character to its uppercase

equivalent. If the number is already in uppercase, this

bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it

masks (just as masking tape masks areas not to be painted)

bit 5 so it becomes 0, if it is not already. The following

program does this to ensure that users typed uppercase

characters when they were asked for their initials.

241

EXAMPLE
C++ By

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream.h>

main()

{

 char first, middle, last; // Will hold user’s initials

 int bitmask=223; // 11011111 in binary

 cout << “What is your first initial? “;

 cin >> first;

 cout << “What is your middle initial? “;

 cin >> middle;

 cout << “What is your last initial? “;

 cin >> last;

 // Ensure that initials are in uppercase.

 first = first & bitmask; // Turn off bit 5 if

 middle = middle & bitmask; // it is not already

 last = last & bitmask; // turned off.

 cout << “Your initials are “ << first << “ “ <<

 middle << “ “ << last;

 return 0;

}

The following output shows what happens when two of the

initials are typed with lowercase letters. The program con-

verts them to uppercase before printing them again. Al-

though there are other ways to convert to lowercase, none

are as efficient as using the & bitwise operator.

What is your first initial? g

What is your middle initial? M

What is your last initial? p

Your initials are: G M P

Chapter 11 ♦ Additional C++ Operators

242

Review Questions
The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator

replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else

statement.

ans = (a == b) ? c + 2 : c + 3;

4. True or false: The following statements produce the same

results.

var++;

and

var = var + 1;

5. Why is using the increment and decrement operators more

efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;

printf(“You are now %d, and will be %d in one year”,

 age, age++);

8. What is the output of the following program section?

char name[20] = “Mike”;

cout << “The size of name is “ << sizeof(name) << “\n”;

9. What is the result of each of the following bitwise True-False

expressions?

a. 1 ^ 0 & 1 & 1 | 0

b. 1 & 1 & 1 & 1

c. 1 ^ 1 ^ 1 ^ 1

d. ~(1 ^ 0)

243

EXAMPLE
C++ By

Review Exercises
1. Write a program that prints the numerals from 1 to 10. Use

ten different couts and only one variable called result to hold

the value before each cout. Use the increment operator to

add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single

printf() that includes a conditional operator, print on-screen

the following if the input age is over 21,

You are not a minor.

or print this otherwise:

You are still a minor.

This printf() might be long, but it helps to illustrate how the

conditional operator can work in statements where if-else

logic does not.

3. Use the conditional operator—and no if-else statements—to

write the following tax-calculation routine: A family pays no

tax if its annual salary is less than $5,000. It pays a 10 percent

tax if the salary range begins at $5,000 and ends at $9,999. It

pays a 20 percent tax if the salary range begins at $10,000

and ends at $19,999. Otherwise, the family pays a 30 percent

tax.

4. Write a program that converts an uppercase letter to a

lowercase letter by applying a bitmask and one of the bit-

wise logical operators. If the character is already in lower-

case, do not change it.

Summary
Now you have learned almost every operator in the C++

language. As explained in this chapter, conditional, increment, and

decrement are three operators that enable C++ to stand apart from

many other programming languages. You must always be aware of

the precedence table whenever you use these, as you must with all

operators.

Chapter 11 ♦ Additional C++ Operators

244

The sizeof and sequence point operators act unlike most others.

The sizeof is a compile operator, and it works in a manner similar to

the #define preprocessor directive because they are both replaced by

their values at compile time. The sequence point enables you to have

multiple statements on the same line—or in a single expression.

Reserve the sequence point for declaring variables only because it

can be unclear when it’s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now

that you can compute just about any result you will ever need, it is

time to discover how to gain more control over your programs. The

next few chapters introduce control loops that give you repetitive

power in C++.

245

EXAMPLE
C++ By

12

The while Loop

The repetitive capabilities of computers make them good tools for

processing large amounts of information. Chapters 12-15 introduce

you to C++ constructs, which are the control and looping commands

of programming languages. C++ constructs include powerful, but

succinct and efficient, looping commands similar to those of other

languages you already know.

The while loops enable your programs to repeat a series of

statements, over and over, as long as a certain condition is always

met. Computers do not get “bored” while performing the same tasks

repeatedly. This is one reason why they are so important in business

data processing.

This chapter teaches you the following:

♦ The while loop

♦ The concept of loops

♦ The do-while loop

♦ Differences between if and while loops

♦ The exit() function

♦ The break statement

♦ Counters and totals

Chapter 12 ♦ The while Loop

246

After completing this chapter, you should understand the first

of several methods C++ provides for repeating program sections.

This chapter’s discussion of loops includes one of the most impor-

tant uses for looping: creating counter and total variables.

The while Statement
The while statement is one of several C++ construct statements.

Each construct (from construction) is a programming language state-

ment—or a series of statements—that controls looping. The while,

like other such statements, is a looping statement that controls the

execution of a series of other statements. Looping statements cause

parts of a program to execute repeatedly, as long as a certain

condition is being met.

The format of the while statement is

while (test expression)

 { block of one or more C++ statements; }

The parentheses around test expression are required. As long

as test expression is True (nonzero), the block of one or more C++

statements executes repeatedly until test expression becomes False

(evaluates to zero). Braces are required before and after the body of

the while loop, unless you want to execute only one statement. Each

statement in the body of the while loop requires an ending semi-

colon.

The placeholder test expression usually contains relational,

and possibly logical, operators. These operators provide the True-

False condition checked in test expression. If test expression is False

when the program reaches the while loop for the first time, the body

of the while loop does not execute at all. Regardless of whether the

body of the while loop executes no times, one time, or many times,

the statements following the while loop’s closing brace execute if test

expression becomes False.

Because test expression determines when the loop finishes, the

body of the while loop must change the variables used in test

expression. Otherwise, test expression never changes and the while

loop repeats forever. This is known as an infinite loop, and you should

avoid it.

The body of a
while loop
executes repeatedly
as long as test
expression is True.

247

EXAMPLE
C++ By

TIP: If the body of the while loop contains only one statement,

the braces surrounding it are not required. It is a good habit to

enclose all while loop statements in braces, however, because if

you have to add statements to the body of the while loop later,

your braces are already there.

The Concept of Loops
You use the loop concept in everyday life. Any time you have

to repeat the same procedure, you are performing a loop—just as

your computer does with the while statement. Suppose you are

wrapping holiday gifts. The following statements represent the

looping steps (in while format) that you follow while gift-wrapping.

while (there are still unwrapped gifts)
 { Get the next gift;

Cut the wrapping paper;
Wrap the gift;
Put a bow on the gift;
Fill out a name card for the gift;
Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this

procedure (loop) repeatedly until every gift is wrapped. For an

example that is more easily computerized, suppose you want to total

all the checks you wrote in the previous month. You could perform

the following loop.

while (there are still checks from the last month to be totaled)
 { Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,

but that single statement must be performed until you have added

each one of the previous month’s checks. When this loop ends (when

no more checks from the previous month remain to be totaled), you

have the result.

The body of a while loop can contain one or more C++ state-

ments, including additional while loops. Your programs will be

Chapter 12 ♦ The while Loop

248

more readable if you indent the body of a while loop a few spaces to

the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these

programs display an error message and ask the user to enter

another value, which is an acceptable procedure.

Now that you understand the while loop construct, however,

you should put the error message inside a loop. In this way,

users see the message continually until they type proper

input values, rather than once.

The following program is short, but it demonstrates a while

loop that ensures valid keyboard input. It asks users

whether they want to continue. You can incorporate this

program into a larger one that requires user permission to

continue. Put a prompt, such as the one presented here, at

the bottom of a text screen. The text remains on-screen until

the user tells the program to continue executing.

Identify the file and include the necessary header file. In this
program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part

// of a larger program.

#include <iostream.h>

main()

{

 char ans;

 cout << “Do you want to continue (Y/N)? “;

 cin >> ans; // Get user’s answer

249

EXAMPLE
C++ By

 while ((ans != ‘Y’) && (ans != ‘N’))

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N)?”; // again.

 cin >> ans;

 } // Body of while loop ends here.

 return 0;

}

Notice that the two cin functions do the same thing. You

must use an initial cin, outside the while loop, to provide an

answer for the while loop to check. If users type something

other than Y or N, the program prints an error message, asks

for another answer, then checks the new answer. This vali-

dation method is preferred over one where the reader only

has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.

This is why the loop might never execute. If the test is

initially False, the loop does not execute even once. The

output from this program is shown as follows. The program

repeats indefinitely, until the relational test is True (as soon

as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N

Do you want to continue (Y/N)? c

You must type a Y or an N

Do you want to continue (Y/N)? s

You must type a Y or an N

Do you want to continue (Y/N)? 5

You must type a Y or an N

Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while

loop. See if you can find the problem.

Chapter 12 ♦ The while Loop

250

// Filename: C12WHBAD.CPP

// Bad use of a while loop.

#include <iostream.h>

main()

{

 int a=10, b=20;

 while (a > 5)

 { cout << “a is “ << a << “, and b is “ << b << “\n”;

 b = 20 + a; }

 return 0;

}

This while loop is an example of an infinite loop. It is vital

that at least one statement inside the while changes a variable

in the test expression (in this example, the variable a); other-

wise, the condition is always True. Because the variable a

does not change inside the while loop, this program will

never end.

TIP: If you inadvertently write an infinite loop, you must stop

the program yourself. If you use a PC, this typically means

pressing Ctrl-Break. If you are using a UNIX-based system,

your system administrator might have to stop your program’s

execution.

3. The following program asks users for a first name, then uses

a while loop to count the number of characters in the name.

This is a string length program; it counts characters until it

reaches the null zero. Remember that the length of a string

equals the number of characters in the string, not including

the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

251

EXAMPLE
C++ By

 int count=0; // Will hold total characters in name

 // Get the user’s first name

 cout << “What is your first name? “;

 cin >> name;

 while (name[count] > 0) // Loop until null zero reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The loop continues as long as the value of the next character

in the name array is greater than zero. Because the last charac-

ter in the array is a null zero, the test is False on the name’s

last character and the statement following the body of the

loop continues.

NOTE: A built-in string function called strlen() determines

the length of strings. You learn about this function in Chap-

ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as

efficient as it could be. Because a while loop fails when its test

expression is zero, there is no need for the greater-than test.

By changing the test expression as the following program

shows, you can improve the efficiency of the string length

count.

// Filename: C12WHIL3.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

 int count=0; // Will hold total characters in name

 // Get the user’s first name

Chapter 12 ♦ The while Loop

252

 cout << “What is your first name? “;

 cin >> name;

 while (name[count]) // Loop until null zero is reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The do-while Loop
The do-while statement controls the do-while loop, which is

similar to the while loop except the relational test occurs at the end

(rather than beginning) of the loop. This ensures the body of the loop

executes at least once. The do-while tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do

 { block of one or more C++ statements; }

while (test expression)

test expression must be enclosed in parentheses, just as it must

in a while statement.

Examples

1. The following program is just like the first one you saw with

the while loop (C12WHIL1.CPP), except the do-while is used.

Notice the placement of test expression. Because this expres-

sion concludes the loop, user input does not have to appear

before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part

// of a larger program.

The body of the
do-while loop
executes at least
once.

253

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 char ans;

 do

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N) ?”; // again.

 cin >> ans; } // Body of while loop

 // ends here.

 while ((ans != ‘Y’) && (ans != ‘N’));

 return 0;

}

2. Suppose you are entering sales amounts into the computer

to calculate extended totals. You want the computer to print

the quantity sold, part number, and extended total (quantity

times the price per unit), as the following program does.

// Filename: C12INV1.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information.

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no != -999)

 { cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

Chapter 12 ♦ The while Loop

254

 cin >> cost;

 ext_cost = cost * quantity;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) <<

 ext_cost;

 cout << “\n\n\n”; // Print two blank lines.

 }

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

Here is the output from this program:

*** Inventory Computation ***

What is the next part number (-999 to end)? 213

How many were bought? 12

What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92

How many were bought? 53

What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999

End of inventory computation

The do-while loop controls the entry of the customer sales

information. Notice the “trigger” that ends the loop. If the

user enters –999 for the part number, the do-while loop quits

because no part numbered –999 exists in the inventory.

However, this program can be improved in several ways.

The invoice can be printed to the printer rather than the

255

EXAMPLE
C++ By

screen. You learn how to direct your output to a printer in

Chapter 21, “Device and Character Input/Output.” Also, the

inventory total (the total amount of the entire order) can be

computed. You learn how to total such data in the “Counters

and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with

loop constructs. The while and do-while loops repeat a section of code

multiple times, depending on the condition being tested. The if

statement may or may not execute a section of code; if it does, it

executes that section only once.

Use an if statement when you want to conditionally execute a

section of code once, and use a while or do-while loop if you want to

execute a section more than once. Figure 12.1 shows differences

between the if statement and the two while loops.

Body executes only
once if test is true.

Test at top of loop.

Body loops continuously
as long as test is true.

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

Chapter 12 ♦ The while Loop

256

The exit() Function and break
Statement

C++ provides the exit() function as a way to leave a program

early (before its natural finish). The format of exit() is

exit(status);

where status is an optional integer variable or literal. If you are

familiar with your operating system’s return codes, status enables

you to test the results of C++ programs. In DOS, status is sent to the

operating system’s errorlevel environment variable, where it can be

tested by batch files.

Many times, something happens in a program that requires the

program’s termination. It might be a major problem, such as a disk

drive error. Perhaps users indicate that they want to quit the

program—you can tell this by giving your users a special value to

type with cin or scanf(). You can isolate the exit() function on a line

by itself, or anywhere else that a C++ statement or function can

appear. Typically, exit() is placed in the body of an if statement to

end the program early, depending on the result of some relational

test.

Always include the stdlib.h header file when you use exit().

This file describes the operation of exit() to your program. When-

ever you use a function in a program, you should know its corre-

sponding #include header file, which is usually listed in the compiler’s

reference manual.

Instead of exiting an entire program, however, you can use the

break statement to exit the current loop. The format of break is

break;

The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a

while or do-while loop, used to leave the loop early. The following

examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If

you have a while loop in another while loop, break exits only the

internal loop.

The exit()
function provides an
early exit from your
program.

The break
statement ends the
current loop.

257

EXAMPLE
C++ By

Examples

1. Here is a simple program that shows you how the exit()

function works. This program looks as though it prints

several messages on-screen, but it doesn’t. Because exit()

appears early in the code, this program quits immediately

after main()’s opening brace.

// C12EXIT1.CPP

// Quits early due to exit() function.

#include <iostream.h>

#include <stdlib.h> // Required for exit().

main()

{

 exit(0); // Forces program to end here.

 cout << “C++ programming is fun.\n”;

 cout << “I like learning C++ by example!\n”;

 cout << “C++ is a powerful language that is “ <<

 “not difficult to learn.”;

 return 0;

}

2. The break statement is not intended to be as strong a pro-

gram exit as the exit() function. Whereas exit() ends the

entire program, break quits only the loop that is currently

active. In other words, break is usually placed inside a while

or do-while loop to “simulate” a finished loop. The statement

following the loop executes after a break occurs, but the

program does not quit as it does with exit().

The following program appears to print C++ is fun! until the

user enters N to stop it. The message prints only once, how-

ever, because the break statement forces an early exit from

the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.

#include <iostream.h>

main()

Chapter 12 ♦ The while Loop

258

{

 char user_ans;

 do

 { cout << “C++ is fun! \n”;

 break; // Causes early exit.

 cout << “Do you want to see the message again (N/Y)? “;

 cin >> user_ans;

 } while (user_ans == ‘Y’);

 cout << “That’s all for now\n”;

 return 0;

}

This program always produces the following output:

C++ is fun!

That’s all for now

You can tell from this program’s output that the break state-

ment does not allow the do-while loop to reach its natural

conclusion, but causes it to finish early. The final cout prints

because only the current loop—and not the entire pro-

gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an

if statement. This makes it a conditional break, which occurs

only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw

earlier (C12INV1.CPP). Even though the users enter –999

when they want to quit the program, an additional if test is

needed inside the do-while. The –999 ends the do-while loop,

but the body of the do-while still needs an if test, so the

remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s

input, as shown in the following program, the do-while will

not need the if test. The break quits the do-while as soon as

the user signals the end of the inventory by entering –999 as

the part number.

259

EXAMPLE
C++ By

// Filename: C12INV2.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no == -999)

 { break; } // Exit the loop if

 // no more part numbers.

 cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

 cin >> cost;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) << cost*quantity;

 cout << “\n\n\n”; // Print two blank lines.

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

4. You can use the following program to control the two other

programs. This program illustrates how C++ can pass in-

formation to DOS with exit(). This is your first example of a

menu program. Similar to a restaurant menu, a C++ menu

program lists possible user choices. The users decide what

they want the computer to do from the menu’s available

options. The mailing list application in Appendix F, “The

Mailing List Application,” uses a menu for its user options.

Chapter 12 ♦ The while Loop

260

This program returns either a 1 or a 2 to its operating system,

depending on the user’s selection. It is then up to the oper-

ating system to test the exit value and run the proper

program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().

#include <iostream.h>

#include <stdlib.h>

main()

{

 int ans;

 do

 { cout << “Do you want to:\n\n”;

 cout << “\t1. Run the word processor \n\n”;

 cout << “\t2. Run the database program \n\n”;

 cout << “What is your selection? “;

 cin >> ans;

 } while ((ans != 1) && (ans != 2)); // Ensures user

 // enters 1 or 2.

 exit(ans); // Return value to operating system.

 return 0; // Return does not ever execute due to exit().

}

Counters and Totals
Counting is important for many applications. You might have

to know how many customers you have or how many people scored

over a certain average in your class. You might want to count how

many checks you wrote in the previous month with your computer-

ized checkbook system.

Before you develop C++ routines to count occurrences, think of

how you count in your own mind. If you were adding a total number

of something, such as the stamps in your stamp collection or the

261

EXAMPLE
C++ By

number of wedding invitations you sent out, you would probably

do the following:

Start at 0, and add 1 for each item being counted. When you are finished,
you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a

variable and add 1 to it every time you process another data value.

The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints

“Computers are fun!” on-screen 10 times. You can write a

program that has 10 cout statements, but that would not be

efficient. It would also be too cumbersome to have 5000 cout

statements, if you wanted to print that same message 5000

times.

By adding a while loop and a counter that stops after a

certain total is reached, you can control this printing, as the

following program shows.

// Filename: C12CNT1.CPP

// Program to print a message 10 times.

#include <iostream.h>

main()

{

 int ctr = 0; // Holds the number of times printed.

 do

 { cout << “Computers are fun!\n”;

 ctr++; // Add one to the count,

 // after each cout.

 } while (ctr < 10); // Print again if fewer

 // than 10 times.

 return 0;

}

Chapter 12 ♦ The while Loop

262

The output from this program is shown as follows. Notice

that the message prints exactly 10 times.

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

The heart of the counting process in this program is the

statement that follows.

ctr++;

You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is

incremented each time the do-while loops. Because the only

operation performed on this line is the increment of ctr, the

prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-

able, but also performed the loop a specific number of times.

This is a common method of conditionally executing parts of

a program for a fixed number of times.

The following program is a password program. A password

is stored in an integer variable. The user must correctly enter

the matching password in three attempts. If the user does

not type the correct password in that time, the program

ends. This is a common method that dial-up computers use.

They enable a caller to try the password a fixed number of

times, then hang up the phone if that limit is exceeded. This

helps deter people from trying hundreds of different pass-

words at any one sitting.

If users guess the correct password in three tries, they see the

secret message.

263

EXAMPLE
C++ By

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main()

{

 int stored_pass = 11862;

 int num_tries = 0; // Counter for password attempts.

 int user_pass;

 while (num_tries < 3) // Loop only three

 // times.

 { cout << “What is the password (You get 3 tries...)? “;

 cin >> user_pass;

 num_tries++; // Add 1 to counter.

 if (user_pass == stored_pass)

 { cout << “You entered the correct password.\n”;

 cout << “The cash safe is behind the picture “ <<

 “of the ship.\n”;

 exit(0);

 }

 else

 { cout << “You entered the wrong password.\n”;

 if (num_tries == 3)

 { cout << “Sorry, you get no more chances”; }

 else

 { cout << “You get “ << (3-num_tries) <<

 “ more tries...\n”;}

 }

 } // End of while loop.

 exit(0);

 return 0;

}

This program gives users three chances in case they type

some mistakes. After three unsuccessful attempts, the pro-

gram quits without displaying the secret message.

Chapter 12 ♦ The while Loop

264

3. The following program is a letter-guessing game. It includes

a message telling users how many tries they made before

guessing the correct letter. A counter counts the number of

these tries.

// Filename: C12GUES.CPP

// Letter-guessing game.

#include <iostream.h>

main()

{

 int tries = 0;

 char comp_ans, user_guess;

 // Save the computer’s letter

 comp_ans = ‘T’; // Change to a different

 // letter if desired.

 cout << “I am thinking of a letter...”;

 do

 { cout << “What is your guess? “;

 cin >> user_guess;

 tries++; // Add 1 to the guess-counting variable.

 if (user_guess > comp_ans)

 { cout << “Your guess was too high\n”;

 cout << “\nTry again...”;

 }

 if (user_guess < comp_ans)

 { cout << “Your guess was too low\n”;

 cout << “\nTry again...”;

 }

 } while (user_guess != comp_ans); // Quit when a

 // match is found.

 // They got it right, let them know.

 cout << “*** Congratulations! You got it right! \n”;

 cout << “It took you only “ << tries <<

 “ tries to guess.”;

 return 0;

}

265

EXAMPLE
C++ By

Here is the output of this program:

I am thinking of a letter...What is your guess? E

Your guess was too low

Try again...What is your guess? X

Your guess was too high

Try again...What is your guess? H

Your guess was too low

Try again...What is your guess? O

Your guess was too low

Try again...What is your guess? U

Your guess was too high

Try again...What is your guess? Y

Your guess was too high

Try again...What is your guess? T

*** Congratulations! You got it right!

It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead

of adding 1 to the counter variable, you add a value to the total

variable. For instance, if you want to find the total dollar amount of

checks you wrote during December, you can start at nothing (0) and

add the amount of every check written in December. Instead of

building a count, you are building a total.

When you want C++ to add values, just initialize a total

variable to zero, then add each value to the total until you have

included all the values.

Chapter 12 ♦ The while Loop

266

Examples

1. Suppose you want to write a program that adds your grades

for a class you are taking. The teacher has informed you that

you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until

you type –1. The –1 is a signal that you are finished entering

grades and now want to see the total. This program also

prints a congratulatory message if you have enough points

for an A.

// Filename: C12GRAD1.CPP

// Adds grades and determines whether you earned an A.

#include <iostream.h>

include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade; // Holds individual grades.

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; } // Add to total.

 } while (grade >= 0.0); // Quit when -1 entered.

 // Control begins here if no more grades.

 cout << “\n\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points\n”;

 if (total_grade >= 450.00)

 { cout << “** You made an A!!”; }

 return 0;

}

Notice that the -1 response is not added to the total number

of points. This program checks for the -1 before adding to

total_grade. Here is the output from this program:

267

EXAMPLE
C++ By

What is your grade? (-1 to end) 87.6

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) 78.7

What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-

calculating program. It not only totals the points, but also

computes their average.

To calculate the average grade, the program must first

determine how many grades were entered. This is a subtle

problem because the number of grades to be entered is

unknown in advance. Therefore, every time the user enters a

valid grade (not –1), the program must add 1 to a counter as

well as add that grade to the total variable. This is a combi-

nation counting and totaling routine, which is common in

many programs.

// Filename: C12GRAD2.CPP

// Adds up grades, computes average,

// and determines whether you earned an A.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade_avg = 0.0;

 float grade;

 int grade_ctr = 0;

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; // Add to total.

 grade_ctr ++; } // Add to count.

 } while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 ♦ The while Loop

268

 // Control begins here if no more grades.

 grade_avg = (total_grade / grade_ctr); // Compute

 // average.

 cout << “\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points.\n”;

 cout << “Your average was “ << grade_avg << “\n”;

 if (total_grade >= 450.0)

 { cout << “** You made an A!!”; }

 return 0;

}

Below is the output of this program. Congratulations! You

are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 98.7

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) -1

You made a total of 326.68 points.

Your average was 81.7

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between the while loop and the

do-while loop?

2. What is the difference between a total variable and a counter

variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of

while and do-while loops.

269

EXAMPLE
C++ By

5. What is wrong with the following code?

while (sales > 50)

 cout << “Your sales are very good this month.\n”;

 cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;

do

 { printf(“Careful \n”);

 a++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of

code?

a = 1;

while (a < 4)

 { cout << “This is the outer loop\n”;

 a++;

 while (a <= 25)

 { break;

 cout << “This prints 25 times\n”; }

 }

Review Exercises
1. Write a program with a do-while loop that prints the numer-

als from 10 to 20 (inclusive), with a blank line between each

number.

2. Write a weather-calculator program that asks for a list of the

previous 10 days’ temperatures, computes the average, and

prints the results. You have to compute the total as the input

occurs, then divide that total by 10 to find the average. Use a

while loop for the 10 repetitions.

Chapter 12 ♦ The while Loop

270

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-

cise 2, but generalize it so it computes the average of any

number of days’ temperatures. (Hint: You have to count the

number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-

screen. Don’t print the first 31 characters because they are

nonprintable. Print the codes numbered 32 through 255 by

storing their numbers in integer variables and printing their

ASCII values using printf() and the “%c” format code.

Summary
This chapter showed you two ways to produce a C++ loop: the

while loop and the do-while loop. These two variations of while loops

differ in where they test their test condition statements. The while

tests at the beginning of its loop, and the do-while tests at the end.

Therefore, the body of a do-while loop always executes at least once.

You also learned that the exit() function and break statement add

flexibility to the while loops. The exit() function terminates the

program, and the break statement terminates only the current loop.

This chapter explained two of the most important applications

of loops: counters and totals. Your computer can be a wonderful tool

for adding and counting, due to the repetitive capabilities offered

with while loops.

The next chapter extends your knowledge of loops by showing

you how to create a determinate loop, called the for loop. This feature

is useful when you want a section of code to loop for a specified

number of times.

More By Example Books From Que

To Order, Call: (800) 428-5331
OR (317) 573-2500

C By Example
Greg Perry

This is the best way to learn C outside
the classroom! Short chapters help
beginners learn the language one
small step at a time.

Version 1.0
$21.95 USA
0-88022-813-X, 650 pp., 73/8 91/4

Learn programming
By Example with Que!

QBasic By Example
Version 1.0

$21.95 USA
0-88022-811-3, 650 pp., 73/8 x 9 1/4

Turbo C++ By Example
Version 3

$21.95 USA
0-88022-812-1, 650 pp., 73/8 x 9 1/4

Turbo Pascal by Example
Version 6

$21.95 USA
0-88022-908-X, 650 pp., 73/8 x 9 1/4

Visual Basic By Example
Version 1

$21.95 USA
0-88022-904-7, 650 pp., 73/8 x 9 1/4

605

EXAMPLE
C++ By

29

Arrays of
Structures

This chapter builds on the previous one by showing you how to

create many structures for your data. After creating an array of

structures, you can store many occurrences of your data values.

Arrays of structures are good for storing a complete employee

file, inventory file, or any other set of data that fits in the structure

format. Whereas arrays provide a handy way to store several values

that are the same type, arrays of structures store several values of

different types together, grouped as structures.

This chapter introduces the following concepts:

♦ Creating arrays of structures

♦ Initializing arrays of structures

♦ Referencing elements from a structure array

♦ Arrays as members

Many C++ programmers use arrays of structures as a prelude

to storing their data in a disk file. You can input and calculate your

disk data in arrays of structures, and then store those structures in

memory. Arrays of structures also provide a means of holding data

you read from the disk.

Chapter 29 ♦ Arrays of Structures

606

Declaring Arrays
of Structures

It is easy to declare an array of structures. Specify the number

of reserved structures inside array brackets when you declare the

structure variable. Consider the following structure definition:

struct stores

 { int employees;

 int registers;

 double sales;

 } store1, store2, store3, store4, store5;

This structure should not be difficult for you to understand

because there are no new commands used in the structure declara-

tion. This structure declaration creates five structure variables.

Figure 29.1 shows how C++ stores these five structures in memory.

Each of the structure variables has three members—two integers

followed by a double floating-point value.

Figure 29.1. The structure of Store 1, Store 2, Store 3, Store 4, and
Store 5.

607

EXAMPLE
C++ By

If the fourth store increased its employee count by three, you

could update the store’s employee number with the following

assignment statement:

store4.employees += 3; // Add three to this store’s

 // employee count.

Suppose the fifth store just opened and you want to initialize its

members with data. If the stores are a chain and the new store is

similar to one of the others, you can begin initializing the store’s data

by assigning each of its members the same data as another store’s,

like this:

store5 = store2; // Define initial values for

 // the members of store5.

Such structure declarations are fine for a small number of

structures, but if the stores were a national chain, five structure

variables would not be enough. Suppose there were 1000 stores. You

would not want to create 1000 different store variables and work

with each one individually. It would be much easier to create an

array of store structures.

Consider the following structure declaration:

struct stores

 { int employees;

 int registers;

 double sales;

 } store[1000];

In one quick declaration, this code creates 1000 store structures,

each one containing three members. Figure 29.2 shows how these

structure variables appear in memory. Notice the name of each

individual structure variable: store[0], store[1], store[2], and so on.

CAUTION: Be careful that your computer does not run out

of memory when you create a large number of structures.

Arrays of structures quickly consume valuable memory. You

might have to create fewer structures, storing more data in disk

files and less data in memory.

Arrays of structures
make working with
large numbers of
structure variables
manageable.

Chapter 29 ♦ Arrays of Structures

608

Figure 29.2. An array of the store structures.

The element store[2] is an array element. This array element,

unlike the others you have seen, is a structure variable. Therefore, it

contains three members, each of which you can reference with the

dot operator.

The dot operator works the same way for structure array

elements as it does for regular structure variables. If the number of

employees for the fifth store (store[4]) increased by three, you could

update the structure variable like this:

store[4].employees += 3; // Add three to this store’s

 // employee count.

You can assign complete structures to one another also by

using array notation. To assign all the members of the 20th store to

the 45th store, you would do this:

609

EXAMPLE
C++ By

store[44] = store[19]; // Copy all members from the

 // 20th store to the 45th.

The rules of arrays are still in force here. Each element of the

array called store is the same data type. The data type of store is the

structure stores. As with any array, each element must be the same

data type; you cannot mix data types in the same array. This array’s

data type happens to be a structure you created containing three

members. The data type for store[316] is the same for store[981] and

store[74].

The name of the array, store, is a pointer constant to the starting

element of the array, store[0]. Therefore, you can use pointer nota-

tion to reference the stores. To assign store[60] the same value as

store[23], you can reference the two elements like this:

*(store+60) = *(store+23);

You also can mix array and pointer notation, such as

store[60] = *(store+23);

and receive the same results.

You can increase the sales of store[8] by 40 percent using

pointer or subscript notation as well, as in

store[8].sales = (*(store+8)).sales * 1.40;

The extra pair of parentheses are required because the dot

operator has precedence over the dereferencing symbol in C++’s

hierarchy of operators (see Appendix D, “C++ Precedence Table”).

Of course, in this case, the code is not helped by the pointer notation.

The following is a much clearer way to increase the sales by 40

percent:

store[8].sales *= 1.40;

The following examples build an inventory data-entry system

for a mail-order firm using an array of structures. There is very little

new you have to know when working with arrays of structures. To

become comfortable with the arrays of structure notation, concen-

trate on the notation used when accessing arrays of structures and

their members.

Chapter 29 ♦ Arrays of Structures

610

Keep Your Array Notation Straight

You would never access the member sales like this:

store.sales[8] = 3234.54; // Invalid

Array subscripts follow only array elements. sales is not an

array; it was declared as being a double floating-point number.

store can never be used without a subscript (unless you are

using pointer notation).

Here is a corrected version of the previous assignment state-

ment:

store[8].sales=3234.54; // Correctly assigns

 // the value.

Examples

1. Suppose you work for a mail-order company that sells disk

drives. You are given the task of writing a tracking program

for the 125 different drives you sell. You must keep track of

the following information:

Storage capacity in megabytes

Access time in milliseconds

Vendor code (A, B, C, or D)

Cost

Price

Because there are 125 different disk drives in the inventory,

the data fits nicely into an array of structures. Each array

element is a structure containing the five members described

in the list.

The following structure definition defines the inventory:

struct inventory

{

611

EXAMPLE
C++ By

 long int storage;

 int access_time;

 char vendor_code;

 double code;

 double price;

} drive[125]; // Defines 125 occurrences of the structure.

2. When working with a large array of structures, your first

concern should be how the data inputs into the array ele-

ments. The best method of data-entry depends on the

application.

For example, if you are converting from an older computer-

ized inventory system, you have to write a conversion

program that reads the inventory file in its native format and

saves it to a new file in the format required by your C++

programs. This is no easy task. It demands that you have

extensive knowledge of the system from which you are

converting.

If you are writing a computerized inventory system for the

first time, your job is a little easier because you do not have

to convert the old files. You still must realize that someone

has to type the data into the computer. You must write a

data-entry program that receives each inventory item from

the keyboard and saves it to a disk file. You should give the

user a chance to edit inventory data to correct any data he or

she originally might have typed incorrectly.

One of the reasons disk files are introduced in the last half of

the book is that disk-file formats and structures share a

common bond. When you store data in a structure, or more

often, in an array of structures, you can easily write that data

to a disk file using straightforward disk I/O commands.

The following program takes the array of disk drive struc-

tures shown in the previous example and adds a data-entry

function so the user can enter data into the array of struc-

tures. The program is menu-driven. The user has a choice,

when starting the program, to add data, print data on-

screen, or exit the program. Because you have yet to see disk

I/O commands, the data in the array of structures goes away

Chapter 29 ♦ Arrays of Structures

612

when the program ends. As mentioned earlier, saving those

structures to disk is an easy task after you learn C++’s disk

I/O commands. For now, concentrate on the manipulation

of the structures.

This program is longer than many you previously have seen

in this book, but if you have followed the discussions of

structures and the dot operator, you should have little

trouble following the code.

Identify the program and include the necessary header files. Define a
structure that describes the format of each inventory item. Create an
array of structures called disk.

Display a menu that gives the user the choice of entering new
inventory data, displaying the data on-screen, or quitting the pro-
gram. If the user wants to enter new inventory items, prompt the user
for each item and store the data into the array of structures. If the user
wants to see the inventory, loop through each inventory item in the
array, displaying each one on-screen.

// Filename: C29DSINV.CPP

// Data-entry program for a disk drive company.

#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

#include <stdio.h>

struct inventory // Global structure definition.

{

 long int storage;

 int access_time;

 char vendor_code;

 float cost;

 float price;

}; // No structure variables defined globally.

void disp_menu(void);

struct inventory enter_data();

void see_data(inventory disk[125], int num_items);

void main()

613

EXAMPLE
C++ By

{

 inventory disk[125]; // Local array of structures.

 int ans;

 int num_items=0; // Number of total items

 // in the inventory.

 do

 {

 do

 { disp_menu(); // Display menu of user choices.

 cin >> ans; // Get user’s request.

 } while ((ans<1) || (ans>3));

 switch (ans)

 { case (1): { disk[num_items] = enter_data(); // Enter

 // disk data.

 num_items++; // Increment number of items.

 break; }

 case (2): { see_data(disk, num_items); // Display

 // disk data.

 break; }

 default : { break; }

 }

 } while (ans!=3); // Quit program

 // when user is done.

 return;

}

void disp_menu(void)

{

 cout << “\n\n*** Disk Drive Inventory System ***\n\n”;

 cout << “Do you want to:\n\n”;

 cout << “\t1. Enter new item in inventory\n\n”;

 cout << “\t2. See inventory data\n\n”;

 cout << “\t3. Exit the program\n\n”;

 cout << “What is your choice? “;

 return;

}

inventory enter_data()

Chapter 29 ♦ Arrays of Structures

614

{

 inventory disk_item; // Local variable to fill

 // with input.

 cout << “\n\nWhat is the next drive’s storage in bytes? “;

 cin >> disk_item.storage;

 cout << “What is the drive’s access time in ms? “;

 cin >> disk_item.access_time;

 cout << “What is the drive’s vendor code (A, B, C, or D)? “;

 fflush(stdin); // Discard input buffer

 // before accepting character.

 disk_item.vendor_code = getchar();

 getchar(); // Discard carriage return

 cout << “What is the drive’s cost? “;

 cin >> disk_item.cost;

 cout << “What is the drive’s price? “;

 cin >> disk_item.price;

 return (disk_item);

}

void see_data(inventory disk[125], int num_items)

{

 int ctr;

 cout << “\n\nHere is the inventory listing:\n\n”;

 for (ctr=0;ctr<num_items;ctr++)

 {

 cout << “Storage: “ << disk[ctr].storage << “\t”;

 cout << “Access time: “ << disk[ctr].access_time << “\n”;

 cout << “Vendor code: “ << disk[ctr].vendor_code << “\t”;

 cout << setprecision(2);

 cout << “Cost: $” << disk[ctr].cost << “\t”;

 cout << “Price: $” << disk[ctr].price << “\n”;

 }

 return;

}

Figure 29.3 shows an item being entered into the inventory

file. Figure 29.4 shows the inventory listing being displayed

to the screen. There are many features and error-checking

functions you can add, but this program is the foundation of

a more comprehensive inventory system. You can easily

615

EXAMPLE
C++ By

adapt it to a different type of inventory, a video tape collec-

tion, a coin collection, or any other tracking system by

changing the structure definition and the member names

throughout the program.

Figure 29.3. Entering inventory information.

Arrays as Members
Members of structures can be arrays. Array members pose no

new problems, but you have to be careful when you access indi-

vidual array elements. Keeping track of arrays of structures that

contain array members might seem like a great deal of work on your

part, but there is nothing to it.

Consider the following structure definition. This statement

declares an array of 100 structures, each structure holding payroll

information for a company. Two of the members, name and depart-

ment, are arrays.

struct payroll

 { char name[25]; // Employee name array.

Chapter 29 ♦ Arrays of Structures

616

 int dependents;

 char department[10]; // Department name array.

 float salary;

 } employee[100]; // An array of 100 employees.

Figure 29.4. Displaying the inventory data.

Figure 29.5 shows what these structures look like. The first and

third members are arrays. name is an array of 25 characters, and

department is an array of 10 characters.

Suppose you must save the 25th employee’s initial in a charac-

ter variable. Assuming initial is already declared as a character

variable, the following statement assigns the employee’s initial to

the varible initial:

initial = employee[24].name[0];

The double subscripts might look confusing, but the dot opera-

tor requires a structure variable on its left (employee[24]) and a

member on its right (name’s first array element). Being able to refer to

member arrays makes the processing of character data in structures

simple.

617

EXAMPLE
C++ By

Figure 29.5. The payroll data.

Chapter 29 ♦ Arrays of Structures

618

Examples

1. Suppose an employee got married and wanted her name

changed in the payroll file. (She happens to be the 45th

employee in the array of structures.) Given the payroll

structure described in the previous section, this would

assign a new name to her structure:

strcpy(employee[44].name, “Mary Larson”); // Assign

 // a new name.

When you refer to a structure variable using the dot opera-

tor, you can use regular commands and functions to process

the data in the structure members.

2. A bookstore wants to catalog its inventory of books. The

following program creates an array of 100 structures. Each

structure contains several types of variables, including

arrays. This program is the data-entry portion of a larger

inventory system. Study the references to the members to

see how member-arrays are used.

// Filename: C29BOOK.CPP

// Bookstore data-entry program.

#include <iostream.h>

#include <stdio.h>

#include <ctype.h>

struct inventory

 { char title[25]; // Book’s title.

 char pub_date[19]; // Publication date.

 char author[20]; // Author’s name.

 int num; // Number in stock.

 int on_order; // Number on order.

 float retail; // Retail price.

 };

void main()

{

 inventory book[100];

 int total=0; // Total books in inventory.

 int ans;

619

EXAMPLE
C++ By

 do // This program enters data into the structures.

 { cout << “Book #” << (total+1) << “:\n”, (total+1);

 cout << “What is the title? “;

 gets(book[total].title);

 cout << “What is the publication date? “;

 gets(book[total].pub_date);

 cout << “Who is the author? “;

 gets(book[total].author);

 cout << “How many books of this title are there? “;

 cin >> book[total].num;

 cout << “How many are on order? “;

 cin >> book[total].on_order;

 cout << “What is the retail price? “;

 cin >> book[total].retail;

 fflush(stdin);

 cout << “\nAre there more books? (Y/N) “;

 ans=getchar();

 fflush(stdin); // Discard carriage return.

 ans=toupper(ans); // Convert to uppercase.

 if (ans==’Y’)

 { total++;

 continue; }

 } while (ans==’Y’);

 return;

}

You need much more to make this a usable inventory pro-

gram. An exercise at the end of this chapter recommends

ways you can improve on this program by adding a printing

routine and a title and author search. One of the first things

you should do is put the data-entry routine in a separate

function to make the code more modular. Because this

example is so short, and because the program performs only

one task (data-entry), there was no advantage to putting the

data-entry task in a separate function.

3. Here is a comprehensive example of the steps you might go

through to write a C++ program. You should begin to

understand the C++ language enough to start writing some

advanced programs.

Chapter 29 ♦ Arrays of Structures

620

Assume you have been hired by a local bookstore to write a

magazine inventory system. You have to track the following:

Magazine title (at most, 25 characters)

Publisher (at most, 20 characters)

Month (1, 2, 3,...12)

Publication year

Number of copies in stock

Number of copies on order

Price of magazine (dollars and cents)

Suppose there is a projected maximum of 1000 magazine

titles the store will ever carry. This means you need 1000

occurrences of the structure, not 1000 magazines total. Here

is a good structure definition for such an inventory:

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 } mags[1000]; // Define 1000 occurrences.

Because this program consists of more than one function, it

is best to declare the structure globally, and the structure

variables locally in the functions that need them.

This program needs three basic functions: a main() control-

ling function, a data-entry function, and a data printing

function. You can add much more, but this is a good start for

an inventory system. To keep the length of this example

reasonable, assume the user wants to enter several maga-

zines, then print them. (To make the program more “us-

able,” you should add a menu so the user can control when

she or he adds and prints the information, and should add

more error-checking and editing capabilities.)

621

EXAMPLE
C++ By

Here is an example of the complete data-entry and printing

program with prototypes. The arrays of structures are

passed between the functions from main().

// Filename: C29MAG.CPP

// Magazine inventory program for adding and displaying

// a bookstore’s magazines.

#include <iostream.h>

#include <ctype.h>

#include <stdio.h>

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 };

mag_info fill_mags(struct mag_info mag);

void print_mags(struct mag_info mags[], int mag_ctr);

void main()

{

 mag_info mags[1000];

 int mag_ctr=0; // Number of magazine titles.

 char ans;

 do

 { // Assumes there is

 // at least one magazine filled.

 mags[mag_ctr] = fill_mags(mags[mag_ctr]);

 cout << “Do you want to enter another magazine? “;

 fflush(stdin);

 ans = getchar();

 fflush(stdin); // Discards carriage return.

 if (toupper(ans) == ‘Y’)

 { mag_ctr++; }

 } while (toupper(ans) == ‘Y’);

 print_mags(mags, mag_ctr);

Chapter 29 ♦ Arrays of Structures

622

 return; // Returns to operating system.

}

void print_mags(mag_info mags[], int mag_ctr)

{

 int i;

 for (i=0; i<=mag_ctr; i++)

 { cout << “\n\nMagazine “ << i+1 << “:\n”;// Adjusts for

 // subscript.

 cout << “\nTitle: “ << mags[i].title << “\n”;

 cout << “\tPublisher: “ << mags[i].pub << “\n”;

 cout << “\tPub. Month: “ << mags[i].month << “\n”;

 cout << “\tPub. Year: “ << mags[i].year << “\n”;

 cout << “\tIn-stock: “ << mags[i].stock_copies << “\n”;

 cout << “\tOn order: “ << mags[i].order_copies << “\n”;

 cout << “\tPrice: “ << mags[i].price << “\n”;

 }

 return;

}

mag_info fill_mags(mag_info mag)

{

 puts(“\n\nWhat is the title? “);

 gets(mag.title);

 puts(“Who is the publisher? “);

 gets(mag.pub);

 puts(“What is the month (1, 2, ..., 12)? “);

 cin >> mag.month;

 puts(“What is the year? “);

 cin >> mag.year;

 puts(“How many copies in stock? “);

 cin >> mag.stock_copies;

 puts(“How many copies on order? “);

 cin >> mag.order_copies;

 puts(“How much is the magazine? “);

 cin >> mag.price;

 return (mag);

}

623

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: Each element in an array of structures must be

the same type.

2. What is the advantage of creating an array of structures

rather than using individual variable names for each struc-

ture variable?

3. Given the following structure declaration:

struct item

 { char part_no[8];

 char descr[20];

 float price;

 int in_stock;

 } inventory[100];

a. How would you assign a price of 12.33 to the 33rd item’s

in-stock quantity?

b. How would you assign the first character of the 12th

item’s part number the value of X?

c. How would you assign the 97th inventory item the same

values as the 63rd?

4. Given the following structure declaration:

struct item

 { char desc[20];

 int num;

 float cost;

 } inventory[25];

a. What is wrong with the following statement?

item[1].cost = 92.32;

b. What is wrong with the following statement?

strcpy(inventory.desc, “Widgets”);

Chapter 29 ♦ Arrays of Structures

624

c. What is wrong with the following statement?

inventory.cost[10] = 32.12;

Review Exercises
1. Write a program that stores an array of friends’ names,

phone numbers, and addresses and prints them two ways:

with their name, address, and phone number, or with only

their name and phone number for a phone listing.

2. Add a sort function to the program in Exercise 1 so you can

print your friends’ names in alphabetical order. (Hint: You

have to make the member holding the names a character

pointer.)

3. Expand on the book data-entry program, C29BOOK.CPP,

by adding features to make it more usable (such as search

book by author, by title, and print an inventory of books on

order).

Summary
You have mastered structures and arrays of structures. Many

useful inventory and tracking programs can be written using struc-

tures. By being able to create arrays of structures, you can now create

several occurrences of data.

The next step in the process of learning C++ is to save these

structures and other data to disk files. The next two chapters explore

the concepts of disk file processing.

625

EXAMPLE
C++ By

30

Sequential Files

So far, every example in this book has processed data that resided

inside the program listing or came from the keyboard. You assigned

constants and variables to other variables and created new data

values from expressions. The programs also received input with cin,

gets(), and the character input functions.

The data created by the user and assigned to variables with

assignment statements is sufficient for some applications. With the

large volumes of data most real-world applications must process,

however, you need a better way of storing that data. For all but the

smallest computer programs, disk files offer the solution.

After storing data on the disk, the computer helps you enter,

find, change, and delete the data. The computer and C++ are simply

tools to help you manage and process data. This chapter focuses on

disk- and file-processing concepts and teaches you the first of two

methods of disk access, sequential file access.
This chapter introduces you to the following concepts:

♦ An overview of disk files

♦ The types of files

♦ Processing data on the disk

♦ Sequential file access

♦ File I/O functions

Chapter 30 ♦ Sequential Files

626

After this chapter, you will be ready to tackle the more ad-

vanced random-file-access methods covered in the next chapter. If

you have programmed computerized data files with another pro-

gramming language, you might be surprised at how C++ borrows

from other programming languages, especially BASIC, when work-

ing with disk files. If you are new to disk-file processing, disk files

are simple to create and to read.

Why Use a Disk?
The typical computer system has much less memory storage

than hard disk storage. Your disk drive holds much more data than

can fit in your computer’s RAM. This is the primary reason for using

the disk for storing your data. The disk memory, because it is

nonvolatile, also lasts longer; when you turn your computer off, the

disk memory is not erased, whereas RAM is erased. Also, when your

data changes, you (or more important, your users) do not have to

edit the program and look for a set of assignment statements.

Instead, the users run previously written programs that make

changes to the disk data.

This makes programming more difficult at first because pro-

grams have to be written to change the data on the disk.

Nonprogrammers, however, can then use the programs and modify

the data without knowing C++.

The capacity of your disk makes it a perfect place to store your

data as well as your programs. Think about what would happen if

all data had to be stored with a program’s assignment statements.

What if the Social Security Office in Washington, D.C., asked you to

write a C++ program to compute, average, filter, sort, and print each

person’s name and address in his or her files? Would you want your

program to include millions of assignment statements? Not only

would you not want the program to hold that much data, but it could

not do so because only relatively small amounts of data fit in a

program before you run out of RAM.

Disks hold more
data than computer
memory.

627

EXAMPLE
C++ By

By storing data on your disk, you are much less limited because

you have more storage. Your disk can hold as much data as you have

disk capacity. Also, if your program requirements grow, you can

usually increase your disk space, whereas you cannot always add

more RAM to your computer.

NOTE: C++ cannot access the special extended or expanded

memory some computers have.

When working with disk files, C++ does not have to access

much RAM because C++ reads data from your disk drive and

processes the data only parts at a time. Not all your disk data has to

reside in RAM for C++ to process it. C++ reads some data, processes

it, and then reads some more. If C++ requires disk data a second

time, it rereads that place on the disk.

Types of Disk File Access
Your programs can access files two ways: through sequential

access or random access. Your application determines the method

you should choose. The access mode of a file determines how you

read, write, change, and delete data from the file. Some of your files

can be accessed in both ways, sequentially and randomly as long as

your programs are written properly and the data lends itself to both

types of file access.

A sequential file has to be accessed in the same order the file

was written. This is analogous to cassette tapes: You play music in

the same order it was recorded. (You can quickly fast-forward or

rewind over songs you do not want to listen to, but the order of the

songs dictates what you do to play the song you want.) It is difficult,

and sometimes impossible, to insert data in the middle of a sequen-

tial file. How easy is it to insert a new song in the middle of two other

songs on a tape? The only way to truly add or delete records from the

middle of a sequential file is to create a completely new file that

combines both old and new records.

It might seem that sequential files are limiting, but it turns

out that many applications lend themselves to sequential-file

processing.

Chapter 30 ♦ Sequential Files

628

Unlike sequential files, you can access random-access files in

any order you want. Think of data in a random-access file as you

would songs on a compact disc or record; you can go directly to any

song you want without having to play or fast-forward over the other

songs. If you want to play the first song, the sixth song, and then the

fourth song, you can do so. The order of play has nothing to do with

the order in which the songs were originally recorded. Random-file

access sometimes takes more programming but rewards your effort

with a more flexible file-access method. Chapter 31 discusses how to

program for random-access files.

Sequential File Concepts
There are three operations you can perform on sequential disk

files. You can

♦ Create disk files

♦ Add to disk files

♦ Read from disk files

Your application determines what you must do. If you are

creating a disk file for the first time, you must create the file and write

the initial data to it. Suppose you wanted to create a customer data

file. You would create a new file and write your current customers

to that file. The customer data might originally be in arrays, arrays

of structures, pointed to with pointers, or placed in regular variables

by the user.

Over time, as your customer base grows, you can add new

customers to the file (called appending to the file). When you add to

the end of a file, you append to that file. As your customers enter

your store, you would read their information from the customer

data file.

Customer disk processing is an example of one disadvantage

of sequential files, however. Suppose a customer moves and wants

you to change his or her address in your files. Sequential-access files

do not lend themselves well to changing data stored in them. It is

also difficult to remove information from sequential files. Random

files, described in the next chapter, provide a much easier approach

629

EXAMPLE
C++ By

to changing and removing data. The primary approach to changing

or removing data from a sequential-access file is to create a new one,

from the old one, with the updated data. Because of the updating

ease provided with random-access files, this chapter concentrates

on creating, reading, and adding to sequential files.

Opening and Closing Files
Before you can create, write to, or read from a disk file, you

must open the file. This is analogous to opening a filing cabinet

before working with a file stored in the cabinet. Once you are done

with a cabinet’s file, you close the file drawer. You also must close

a disk file when you finish with it.

When you open a disk file, you only have to inform C++ of the

filename and what you want to do (write to, add to, or read from).

C++ and your operating system work together to make sure the disk

is ready and to create an entry in your file directory (if you are

creating a file) for the filename. When you close a file, C++ writes any

remaining data to the file, releases the file from the program, and

updates the file directory to reflect the file’s new size.

CAUTION: You must ensure that the FILES= statement in your

CONFIG.SYS file is large enough to hold the maximum num-

ber of disk files you have open, with one left for your C++

program. If you are unsure how to do this, check your DOS

reference manual or a beginner’s book about DOS.

To open a file, you must call the open() function. To close a file,

call the close() function. Here is the format of these two function

calls:

file_ptr.open(file_name, access);

and

file_ptr.close();

file_ptr is a special type of pointer that only points to files, not

data variables.

Chapter 30 ♦ Sequential Files

630

Your operating system handles the exact location of your data

in the disk file. You don’t want to worry about the exact track and

sector number of your data on the disk. Therefore, you let file_ptr

point to the data you are reading and writing. Your program only

has to generically manage file_ptr, whereas C++ and your operat-

ing system take care of locating the actual physical data.

file_name is a string (or a character pointer that points to a

string) containing a valid filename for your computer. file_name can

contain a complete disk and directory pathname. You can specify

the filename in uppercase or lowercase letters.

access must be one of the values from Table 30.1.

Table 30.1. Possible access modes.

Mode Description

app Open the file for appending (adding to it).

ate Seek to end of file on opening it.

in Open the file for reading.

out Open the file for writing.

binary Open the file in binary mode.

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails.

noreplace If file exists, open fails unless appending or seeking

to end of file on opening.

The default access mode for file access is a text mode. A text file

is an ASCII file, compatible with most other programming lan-

guages and applications. Text files do not always contain text, in the

word-processing sense of the word. Any data you have to store can

go in a text file. Programs that read ASCII files can read data you

create as C++ text files. For a discussion of binary file access, see the

box that follows.

631

EXAMPLE
C++ By

Binary Modes

If you specify binary access, C++ creates or reads the file in a

binary format. Binary data files are “squeezed”—they take less

space than text files. The disadvantage of using binary files is

that other programs cannot always read the data files. Only

C++ programs written to access binary files can read and write

to them. The advantage of binary files is that you save disk

space because your data files are more compact. Other than the

access mode in the open() function, you use no additional

commands to access binary files with your C++ programs.

The binary format is a system-specific file format. In other

words, not all computers can read a binary file created on

another computer.

If you open a file for writing, C++ creates the file. If a file by

that name already exists, C++ overwrites the old file with

no warning. You must be careful when opening files so you do

not overwrite existing data that you want to save.

If an error occurs during the opening of a file, C++ does not

create a valid file pointer. Instead, C++ creates a file pointer equal to

zero. For example, if you open a file for output, but use a disk name

that is invalid, C++ cannot open the file and makes the file pointer

equal to zero. Always check the file pointer when writing disk file

programs to ensure the file opened properly.

TIP: Beginning programmers like to open all files at the begin-

ning of their programs and close them at the end. This is not

always the best method. Open files immediately before

you access them and close them immediately when you are

done with them. This habit protects the files because they are

closed immediately after you are done with them. A closed file

is more likely to be protected in the unfortunate (but possible)

event of a power failure or computer breakdown.

Chapter 30 ♦ Sequential Files

632

This section contains much information on file-access theories.

The following examples help illustrate these concepts.

Examples

1. Suppose you want to create a file for storing your house

payment records for the previous year. Here are the first few

lines in the program which creates a file called HOUSE.DAT

on your disk:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer for writing

 file_ptr.open(“house.dat”, ios::out); // Creates the file

The remainder of the program writes data to the file. The

program never has to refer to the filename again. The pro-

gram uses the file_ptr variable to refer to the file. Examples

in the next few sections illustrate how. There is nothing

special about file_ptr, other than its name (although the

name is meaningful in this case). You can name file pointer

variables XYZ or a908973 if you like, but these names would not

be meaningful.

You must include the fstream.h header file because it con-

tains the definition for the ofstream and ifstream declarations.

You don’t have to worry about the physical specifics. The

file_ptr “points” to data in the file as you write it. Put the

declarations in your programs where you declare other

variables and arrays.

TIP: Because files are not part of your program, you might

find it useful to declare file pointers globally. Unlike data in

variables, there is rarely a reason to keep file pointers local.

633

EXAMPLE
C++ By

Before finishing with the program, you should close the file.

The following close() function closes the house file:

file_ptr.close(); // Close the house payment file.

2. If you want, you can put the complete pathname in the file’s

name. The following opens the household payment file in a

subdirectory on the D: disk drive:

file_ptr.open(“d:\mydata\house.dat”, ios::out);

3. If you want, you can store a filename in a character array or

point to it with a character pointer. Each of the following

sections of code is equivalent:

char fn[] = “house.dat”; // Filename in character array.

file_ptr.open(fn, ios::out); // Creates the file.

char *myfile = “house.dat”; // Filename pointed to.

file_ptr.open(myfile, ios::out); // Creates the file.

// Let the user enter the filename.

cout << “What is the name of the household file? “;

gets(filename); // Filename must be an array or

 // character pointer.

file_ptr.open(filename, ios::out); // Creates the file.

No matter how you specify the filename when opening the

file, close the file with the file pointer. This close() function

closes the open file, no matter which method you used to

open the file:

file_ptr.close(); // Close the house payment file.

4. You should check the return value from open() to ensure the

file opened properly. Here is code after open() that checks for

an error:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer.

Chapter 30 ♦ Sequential Files

634

 file_ptr.open(“house.dat”, ios::out); // Creates the file.

 if (!file_ptr)

 { cout << “Error opening file.\n”; }

 else

 {

 // Rest of output commands go here.

5. You can open and write to several files in the same program.

Suppose you wanted to read data from a payroll file and

create a backup payroll data file. You have to open the

current payroll file using the in reading mode, and the

backup file in the output out mode.

For each open file in your program, you must declare a

different file pointer. The file pointers used by your input

and output statement determine on which file they operate.

If you have to open many files, you can declare an array of

file pointers.

Here is a way you can open the two payroll files:

#include <fstream.h>

ifstream file_in; // Input file

ofstream file_out; // Output file

main()

{

 file_in.open(“payroll.dat”, ios::in); // Existing file

 file_out.open(“payroll.BAK”, ios::out); // New file

When you finish with these files, be sure to close them with

these two close() function calls:

file_in.close();

file_out.close();

635

EXAMPLE
C++ By

Writing to a File
Any input or output function that requires a device performs

input and output with files. You have seen most of these already.

The most common file I/O functions are

get() and put()

gets() and puts()

You also can use file_ptr as you do with cout or cin.

The following function call reads three integers from a file

pointed to by file_ptr:

file_ptr >> num1 >> num2 >> num3; // Reads three variables.

There is always more than one way to write data to a disk file.

Most the time, more than one function will work. For example, if

you write many names to a file, both puts() and file_ptr << work.

You also can write the names using put(). You should use which-

ever function you are most comfortable with. If you want a newline

character (\n) at the end of each line in your file, the file_ptr << and

puts() are probably easier than put(), but all three will do the job.

TIP: Each line in a file is called a record. By putting a newline

character at the end of file records, you make the input of those

records easier.

Examples

1. The following program creates a file called NAMES.DAT.

The program writes five names to a disk file using

file_ptr <<.

// Filename: C30WR1.CPP

// Writes five names to a disk file.

#include <fstream.h>

ofstream fp;

Chapter 30 ♦ Sequential Files

636

void main()

{

 fp.open(“NAMES.DAT”, ios::out); // Creates a new file.

 fp << “Michael Langston\n”;

 fp << “Sally Redding\n”;

 fp << “Jane Kirk\n”;

 fp << “Stacy Wikert\n”;

 fp << “Joe Hiquet\n”;

 fp.close(); // Release the file.

 return;

}

To keep this first example simple, error checking was not

done on the open() function. The next few examples check for

the error.

NAMES.TXT is a text data file. If you want, you can read this

file into your word processor (use your word processor’s

command for reading ASCII files) or use the MS-DOS TYPE

command (or your operating system’s equivalent command)

to display this file on-screen. If you were to display

NAMES.TXT, you would see:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

2. The following file writes the numbers from 1 to 100 to a file

called NUMS.1.

// Filename: C30WR2.CPP

// Writes 1 to 100 to a disk file.

#include <fstream.h>

ofstream fp;

void main()

637

EXAMPLE
C++ By

{

 int ctr;

 fp.open(“NUMS.1”, ios::out); // Creates a new file.

 if (!fp)

 { cout << “Error opening file.\n”; }

 else

 {

 for (ctr = 1; ctr < 101; ctr++)

 { fp << ctr << “ “; }

 }

 fp.close();

 return;

}

The numbers are not written one per line, but with a space

between each of them. The format of the file_ptr << deter-

mines the format of the output data. When writing data to

disk files, keep in mind that you have to read the data later.

You have to use “mirror-image” input functions to read data

you output to files.

Writing to a Printer
Functions such as open() and others were not designed to write

only to files. They were designed to write to any device, including

files, the screen, and the printer. If you must write data to a printer,

you can treat the printer as if it were a file. The following program

opens a file pointer using the MS-DOS name for a printer located at

LPT1 (the MS-DOS name for the first parallel printer port):

// Filename: C30PRNT.CPP

// Prints to the printer device

#include <fstream.h>

ofstream prnt; // Points to the printer.

void main()

Chapter 30 ♦ Sequential Files

638

{

 prnt.open(“LPT1”, ios::out);

 prnt << “Printer line 1\n”; // 1st line printed.

 prnt << “Printer line 2\n”; // 2nd line printed.

 prnt << “Printer line 3\n”; // 3rd line printed.

 prnt.close();

return;

}

Make sure your printer is on and has paper before you run this

program. When you run the program, you see this printed on the

printer:

Printer line 1

Printer line 2

Printer line 3

Adding to a File
You can easily add data to an existing file or create new files, by

opening the file in append access mode. Data files on the disk are

rarely static; they grow almost daily due to (hopefully!) increased

business. Being able to add to data already on the disk is very useful,

indeed.

Files you open for append access (using ios::app) do not have

to exist. If the file exists, C++ appends data to the end of the file when

you write the data. If the file does not exist, C++ creates the file (as

is done when you open a file for write access).

Example

The following program adds three more names to the

NAMES.DAT file created in an earlier example.

// Filename: C30AP1.CPP

// Adds three names to a disk file.

#include <fstream.h>

639

EXAMPLE
C++ By

ofstream fp;

void main()

{

 fp.open(“NAMES.DAT”, ios::app); // Adds to file.

 fp << “Johnny Smith\n”;

 fp << “Laura Hull\n”;

 fp << “Mark Brown\n”;

 fp.close(); // Release the file.

 return;

}

Here is what the file now looks like:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

NOTE: If the file does not exist, C++ creates it and stores the

three names to the file.

Basically, you only have to change the open() function’s access

mode to turn a file-creation program into a file-appending program.

Reading from a File
Once the data is in a file, you must be able to read that data. You

must open the file in a read access mode. There are several ways to

read data. You can read character data one character at a time or one

string at a time. The choice depends on the format of the data.

Files you open for read access (using ios::in) must exist al-

ready, or C++ gives you an error. You cannot read a file that does not

exist. open() returns zero if the file does not exist when you open it

for read access.

Files must exist
prior to opening
them for read
access.

Chapter 30 ♦ Sequential Files

640

Another event happens when reading files. Eventually, you

read all the data. Subsequent reading produces errors because there

is no more data to read. C++ provides a solution to the end-of-file

occurrence. If you attempt to read from a file that you have com-

pletely read the data from, C++ returns the value of zero. To find the

end-of-file condition, be sure to check for zero when reading infor-

mation from files.

Examples

1. This program asks the user for a filename and prints the

contents of the file to the screen. If the file does not exist, the

program displays an error message.

// Filename: C30RE1.CPP

// Reads and displays a file.

#include <fstream.h>

#include <stdlib.h>

ifstream fp;

void main()

{

 char filename[12]; // Holds user’s filename.

 char in_char; // Input character.

 cout << “What is the name of the file you want to see? “;

 cin >> filename;

 fp.open(filename, ios::in);

 if (!fp)

 {

 cout << “\n\n*** That file does not exist ***\n”;

 exit(0); // Exit program.

 }

 while (fp.get(in_char))

 { cout << in_char; }

 fp.close();

 return;

}

641

EXAMPLE
C++ By

Here is the resulting output when the NAMES.DAT file is

requested:

What is the name of the file you want to see? NAMES.DAT

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

Because newline characters are in the file at the end of each

name, the names appear on-screen, one per line. If you

attempt to read a file that does not exist, the program dis-

plays the following message:

*** That file does not exist ***

2. This program reads one file and copies it to another. You

might want to use such a program to back up important data

in case the original file is damaged.

The program must open two files, the first for reading, and

the second for writing. The file pointer determines which of

the two files is being accessed.

// Filename: C30RE2.CPP

// Makes a copy of a file.

#include <fstream.h>

#include <stdlib.h>

ifstream in_fp;

ofstream out_fp;

void main()

{

 char in_filename[12]; // Holds original filename.

 char out_filename[12]; // Holds backup filename.

 char in_char; // Input character.

Chapter 30 ♦ Sequential Files

642

 cout << “What is the name of the file you want to back up?

“;

 cin >> in_filename;

 cout << “What is the name of the file “;

 cout << “you want to copy “ << in_filename << “ to? “;

 cin >> out_filename;

 in_fp.open(in_filename, ios::in);

 if (!in_fp)

 {

 cout << “\n\n*** “ << in_filename << “ does not exist

***\n”;

 exit(0); // Exit program

 }

 out_fp.open(out_filename, ios::out);

 if (!out_fp)

 {

 cout << “\n\n*** Error opening “ << in_filename << “

***\n”;

 exit(0); // Exit program

 }

 cout << “\nCopying...\n”; // Waiting message.

 while (in_fp.get(in_char))

 { out_fp.put(in_char); }

 cout << “\nThe file is copied.\n”;

 in_fp.close();

 out_fp.close();

 return;

}

Review Questions
Answers to the review questions are in Appendix B.

1. What are the three ways to access sequential files?

2. What advantage do disk files have over holding data in

memory?

3. How do sequential files differ from random-access files?

643

EXAMPLE
C++ By

4. What happens if you open a file for read access and the file

does not exist?

5. What happens if you open a file for write access and the file

already exists?

6. What happens if you open a file for append access and the

file does not exist?

7. How does C++ inform you that you have reached the end-

of-file condition?

Review Exercises
1. Write a program that creates a file containing the following

data:

Your name

Your address

Your phone number

Your age

2. Write a second program that reads and prints the data file

you created in Exercise 1.

3. Write a program that takes your data created in Exercise 1

and writes it to the screen one word per line.

4. Write a program for PCs that backs up two important files:

the AUTOEXEC.BAT and CONFIG.SYS. Call the backup

files AUTOEXEC.SAV and CONFIG.SAV.

5. Write a program that reads a file and creates a new file with

the same data, except reverse the case on the second file.

Everywhere uppercase letters appear in the first file, write

lowercase letters to the new file, and everywhere lowercase

letters appear in the first file, write uppercase letters to the

new file.

Chapter 30 ♦ Sequential Files

644

Summary
You can now perform one of the most important requirements

of data processing: writing and reading to and from disk files. Before

this chapter, you could only store data in variables. The short life of

variables (they only last as long as your program is running) made

long-term storage of data impossible. You can now save large

amounts of data in disk files to process later.

Reading and writing sequential files involves learning more

concepts than actual commands or functions. The open() and close()

functions are the most important functions you learned in this

chapter. You are now familiar with most of the I/O functions needed

to retrieve data to and from disk files.

The next chapter concludes the discussion of disk files in this

book. You will learn how to create and use random-access files. By

programming with random file access, you can read selected data

from a file, as well as change data without having to rewrite the

entire file.

645

EXAMPLE
C++ By

31

Random-Access
Files

This chapter introduces the concept of random file access. Random

file access enables you to read or write any data in your disk file

without having to read or write every piece of data before it. You can

quickly search for, add, retrieve, change, and delete information in

a random-access file. Although you need a few new functions to

access files randomly, you find that the extra effort pays off in

flexibility, power, and speed of disk access.

This chapter introduces

♦ Random-access files

♦ File records

♦ The seekg() function

♦ Special-purpose file I/O functions

With C++’s sequential and random-access files, you can do

everything you would ever want to do with disk data.

Chapter 31 ♦ Random-Access Files

646

Random File Records
Random files exemplify the power of data processing with

C++. Sequential file processing is slow unless you read the entire

file into arrays and process them in memory. As explained in

Chapter 30, however, you have much more disk space than RAM,

and most disk files do not even fit in your RAM at one time.

Therefore, you need a way to quickly read individual pieces of

data from a file in any order and process them one at a time.

Generally, you read and write file records. A record to a file is

analogous to a C++ structure. A record is a collection of one or more

data values (called fields) you read and write to disk. Generally, you

store data in structures and write the structures to disk where they

are called records. When you read a record from disk, you generally

read that record into a structure variable and process it with your

program.

Unlike most programming languages, not all disk data for C++

programs has to be stored in record format. Typically, you write a

stream of characters to a disk file and access that data either sequen-

tially or randomly by reading it into variables and structures.

The process of randomly accessing data in a file is simple. Think

about the data files of a large credit card organization. When you

make a purchase, the store calls the credit card company to receive

authorization. Millions of names are in the credit card company’s

files. There is no quick way the credit card company could read

every record sequentially from the disk that comes before yours.

Sequential files do not lend themselves to quick access. It is not

feasible, in many situations, to look up individual records in a data

file with sequential access.

The credit card companies must use a random file access so

their computers can go directly to your record, just as you go directly

to a song on a compact disk or record album. The functions you use

are different from the sequential functions, but the power that

results from learning the added functions is worth the effort.

When your program reads and writes files randomly, it treats

the file like a big array. With arrays, you know you can add, print,

or remove values in any order. You do not have to start at the first

A record to a file is
like a structure to
variables.

You do not have to
rewrite an entire file
to change random-
access file data.

647

EXAMPLE
C++ By

array element, sequentially looking at the next one, until you get the

element you need. You can view your random-access file in the same

way, accessing the data in any order.

Most random file records are fixed-length records. Each record

(usually a row in the file) takes the same amount of disk space.

Most of the sequential files you read and wrote in the previous

chapters were variable-length records. When you are reading or

writing sequentially, there is no need for fixed-length records be-

cause you input each value one character, word, string, or number

at a time, and look for the data you want. With fixed-length records,

your computer can better calculate where on the disk the desired

record is located.

Although you waste some disk space with fixed-length records

(because of the spaces that pad some of the fields), the advantages

of random file access compensate for the “wasted” disk space (when

the data do not actually fill the structure size).

TIP: With random-access files, you can read or write records

in any order. Therefore, even if you want to perform sequential

reading or writing of the file, you can use random-access

processing and “randomly” read or write the file in sequential

record number order.

Opening Random-Access
Files

Just as with sequential files, you must open random-access files

before reading or writing to them. You can use any of the read access

modes mentioned in Chapter 30 (such as ios::in) only to read a file

randomly. However, to modify data in a file, you must open the file

in one of the update modes, repeated for you in Table 31.1.

Chapter 31 ♦ Random-Access Files

648

Table 31.1. Random-access update modes.

Mode Description

app Open the file for appending (adding to it)

ate Seek to end of file on opening it

in Open file for reading

out Open file for writing

binary Open file in binary mode

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails

noreplace If file exists, open fails unless appending or seeking to

end of file on opening

There is really no difference between sequential files and

random files in C++. The difference between the files is not physical,

but lies in the method you use to access them and update them.

Examples

1. Suppose you want to write a program to create a file of your

friends’ names. The following open() function call suffices,

assuming fp is declared as a file pointer:

fp.open(“NAMES.DAT”, ios::out);

if (!fp)

 { cout << “\n*** Cannot open file ***\n”; }

No update open() access mode is needed if you are only

creating the file. However, what if you wanted to create the

file, write names to it, and give the user a chance to change

any of the names before closing the file? You then have to

open the file like this:

fp.open(“NAMES.DAT”, ios::in | ios::out);

if (!fp)

 cout << “\n*** Cannot open file ***\n”;

649

EXAMPLE
C++ By

This code enables you to create the file, then change data

you wrote to the file.

2. As with sequential files, the only difference between using a

binary open() access mode and a text mode is that the file

you create is more compact and saves disk space. You

cannot, however, read that file from other programs as an

ASCII text file. The previous open() function can be rewritten

to create and allow updating of a binary file. All other file-

related commands and functions work for binary files just as

they do for text files.

fp.open(“NAMES.DAT”, ios::in | ios::out | ios::binary);

if (!fp)

 cout << “\n*** Cannot open file ***\n”;

The seekg() Function
C++ provides a function that enables you to read to a specific

point in a random-access data file. This is the seekg() function. The

format of seekg() is

file_ptr.seekg(long_num, origin);

file_ptr is the pointer to the file that you want to access,

initialized with an open() statement. long_num is the number of bytes

in the file you want to skip. C++ does not read this many bytes, but

literally skips the data by the number of bytes specified in long_num.
Skipping the bytes on the disk is much faster than reading them. If

long_num is negative, C++ skips backwards in the file (this allows for

rereading of data several times). Because data files can be large, you

must declare long_num as a long integer to hold a large amount of

bytes.

origin is a value that tells C++ where to begin the skipping of

bytes specified by long_num. origin can be any of the three values

shown in Table 31.2.

You can read
forwards or
backwards from any
point in the file with
seekg().

Chapter 31 ♦ Random-Access Files

650

Table 31.2. Possible origin values.

Description origin Equivalent

Beginning of file SEEK_SET ios::beg

Current file position SEEK_CUR ios::cur

End of file SEEK_END ios::end

The origins SEEK_SET, SEEK_CUR, and SEEK_END are de-

fined in stdio.h. The equivalents ios::beg, ios::cur, and ios::end are

defined in fstream.h.

NOTE: Actually, the file pointer plays a much more important

role than simply “pointing to the file” on the disk. The file

pointer continually points to the exact location of the next byte
to read or write. In other words, as you read data from either a

sequential or random-access file, the file pointer increments

with each byte read. By using seekg(), you can move the file

pointer forward or backward in the file.

Examples

1. No matter how far into a file you have read, the following

seekg() function positions the file pointer back to the begin-

ning of a file:

fp.seekg(0L, SEEK_SET); // Position file pointer at beginning.

The constant 0L passes a long integer 0 to the seekg() func-

tion. Without the L, C++ passes a regular integer and this

does not match the prototype for seekg() that is located in

fstream.h. Chapter 4, “Variables and Literals,” explained the

use of data type suffixes on numeric constants, but the

suffixes have not been used until now.

This seekg() function literally reads “move the file pointer 0

bytes from the beginning of the file.”

651

EXAMPLE
C++ By

2. The following example reads a file named MYFILE.TXT

twice, once to send the file to the screen and once to send the

file to the printer. Three file pointers are used, one for each

device (the file, the screen, and the printer).

// Filename: C31TWIC.CPP

// Writes a file to the printer, rereads it,

// and sends it to the screen.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

ifstream in_file; // Input file pointer.

ofstream scrn; // Screen pointer.

ofstream prnt; // Printer pointer.

void main()

{

 char in_char;

 in_file.open(“MYFILE.TXT”, ios::in);

 if (!in_file)

 {

 cout << “\n*** Error opening MYFILE.TXT ***\n”;

 exit(0);

 }

 scrn.open(“CON”, ios::out); // Open screen device.

 while (in_file.get(in_char))

 { scrn << in_char; } // Output characters to the screen.

 scrn.close(); // Close screen because it is no

 // longer needed.

 in_file.seekg(0L, SEEK_SET); // Reposition file pointer.

 prnt.open(“LPT1”, ios::out); // Open printer device.

 while (in_file.get(in_char))

 { prnt << in_char; } // Output characters to the

 // printer.

 prnt.close(); // Always close all open files.

 in_file.close();

 return;

}

Chapter 31 ♦ Random-Access Files

652

You also can close then reopen a file to position the file

pointer at the beginning, but using seekg() is a more efficient

method.

Of course, you could have used regular I/O functions to

write to the screen, rather than having to open the screen as

a separate device.

3. The following seekg() function positions the file pointer at

the 30th byte in the file. (The next byte read is the 31st byte.)

file_ptr.seekg(30L, SEEK_SET); // Position file pointer

 // at the 30th byte.

This seekg() function literally reads “move the file pointer 30

bytes from the beginning of the file.”

If you write structures to a file, you can quickly seek any

structure in the file using the sizeof() function. Suppose you

want the 123rd occurrence of the structure tagged with

inventory. You would search using the following seekg()

function:

file_ptr.seekg((123L * sizeof(struct inventory)), SEEK_SET);

4. The following program writes the letters of the alphabet to a

file called ALPH.TXT. The seekg() function is then used to

read and display the ninth and 17th letters (I and Q).

// Filename: C31ALPH.CPP

// Stores the alphabet in a file, then reads

// two letters from it.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

fstream fp;

void main()

{

 char ch; // Holds A through Z.

653

EXAMPLE
C++ By

 // Open in update mode so you can read file after writing to it.

 fp.open(“alph.txt”, ios::in | ios::out);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 for (ch = ‘A’; ch <= ‘Z’; ch++)

 { fp << ch; } // Write letters.

 fp.seekg(8L, ios::beg); // Skip eight letters, point to I.

 fp >> ch;

 cout << “The first character is “ << ch << “\n”;

 fp.seekg(16L, ios::beg); // Skip 16 letters, point to Q.

 fp >> ch;

 cout << “The second character is “ << ch << “\n”;

 fp.close();

 return;

}

5. To point to the end of a data file, you can use the seekg()

function to position the file pointer at the last byte. Subse-

quent seekg()s should then use a negative long_num value to

skip backwards in the file. The following seekg() function

makes the file pointer point to the end of the file:

file_ptr.seekg(0L, SEEK_END); // Position file

 // pointer at the end.

This seekg() function literally reads “move the file pointer 0

bytes from the end of the file.” The file pointer now points to

the end-of-file marker, but you can seekg() backwards to find

other data in the file.

6. The following program reads the ALPH.TXT file (created in

Exercise 4) backwards, printing each character as it skips

back in the file.

// Filename: C31BACK.CPP

// Reads and prints a file backwards.

Chapter 31 ♦ Random-Access Files

654

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

ifstream fp;

void main()

{

 int ctr; // Steps through the 26 letters in the file.

 char in_char;

 fp.open(“ALPH.TXT”, ios::in);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 fp.seekg(-1L, SEEK_END); // Point to last byte in

 // the file.

 for (ctr = 0; ctr < 26; ctr++)

 {

 fp >> in_char;

 fp.seekg(-2L, SEEK_CUR);

 cout << in_char;

 }

 fp.close();

 return;

}

This program also uses the SEEK_CUR origin value. The last

seekg() in the program seeks two bytes backwards from the

current position, not the beginning or end as the previous

examples have. The for loop towards the end of the program

performs a “skip-two-bytes-back, read-one-byte-forward”

method to skip through the file backwards.

7. The following program performs the same actions as Ex-

ample 4 (C31ALPH.CPP), with one addition. When the

letters I and Q are found, the letter x is written over the I and

Q. The seekg() must be used to back up one byte in the file to

overwrite the letter just read.

655

EXAMPLE
C++ By

// Filename: C31CHANG.CPP

// Stores the alphabet in a file, reads two letters from it,

// and changes those letters to xs.

#include <fstream.h>

#include <stdlib.h>

#include <stdio.h>

fstream fp;

void main()

{

 char ch; // Holds A through Z.

// Open in update mode so you can read file after writing to it.

 fp.open(“alph.txt”, ios::in | ios::out);

 if (!fp)

 {

 cout << “\n*** Error opening file ***\n”;

 exit(0);

 }

 for (ch = ‘A’; ch <= ‘Z’; ch++)

 { fp << ch; } // Write letters

 fp.seekg(8L, SEEK_SET); // Skip eight letters, point to I.

 fp >> ch;

 // Change the Q to an x.

 fp.seekg(-1L, SEEK_CUR);

 fp << ‘x’;

 cout << “The first character is “ << ch << “\n”;

 fp.seekg(16L, SEEK_SET); // Skip 16 letters, point to Q.

 fp >> ch;

 cout << “The second character is “ << ch << “\n”;

 // Change the Q to an x.

 fp.seekg(-1L, SEEK_CUR);

 fp << ‘x’;

 fp.close();

 return;

}

Chapter 31 ♦ Random-Access Files

656

The file named ALPH.TXT now looks like this:

ABCDEFGHxJKLMNOPxRSTUVWXYZ

This program forms the basis of a more complete data file

management program. After you master the seekg() func-

tions and become more familiar with disk data files, you will

begin to write programs that store more advanced data

structures and access them.

The mailing list application in Appendix F is a good example

of what you can do with random file access. The user is

given a chance to change names and addresses already in

the file. The program, using random access, seeks for and

changes selected data without rewriting the entire disk file.

Other Helpful I/O Functions
There are several more disk I/O functions available that you

might find useful. They are mentioned here for completeness. As

you perform more powerful disk I/O, you might find a use for many

of these functions. Each of these functions is prototyped in the

fstream.h header file.

♦ read(array, count): Reads the data specified by count into the

array or pointer specified by array. read() is called a buffered
I/O function. read() enables you to read much data with a

single function call.

♦ write(array, count): Writes count array bytes to the specified

file. write() is a buffered I/O function. write() enables you to

write much data in a single function call.

♦ remove(filename): Erases the file named by filename. remove()

returns a 0 if the file was erased successfully and -1 if an

error occurred.

Many of these (and other built-in I/O functions that you learn

in your C++ programming career) are helpful functions that you

could duplicate using what you already know.

657

EXAMPLE
C++ By

The buffered I/O file functions enable you to read and write

entire arrays (including arrays of structures) to the disk in a single

function call.

Examples

1. The following program requests a filename from the user

and erases the file from the disk using the remove() function.

// Filename: C31ERAS.CPP

// Erases the file specified by the user.

#include <stdio.h>

#include <iostream.h>

void main()

{

 char filename[12];

 cout << “What is the filename you want me to erase? “;

 cin >> filename;

 if (remove(filename) == -1)

 { cout << “\n*** I could not remove the file ***\n”; }

 else

 { cout << “\nThe file “ << filename << “ is now removed\n”;}

 return;

}

2. The following function is part of a larger program that

receives inventory data, in an array of structures, from the

user. This function is passed the array name and the number

of elements (structure variables) in the array. The write()

function then writes the complete array of structures to the

disk file pointed to by fp.

void write_str(inventory items[], int inv_cnt)

{

 fp.write(items, inv_cnt * sizeof(inventory);

 return;

}

Chapter 31 ♦ Random-Access Files

658

If the inventory array had 1,000 elements, this one-line

function would still write the entire array to the disk file.

You could use the read() function to read the entire array of

structures from the disk in a single function call.

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between records and structures?

2. True or false: You have to create a random-access file before

reading from it randomly.

3. What happens to the file pointer as you read from a file?

4. What are the two buffered file I/O functions?

5. What is wrong with this program?

#include <fstream.h>

ifstream fp;

void main()

{

 char in_char;

 fp.open(ios::in | ios::binary);

 if (fp.get(in_char))

 { cout << in_char; } // Write to the screen

 fp.close();

 return;

}

Review Exercises
1. Write a program that asks the user for a list of five names,

then writes the names to a file. Rewind the file and display

its contents on-screen using the seekg() and get() functions.

659

EXAMPLE
C++ By

2. Rewrite the program in Exercise 1 so it displays every other

character in the file of names.

3. Write a program that reads characters from a file. If the input

character is a lowercase letter, change it to uppercase. If the

input character is an uppercase letter, change it to lowercase.

Do not change other characters in the file.

4. Write a program that displays the number of nonalphabetic

characters in a file.

5. Write a grade-keeping program for a teacher. Allow the

teacher to enter up to 10 students’ grades. Each student has

three grades for the semester. Store the students’ names and

their three grades in an array of structures and store the data

on the disk. Make the program menu-driven. Include op-

tions of adding more students, viewing the file’s data, or

printing the grades to the printer with a calculated class

average.

Summary
C++ supports random-access files with several functions. These

functions include error checking, file pointer positioning, and the

opening and closing of files. You now have the tools you need to save

your C++ program data to disk for storage and retrieval.

The mailing-list application in Appendix F offers a complete

example of random-access file manipulation. The program enables

the user to enter names and addresses, store them to disk, edit them,

change them, and print them from the disk file. The mailing-list

program combines almost every topic from this book into a com-

plete application that “puts it all together.”

Chapter 31 ♦ Random-Access Files

660

661

EXAMPLE
C++ By

32

Introduction to
Object-Oriented
Programming

The most widely used object-oriented programming language to-

day is C++. C++ provides classes—which are its objects. Classes

really distinguish C++ from C. In fact, before the name C++ was

coined, the C++ language was called “C with classes.”

This chapter attempts to expose you to the world of object-

oriented programming, often called OOP. You will probably not

become a master of OOP in these few short pages, however, you are

ready to begin expanding your C++ knowledge.

This chapter introduces the following concepts:

♦ C++ classes

♦ Member functions

♦ Constructors

♦ Destructors

This chapter concludes your introduction to the C++ language.

After mastering the techniques taught in this book, you will be ready

to modify the mailing list program in Appendix F to suit your own

needs.

Chapter 32 ♦ Introduction to Object-Oriented Programming

662

What Is a Class?
A class is a user-defined data type that resembles a structure. A

class can have data members, but unlike the structures you have

seen thus far, classes can also have member functions. The data

members can be of any type, whether defined by the language or by

you. The member functions can manipulate the data, create and

destroy class variables, and even redefine C++’s operators to act on

the class objects.

Classes have several types of members, but they all fall into two

categories: data members and member functions.

Data Members

Data members can be of any type. Here is a simple class:

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

};

Notice how this class resembles structures you have already

seen, with the exception of the public keyword. The Sphere class has

four data members: r, x, y, and z. In this case, the public keyword

plays an important role; it identifies the class Sphere as a structure.

As a matter of fact, in C++, a public class is physically identical to a

structure. For now, ignore the public keyword; it is explained later

in this chapter.

Member Functions

A class can also have member functions (members of a class that

manipulate data members). This is one of the primary features that

distinguishes a class from a structure. Here is the Sphere class again,

with member functions added:

663

EXAMPLE
C++ By

#include <math.h>

const float PI = 3.14159;

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

This Sphere class has four member functions: Sphere(), ~Sphere(),

volume(), and surface_area(). The class is losing its similarity to a

structure. These member functions are very short. (The one with the

strange name of ~Sphere() has no code in it.) If the codes of the

member functions were much longer, only the prototypes would

appear in the class, and the code for the member functions would

follow later in the program.

C++ programmers call class data objects because classes do

more than simply hold data. Classes act on data; in effect, a class is

an object that manipulates itself. All the data you have seen so far in

this book is passive data (data that has been manipulated by code in

the program). Classes’ member functions actually manipulate class

data.

In this example, the class member Sphere() is a special function.

It is a constructor function, and its name must always be the same as

its class. Its primary use is declaring a new instance of the class.

Constructors create
and initialize class
data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

664

Examples

1. The following program uses the Sphere() class to initialize a

class variable (called a class instance) and print it.

// Filename: C32CON.CPP

// Demonstrates use of a class constructor function.

#include <iostream.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

{ x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

665

EXAMPLE
C++ By

Note: In OOP, the main() function (and all it calls) becomes

smaller because member functions contain the code that ma-

nipulates all class data.

Indeed, this program looks different from those you have

seen so far. This example is your first true exposure to OOP

programming. Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

This program illustrates the Sphere() constructor function.

The constructor function is the only member function called

by the program. Notice the ~Sphere() member function

constructed s, and initialized its data members as well.

The other special function is the destructor function,
~Sphere(). Notice that it also has the same name as the class,

but with a tilde (~) as a prefix. The destructor function never

takes arguments, and never returns values. Also notice that

this destructor doesn’t do anything. Most destructors do

very little. If a destructor has no real purpose, you do not
have to specify it. When the class variable goes out of scope,

the memory allocated for that class variable is returned to

the system (in other words, an automatic destruction oc-

curs). Programmers use destructor functions to free memory

occupied by class data in advanced C++ applications.

Similarly, if a constructor doesn’t serve any specific function,

you aren’t required to declare one. C++ allocates memory for

a class variable when you define the class variable, just as it

does for all other variables. As you learn more about C++

programming, especially when you begin using the ad-
vanced concept of dynamic memory allocation, constructors

and destructors become more useful.

2. To illustrate that the ~Sphere() destructor does get called (it

just doesn’t do anything), you can put a cout statement in the

constructor as seen in the next program:

// Filename: C32DES.CPP

// Demonstrates use of a class destructor function.

Destructors erase
class data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

666

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main(void)

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 // Construct a class instance.

 cout << “X = “ << s.x << “, Y = “

 << s.y << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

Sphere (1, 2, 3, 4) destroyed

667

EXAMPLE
C++ By

Notice that main() did not explicitly call the destructor

function, but ~Sphere() was called automatically when the

class instance went out of scope.

3. The other member functions have been waiting to be used.

The following program uses the volume() and surface_area()

functions:

// Filename: C32MEM.CPP

// Demonstrates use of class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

}; // End of class.

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

668

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “

 << s.surface_area() << “\n”;

}

The volume() and surface_area() functions could have been

made in-line. This means that the compiler embeds the

functions in the code, rather than calling them as functions.

In C32MEM.CPP, there is essentially a separate function that

is called using the data in Sphere(). By making it in-line,

Sphere() essentially becomes a macro and is expanded in the

code.

4. In the following program, volume() has been changed to an

in-line function, creating a more efficient program:

// Filename: C32MEM1.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

669

EXAMPLE
C++ By

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

The inline functions expand to look like this to the compiler:

// C32MEM1A.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

Chapter 32 ♦ Introduction to Object-Oriented Programming

670

The advantage of using in-line functions is that they execute

faster—there’s no function-call overhead involved because

no function is actually called. The disadvantage is that if

your functions are used frequently, your programs become

larger and larger as functions are expanded.

Default Member Arguments
You can also give member functions arguments by default.

Assume by default that the y coordinate of a sphere will be 2.0, the

z coordinate will be 2.5, and the radius will be 1.0. Rewriting the

previous example’s constructor function to do this results in this

code:

Sphere(float xcoord, float ycoord = 2.0, float zcoord = 2.5,

 float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

You can create a sphere with the following instructions:

Sphere s(1.0); // Use all default

Sphere t(1.0, 1.1); // Override y coord

Sphere u(1.0, 1.1, 1.2); // Override y and z

Sphere v(1.0, 1.1, 1.2, 1.3); // Override all defaults

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << (s.r * s.r * s.r * 4 * PI / 3)

 << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

671

EXAMPLE
C++ By

Examples

1. Default arguments are used in the following code.

// Filename: C32DEF.CPP

// Demonstrates use of default arguments in

// class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord = 2.0,

 float zcoord = 2.5, float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0); // use all default

 Sphere t(1.0, 1.1); // override y coord

 Sphere u(1.0, 1.1, 1.2); // override y and z

 Sphere v(1.0, 1.1, 1.2, 1.3); // override all defaults

 cout << “s: X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

672

 cout << “The volume of s is “ << s.volume() << “\n”;

 cout << “The surface area of s is “ << s.surface_area() << “\n”;

 cout << “t: X = “ << t.x << “, Y = “ << t.y

 << “, Z = “ << t.z << “, R = “ << t.r << “\n”;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area() << “\n”;

 cout << “u: X = “ << u.x << “, Y = “ << u.y

 << “, Z = “ << u.z << “, R = “ << u.r << “\n”;

 cout << “The volume of u is “ << u.volume() << “\n”;

 cout << “The surface area of u is “ << u.surface_area() << “\n”;

 cout << “v: X = “ << v.x << “, Y = “ << v.y

 << “, Z = “ << v.z << “, R = “ << v.r << “\n”;

 cout << “The volume of v is “ << v.volume() << “\n”;

 cout << “The surface area of v is “ << v.surface_area() << “\n”;

 return;

}

Here is the output from this program:

s: X = 1, Y = 2, Z = 2.5, R = 1

The volume of s is 4.188787

The surface area of s is 12.56636

t: X = 1, Y = 1.1, Z = 2.5, R = 1

The volume of t is 4.188787

The surface area of t is 12.56636

u: X = 1, Y = 1.1, Z = 1.2, R = 1

The volume of u is 4.188787

The surface area of u is 12.56636

v: X = 1, Y = 1.1, Z = 1.2, R = 1.3

The volume of v is 9.202764

The surface area of v is 21.237148

Sphere (1, 1.1, 1.2, 1.3) destroyed

Sphere (1, 1.1, 1.2, 1) destroyed

Sphere (1, 1.1, 2.5, 1) destroyed

Sphere (1, 2, 2.5, 1) destroyed

Notice that when you use a default value, you must also use

the other default values to its right. Similarly, once you

define a function’s parameter as having a default value,

every parameter to its right must have a default value as well.

673

EXAMPLE
C++ By

2. You also can call more than one constructor; this is called

overloading the constructor. When having more than one

constructor, all with the same name of the class, you must

give them each a different parameter list so the compiler can

determine which one you intend to use. A common use of

overloaded constructors is to create an uninitialized object

on the receiving end of an assignment, as you see done here:

// C32OVCON.CPP

// Demonstrates use of overloaded constructors.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere() { /* doesn’t do anything... */ }

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

Chapter 32 ♦ Introduction to Object-Oriented Programming

674

 Sphere t; // No parameters (an uninitialized sphere).

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 t = s;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area()

 << “\n”;

 return;

}

Class Member Visibility
Recall that the Sphere() class had the label public. Declaring the

public label is necessary because, by default, all members of a class

are private. Private members cannot be accessed by anything but a

member function. In order for data or member functions to be used

by other programs, they must be explicitly declared public. In the

case of the Sphere() class, you probably want to hide the actual data

from other classes. This protects the data’s integrity. The next

program adds a cube() and square() function to do some of the work

of the volume() and surface_area() functions. There is no need for

other functions to use those member functions.

// Filename: C32VISIB.CPP

// Demonstrates use of class visibility labels.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

private:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 float cube() { return (r * r * r); }

 float square() { return (r * r); }

675

EXAMPLE
C++ By

public:

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (cube() * 4 * PI / 3);

 }

 float surface_area()

 {

 return (square() * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

 return;

}

Notice that the line showing the data members had to be

removed from main(). The data members are no longer directly

accessible except by a member function of class Sphere. In other

words, main() can never directly manipulate data members such as

r and z, even though it calls the constructor function that created

them. The private member data is only visible in the member

functions. This is the true power of data hiding; even your own code

cannot get to the data! The advantage is that you define specific data-

retrieval, data-display, and data-changing member functions that

main() must call to manipulate member data. Through these member

functions, you set up a buffer between your program and the

program’s data structures. If you change the way the data is stored,

you do not have to change main() or any functions that main() calls.

You only have to change the member functions of that class.

Chapter 32 ♦ Introduction to Object-Oriented Programming

676

Review Questions
The answers to the review questions are in Appendix B.

1. What are the two types of class members called?

2. Is a constructor always necessary?

3. Is a destructor always necessary?

4. What is the default visibility of a class data member?

5. How do you make a class member visible outside its class?

Review Exercise
Construct a class to hold personnel records. Use the following

data members, and keep them private:

char name[25];

float salary;

char date_of_birth[9];

Create two constructors, one to initialize the record with its

necessary values and another to create an uninitialized record.

Create member functions to alter the individual’s name, salary, and

date of birth.

Summary
You have now been introduced to classes, the data type that

distinguishes C++ from its predecessor, C. This was only a cursory

glimpse of object-oriented programming. However, you saw that

OOP offers an advanced view of your data, combining the data with

the member functions that manipulate that data. If you desire to

learn more about C++ and become a “guru” of sorts, try Using
Microsoft C/C++ 7 (Que, 0-88022-809-1).

Part VIII
References

679

EXAMPLE
C++ By

A

Memory
Addressing,
Binary, and
Hexadecimal
Review

You do not have to understand the concepts in this appendix to

become well-versed in C++. You can master C++, however, only if

you spend some time learning about the behind-the-scenes roles

played by binary numbers. The material presented here is not

difficult, but many programmers do not take the time to study it;

hence, there are a handful of C++ masters who learn this material

and understand how C++ works “under the hood,” and there are

those who will never master the language as they could.

You should take the time to learn about addressing, binary

numbers, and hexadecimal numbers. These fundamental principles

are presented here for you to learn, and although a working knowl-

edge of C++ is possible without knowing them, they greatly enhance

your C++ skills (and your skills in every other programming lan-

guage).

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

680

After reading this appendix, you will better understand why

different C++ data types hold different ranges of numbers. You also

will see the importance of being able to represent hexadecimal

numbers in C++, and you will better understand C++ array and

pointer addressing.

Computer Memory
Each memory location inside your computer holds a single

character called a byte. A byte is any character, whether it is a letter

of the alphabet, a numeric digit, or a special character such as a

period, question mark, or even a space (a blank character). If your

computer contains 640K of memory, it can hold a total of approxi-

mately 640,000 bytes of memory. This means that as soon as you fill

your computer’s memory with 640K, there is no room for an addi-

tional character unless you overwrite something.

Before describing the physical layout of your computer’s

memory, it is best to take a detour and explain exactly what 640K

means.

Memory and Disk Measurements

By appending the K (from the metric word kilo) to memory

measurements, the manufacturers of computers do not have to

attach as many zeros to the end of numbers for disk and memory

storage. The K stands for approximately 1000 bytes. As you will see,

almost everything inside your computer is based on a power of 2.

Therefore, the K of computer memory measurements actually equals

the power of 2 closest to 1000, which is 2 to the 10th power, or 1024.

Because 1024 is very close to 1000, computer-users often think of K
as meaning 1000, even though they know it only approximately

equals 1000.

Think for a moment about what 640K exactly equals. Practi-

cally speaking, 640K is about 640,000 bytes. To be exact, however,

640K equals 640 times 1024, or 655,360. This explains why the PC

DOS command CHKDSK returns 655,360 as your total memory

(assuming that you have 640K of RAM) rather than 640,000.

K means approxi-
mately 1000 bytes
and exactly 1024
bytes.

681

EXAMPLE
C++ By

Because extended memory and many disk drives can hold such

a large amount of data, typically several million characters, there is

an additional memory measurement shortcut called M, which stands

for meg, or megabytes. The M is a shortcut for approximately one

million bytes. Therefore, 20M is approximately 20,000,000 charac-

ters, or bytes, of storage. As with K, the M literally stands for

1,048,576 because that is the closest power of 2 (2 to the 20th power)

to one million.

How many bytes of storage is 60 megabytes? It is approxi-

mately 60 million characters, or 62,914,560 characters to be exact.

Memory Addresses

Each memory location in your computer, just as with each

house in your town, has a unique address. A memory address is

simply a sequential number, starting at 0, that labels each memory

location. Figure A.1 shows how your computer memory addresses

are numbered if you have 640K of RAM.

M means
approximately
1,000,000 bytes
and exactly
1,048,576 bytes.

Figure A.1. Memory addresses for a 640K computer.

By using unique addresses, your computer can track memory.

When the computer stores a result of a calculation in memory, it

finds an empty address, or one matching the data area where the

result is to go, and stores the result at that address.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

682

Your C++ programs and data share computer memory with

DOS. DOS must always reside in memory while you operate your

computer. Otherwise, your programs would have no way to access

disks, printers, the screen, or the keyboard. Figure A.2 shows

computer memory being shared by DOS and a C++ program. The

exact amount of memory taken by DOS and a C++ program is

determined by the version of DOS you use, how many DOS extras

(such as device drivers and buffers) your computer uses, and the

 size and needs of your C++ programs and data.

Figure A.2. DOS, your C++ program, and your program’s data share the
same memory.

Bits and Bytes
You now know that a single address of memory might contain

any character, called a byte. You know that your computer holds

many bytes of information, but it does not store those characters in

the same way that humans think of characters. For example, if you

type a letter W on your keyboard while working in your C++ editor,

you see the W on-screen, and you also know that the W is stored in

a memory location at some unique address. Actually, your com-

puter does not store the letter W; it stores electrical impulses that

stand for the letter W.

683

EXAMPLE
C++ By

Electricity, which runs through the components of your com-

puter and makes it understand and execute your programs, can exist

in only two states—on or off. As with a light bulb, electricity is either

flowing (it is on) or it is not flowing (it is off). Even though you can

dim some lights, the electricity is still either on or off.

Today’s modern digital computers employ this on-or-off con-

cept. Your computer is nothing more than millions of on and off

switches. You might have heard about integrated circuits, transis-

tors, and even vacuum tubes that computers have contained over

the years. These electrical components are nothing more than switches

that rapidly turn electrical impulses on and off.

This two-state on and off mode of electricity is called a binary
state of electricity. Computer people use a 1 to represent an on state

(a switch in the computer that is on) and a 0 to represent an off state

(a switch that is off). These numbers, 1 and 0, are called binary digits.
The term binary digits is usually shortened to bits. A bit is either a 1

or a 0 representing an on or an off state of electricity. Different

combinations of bits represent different characters.

Several years ago, someone listed every single character that

might be represented on a computer, including all uppercase letters,

all lowercase letters, the digits 0 through 9, the many other charac-

ters (such as %, *, {, and +), and some special control characters.

When you add the total number of characters that a PC can repre-

sent, you get 256 of them. The 256 ASCII characters are listed in

Appendix C’s ASCII (pronounced ask-ee) table.

The order of the ASCII table’s 256 characters is basically arbi-

trary, just as the telegraph’s Morse code table is arbitrary. With

Morse code, a different set of long and short beeps represent

different letters of the alphabet. In the ASCII table, a different

combination of bits (1s and 0s strung together) represent each of the

256 ASCII characters. The ASCII table is a standard table used by

almost every PC in the world. ASCII stands for American Standard
Code for Information Interchange. (Some minicomputers and main-

frames use a similar table called the EBCDIC table.)

It turns out that if you take every different combination of eight

0s strung together, to eight 1s strung together (that is, from 00000000,

00000001, 00000010, and so on until you get to 11111110, and finally,

11111111), you have a total of 256 of them. (256 is 2 to the 8th power.)

The binary digits 1
and 0 (called bits)
represent on and off
states of electricity.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

684

Each memory location in your computer holds eight bits each. These

bits can be any combination of eight 1s and 0s. This brings us to the

following fundamental rule of computers.

NOTE: Because it takes a combination of eight 1s and 0s to

represent a character, and because each byte of computer

memory can hold exactly one character, eight bits equals one

byte.

To bring this into better perspective, consider that the bit

pattern needed for the uppercase letter A is 01000001. No other

character in the ASCII table “looks” like this to the computer because

each of the 256 characters is assigned a unique bit pattern.

Suppose that you press the A key on your keyboard. Your

keyboard does not send a letter A to the computer; rather, it looks in

its ASCII table for the on and off states of electricity that represent

the letter A. As Figure A.3 shows, when you press the A key, the

keyboard actually sends 01000001 (as on and off impulses) to the

computer. Your computer simply stores this bit pattern for A in a

memory location. Even though you can think of the memory loca-

tion as holding an A, it really holds the byte 01000001.

Figure A.3. Your computer keeps track of characters by their bit
patterns.

Your Keyboard

Computer

Printer

685

EXAMPLE
C++ By

If you were to print that A, your computer would not send an

A to the printer; it would send the 01000001 bit pattern for an A to the

printer. The printer receives that bit pattern, looks up the correct

letter in the ASCII table, and prints an A.
From the time you press the A until the time you see it on the

printer, it is not a letter A! It is the ASCII pattern of bits that the

computer uses to represent an A. Because a computer is electrical,

and because electricity is easily turned on and off, this is a nice way

for the computer to manipulate and move characters, and it can do

so very quickly. Actually, if it were up to the computer, you would

enter everything by its bit pattern, and look at all results in their bit

patterns. Of course, it would be much more difficult for us to learn

to program and use a computer, so devices such as the keyboard,

screen, and printer are created to work part of the time with letters

as we know them. That is why the ASCII table is such an integral

part of a computer.

There are times when your computer treats two bytes as a

single value. Even though memory locations are typically eight bits

wide, many CPUs access memory two bytes at a time. If this is the

case, the two bytes are called a word of memory. On other computers

(commonly mainframes), the word size might be four bytes (32 bits)

or even eight bytes (64 bits).

Summarizing Bits and Bytes

A bit is a 1 or a 0 representing an on or an off state of electricity.

Eight bits represents a byte.

A byte, or eight bits, represents one character.

Each memory location of your computer is eight bits (a single

byte) wide. Therefore, each memory location can hold one

character of data. Appendix C is an ASCII table listing all

possible characters.

If the CPU accesses memory two bytes at a time, those two bytes

are called a word of memory.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

686

The Order of Bits
To further understand memory, you should understand how

programmers refer to individual bits. Figure A.4 shows a byte and

a two-byte word. Notice that the bit on the far right is called bit 0.

From bit 0, keep counting by ones as you move left. For a byte, the

bits are numbered 0 to 7, from right to left. For a double-byte (a 16-

bit word), the bits are numbered from 0 to 15, from right to left.

Figure A.4. The order of bits in a byte and a two-byte word.

Bit 0 is called the least-significant bit, or sometimes the low-order
bit. Bit 7 (or bit 15 for a two-byte word) is called the most-significant
bit, or sometimes the high-order bit.

Binary Numbers
Because a computer works best with 1s and 0s, its internal

numbering method is limited to a base-2 (binary) numbering system.

People work in a base-10 numbering system in the “real” world. The

base-10 numbering system is sometimes called the decimal number-

ing system. There are always as many different digits as the base in

a numbering system. For example, in the base-10 system, there are

ten digits, 0 through 9. As soon as you count to 9 and run out of digits,

you have to combine some that you already used. The number 10 is

a representation of ten values, but it combines the digits 1 and 0.

687

EXAMPLE
C++ By

The same is true of base-2. There are only two digits, 0 and 1.

As soon as you run out of digits, after the second one, you have to

reuse digits. The first seven binary numbers are 0, 1, 10, 11, 100, 101,

and 110.

It is okay if you do not understand how these numbers were

derived; you will see how in a moment. For the time being, you

should realize that no more than two digits, 0 and 1, can be used to

represent any base-2 number, just as no more than ten digits, 0

through 9, can be used to represent any base-10 number in the

regular numbering system.

You should know that a base-10 number, such as 2981, does not

really mean anything by itself. You must assume what base it is. You

get very used to working with base-10 numbers because you use

them every day. However, the number 2981 actually represents a

quantity based on powers of 10. For example, Figure A.5 shows what

the number 2981 actually represents. Notice that each digit in the

number represents a certain number of a power of 10.

Figure A.5. The base-10 breakdown of the number 2981.

This same concept applies when you work in a base-2 number-

ing system. Your computer does this because the power of 2 is just

as common to your computer as the power of 10 is to you. The only

difference is that the digits in a base-2 number represent powers of

2 and not powers of 10. Figure A.6 shows you what the binary

numbers 10101 and 10011110 are in base-10. This is how you convert

any binary number to its base-10 equivalent.

A binary number
can contain only the
digits 1 and 0.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

688

Figure A.6. The base-2 breakdown of the numbers 10101 and
10011110.

A base-2 number contains only 1s and 0s. To convert any base-

2 number to base-10, add each power of 2 everywhere a 1 appears in

the number. The base-2 number 101 represents the base-10 number

5. (There are two 1s in the number, one in the 2 to the 0 power, which

equals 1, and one in the 2 to the second power, which equals 4.) Table

A.1 shows the first 18 base-10 numbers and their matching base-2

numbers.

689

EXAMPLE
C++ By

Table A.1. The first 17 base-10 and base-2 (binary)
numbers.

Base-10 Base-2

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

You do not have to memorize this table; you should be able to

figure the base-10 numbers from their matching binary numbers by

adding the powers of two for each 1 (on) bit. Many programmers do

memorize the first several binary numbers because it comes in

handy in advanced programming techniques.

What is the largest binary number a byte can hold? The answer

is all 1s, or 11111111. If you add the first eight powers of 2, you

get 255.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

690

A byte holds either a number or an ASCII character, depending

on how it is accessed. For example, if you were to convert the base-

2 number 01000001 to a base-10 number, you would get 65. How-

ever, this also happens to be the ASCII bit pattern for the uppercase

letter A. If you check the ASCII table, you see that the A is ASCII code

65. Because the ASCII table is so closely linked with the bit patterns,

the computer knows whether to work with a number 65 or a letter

A—by the context of how the patterns are used.

A binary number is not limited to a byte, as an ASCII character

is. Sixteen or 32 bits at a time can represent a binary number (and

usually do). There are more powers of 2 to add when converting that

number to a base-10 number, but the process is the same. By now you

should be able to figure out that 1010101010101010 is 43,690 in base-

10 decimal numbering system (although it might take a little time to

calculate).

To convert from decimal to binary takes a little more effort.

Luckily, you rarely need to convert in that direction. Converting

from base-10 to base-2 is not covered in this appendix.

Binary Arithmetic
At their lowest level, computers can only add and convert

binary numbers to their negative equivalents. Computers cannot

truly subtract, multiply, or divide, although they simulate these

operations through judicious use of the addition and negative-

conversion techniques.

If a computer were to add the numbers 7 and 6, it could do so

(at the binary level). The result is 13. If, however, the computer were

instructed to subtract 7 from 13, it could not do so. It can, however,

take the negative value of 7 and add that to 13. Because –7 plus 13

equals 6, the result is a simulated subtraction.

To multiply, computers perform repeated addition. To multi-

ply 6 by 7, the computer adds seven 6s together and gets 42 as the

answer. To divide 42 by 7, a computer keeps subtracting 7 from 42

repeatedly until it gets to a 0 answer (or less than 0 if there is a

remainder), then counts the number of times it took to reach 0.

691

EXAMPLE
C++ By

Because all math is done at the binary level, the following

additions are possible in binary arithmetic:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Because these are binary numbers, the last result is not the

number 10, but the binary number 2. (Just as the binary 10 means “no

ones, and carry an additional power of 2,” the decimal number 10

means “no ones, and carry a power of 10.”) No binary digit repre-

sents a 2, so you have to combine the 1 and the 0 to form the new

number.

Because binary addition is the foundation of all other math, you

should learn how to add binary numbers. You will then understand

how computers do the rest of their arithmetic.

Using the binary addition rules shown previously, look at the

following binary calculations:

01000001 (65 decimal)

+00101100 (44 decimal)

01101101 (109 decimal)

The first number, 01000001, is 65 decimal. This also happens to

be the bit pattern for the ASCII A, but if you add with it, the computer

interprets it as the number 65 rather than the character A.
The following binary addition requires a carry into bit 4 and

bit 6:

00101011 (43 decimal)

+00100111 (39 decimal)

01010010 (82 decimal)

Typically, you have to ignore bits that carry past bit 7, or bit 15

for double-byte arithmetic. For example, both of the following

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

692

binary additions produce incorrect positive results:

 10000000 (128 decimal) 1000000000000000

 (65536 decimal)

+10000000 (128 decimal) +1000000000000000

 00000000 (0 decimal) (65536 decimal)

 0000000000000000

 (0 decimal)

There is no 9th or 17th bit for the carry, so both of these seem to

produce incorrect results. Because the byte and 16-bit word cannot

hold the answers, the magnitude of both these additions is not

possible. The computer must be programmed, at the bit level, to

perform multiword arithmetic, which is beyond the scope of this book.

Binary Negative Numbers
Because subtracting requires understanding binary negative

numbers, you need to learn how computers represent them. The

computer uses 2’s complement to represent negative numbers in

binary form. To convert a binary number to its 2’s complement (to

its negative) you must:

1. Reverse the bits (the 1s to 0s and the 0s to 1s).

2. Add 1.

This might seem a little strange at first, but it works very well

for binary numbers. To represent a binary –65, you have to take the

binary 65 and convert it to its 2’s complement, such as

 01000001 (65 decimal)

 10111110 (Reverse the bits)

+1 (Add 1)

 10111111 (–65 binary)

Negative binary
numbers are stored
in their 2’s
complement format.

693

EXAMPLE
C++ By

By converting the 65 to its 2’s complement, you produce –65 in

binary. You might wonder what makes 10111111 mean –65, but by

the 2’s complement definition it means –65.

If you were told that 10111111 is a negative number, how

would you know which binary number it is? You perform the 2’s

complement on it. Whatever number you produce is the positive of

that negative number. For example:

10111111 (–65 decimal)

01000000 (Reverse the bits)

 +1 (Add 1)

01000001 (65 decimal)

Something might seem wrong at this point. You just saw that

10111111 is the binary –65, but isn’t 10111111 also 191 decimal

(adding the powers of 2 marked by the 1s in the number, as

explained earlier)? It depends whether the number is a signed or an

unsigned number. If a number is signed, the computer looks at the

most-significant bit (the bit on the far left), called the sign bit. If the

most-significant bit is a 1, the number is negative. If it is 0, the

number is positive.

Most numbers are 16 bits long. That is, two-byte words are used

to store most integers. This is not always the case for all computers,

but it is true for most PCs.

In the C++ programming language, you can designate num-

bers as either signed integers or unsigned integers (they are signed

by default if you do not specify otherwise). If you designate a

variable as a signed integer, the computer interprets the high-order

bit as a sign bit. If the high-order bit is on (1), the number is negative.

If the high-order bit is off (0), the number is positive. If, however, you

designate a variable as an unsigned integer, the computer uses the

high-order bit as just another power of 2. That is why the range of

unsigned integer variables goes higher (generally from 0 to 65535,

but it depends on the computer) than for signed integer variables

(generally from –32768 to +32767).

After so much description, a little review is in order. Assume

that the following 16-bit binary numbers are unsigned:

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

694

0011010110100101

1001100110101010

1000000000000000

These numbers are unsigned, so the bit 15 is not the sign bit, but

simply another power of 2. You should practice converting these

large 16-bit numbers to decimal. The decimal equivalents are

13733

39338

32768

If, on the other hand, these numbers are signed numbers, the

high-order bit (bit 15) indicates the sign. If the sign bit is 0, the

numbers are positive and you convert them to decimal in the usual

manner. If the sign bit is 1, you must convert the numbers to their 2’s

complement to find what they equal. Their decimal equivalents are

+13733

–26198

–32768

To compute the last two binary numbers to their decimal

equivalents, take their 2’s complement and convert it to decimal. Put

a minus sign in front of the result and you find what the original

number represents.

TIP: To make sure that you convert a number to its 2’s com-

plement correctly, you can add the 2’s complement to its

original positive value. If the answer is 0 (ignoring the extra

carry to the left), you know that the 2’s complement number is

correct. This is similar to the concept that decimal opposites,

such as –72 + 72, add up to zero.

695

EXAMPLE
C++ By

Hexadecimal Numbers
All those 1s and 0s get confusing. If it were up to your com-

puter, however, you would enter everything as 1s and 0s! This is

unacceptable to people because we do not like to keep track of all

those 1s and 0s. Therefore, a hexadecimal numbering system (some-

times called hex) was devised. The hexadecimal numbering system

is based on base-16 numbers. As with other bases, there are 16

unique digits in the base-16 numbering system. Here are the first 19

hexadecimal numbers:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12

Because there are only 10 unique digits (0 through 9), the letters

A through F represent the remaining six digits. (Anything could

have been used, but the designers of the hexadecimal numbering

system decided to use the first six letters of the alphabet.)

To understand base-16 numbers, you should know how to

convert them to base-10 so they represent numbers with which

people are familiar. Perform the conversion to base-10 from base-16

the same way you did with base-2, but instead of using powers of 2,

represent each hexadecimal digit with powers of 16. Figure A.7

shows how to convert the number 3C5 to decimal.

Hexadecimal
numbers use 16
unique digits, 0
through F.

Figure A.7. Converting hexadecimal 3C5 to its decimal equivalent.

TIP: There are calculators available that convert numbers

between base-16, base-10, and base-2, and also perform 2’s

complement arithmetic.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

696

You should be able to convert 2B to its decimal 43 equivalent,

and E1 to decimal 225 in the same manner. Table A.2 shows the first

20 decimal, binary, and hexadecimal numbers.

Table A.2. The first 20 base-10, base-2 (binary),
and base-16 (hexadecimal) numbers.

Base-10 Base-2 Base-16

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

697

EXAMPLE
C++ By

Why Learn Hexadecimal?
Because of its close association to the binary numbers your

computer uses, hexadecimal notation is extremely efficient for de-

scribing memory locations and values. It is much easier for you (and

more importantly at this level, for your computer) to convert from

base-16 to base-2 than from base-10 to base-2. Therefore, you some-

times want to represent data at the bit level, but using hexadecimal

notation is easier (and requires less typing) than using binary

numbers.

To convert from hexadecimal to binary, convert each hex digit

to its four-bit binary number. You can use Table A.2 as a guide for

this. For example, the following hexadecimal number

5B75

can be converted to binary by taking each digit and converting it to

four binary numbers. If you need leading zeroes to “pad” the four

digits, use them. The number becomes

0101 1011 0111 0101

It turns out that the binary number 0101101101110101 is exactly

equal to the hexadecimal number 5B75. This is much easier than

converting them both to decimal first.

To convert from binary to hexadecimal, reverse this process. If

you were given the following binary number

1101000011110111111010

you could convert it to hexadecimal by grouping the bits into groups

of four, starting with the bit on the far right. Because there is not an

even number of groups of four, pad the one on the far left with

zeroes. You then have the following:

0011 0100 0011 1101 1111 1010

Now you only have to convert each group of four binary digits

into their hexadecimal number equivalent. You can use Table A.2 to

help. You then get the following base-16 number:

343DFA

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

698

The C++ programming language also supports the base-8 octal
representation of numbers. Because octal numbers are rarely used

with today’s computers, they are not covered in this appendix.

How Binary and Addressing
Relate to C++

The material presented here may seem foreign to many pro-

grammers. The binary and 2’s complement arithmetic reside deep in

your computer, shielded from most programmers (except assem-

bly-language programmers). Understanding this level of your com-

puter, however, makes everything else you learn seem more clear.

Many C++ programmers learn C++ before delving into binary

and hexadecimal representation. For those programmers, much

about the C++ language seems strange, but it could be explained

very easily if they understood the basic concepts.

For example, a signed integer holds a different range of num-

bers than an unsigned integer. You now know that this is because

the sign bit is used in two different ways, depending on whether

the number is designated as signed or unsigned.

The ASCII table (see Appendix C) also should make more sense

to you after this discussion. The ASCII table is an integral part of

your computer. Characters are not actually stored in memory and

variables; rather, their ASCII bit patterns are. That is why C++ can

move easily between characters and integers. The following two

C++ statements are allowed, whereas they probably would not be in

another programming language:

char c = 65; // Places the ASCII letter A in c.

int ci = ‘A’; // Places the number 65 in ci.

The hexadecimal notation also makes much more sense if you

truly understand base-16 numbers. For example, if you see the

following line in a C++ program

char a = ‘\x041’;

699

EXAMPLE
C++ By

you could convert the hex 41 to decimal (65 decimal) if you want to

know what is being assigned. Also, C++ systems programmers find

that they can better interface with assembly-language programs

when they understand the concepts presented in this appendix.

If you gain only a cursory knowledge of this material at this

point, you will be very much ahead of the game when you program

in C++!

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

700

701

EXAMPLE
C++ By

B

Answers to
Review Questions

Chapter 1
1. BCPL or Algol

2. True

3. 1980s

4. False. C++’s compact size makes it an excellent program-

ming language for smaller computers.

5. The hard disk

6. A modem

7. b. Input. By moving the mouse, you give cursor-direction

commands to the computer.

8. NumLock

9. UNIX

Appendix B ♦ Answers to Review Questions

702

10. When you turn off the computer, the contents of RAM are

destroyed.

11. True

12. 524,288 bytes (512 times 1,024)

13. Modulate, demodulate

Chapter 2
1. A set of detailed instructions that tells the computer what

to do.

2. Buy one or write it yourself.

3. False

4. The program produces the output.

5. A program editor

6. The .CPP extension

7. You must first plan the program by deciding which steps

you will take to produce the final program.

8. To get the errors out of your program

9. So your programs work with various compilers and com-

puter equipment

10. False. You must compile a program before linking it. Most

compilers link the program automatically.

Chapter 3
1. Two comment markers (//)

2. A holding place for data that can be changed

3. A value that cannot be changed

4. The +, -, *, and / operators

703

EXAMPLE
C++ By

5. The = assignment operator.

6. False. There are floating-point, double floating-point, short

integers, long integers, and many more variable data types.

7. cout

8. city must be a variable name because it is not enclosed in

quotation marks.

9. All C++ commands must be in lowercase.

Chapter 4
1. my_name and sales_89

2. Characters: ‘X’and ‘0’

Strings: “2.0” and “X”

Integers: 0 and -708

Floating-point literals: -12.0 and 65.4

3. Seven variables are declared: three integers, three characters,

and one floating-point variable.

4. A null zero, also called a binary zero or an ASCII zero.

5. True

6. 1

7. It is stored as a series of ASCII values, representing the

characters and blanks in the string, ending in an ASCII 0.

8. It is stored as a single ASCII 0.

9. The constant value called age cannot be changed.

Chapter 5
1. char my_name[] “This is C++”;

2. The string is 11 characters long.

Appendix B ♦ Answers to Review Questions

704

3. It consumes 12 bytes.

4. All string literals end with a binary zero.

5. Two character arrays are declared, each with 25 elements.

6. False. The keyword char must precede the variable name.

7. True. The binary zero terminates the string.

8. False. The characters do not represent a string because there

is no terminating zero.

Chapter 6
1. False. You can define only constants with the #define prepro-

cessor directive.

2. The #include directive

3. The #define directive

4. True

5. The preprocessor changes your source code before the

compiler reads the source code.

6. The const keyword

7. Use angled brackets when the include files reside in the

compiler’s include subdirectory. Use quotation marks when

the include file resides in the same subdirectory as the source

program.

8. Defined literals are easier to change because you have to

change only the line with #define and not several other lines

in the program.

9. iostream.h

10. False. You cannot define constants enclosed in quotation

marks (as “MESSAGE” is in the cout statement).

11. Amount is 4

705

EXAMPLE
C++ By

Chapter 7
1. cout sends output to the screen, and cin gets input from the

keyboard.

2. The prompt tells the user what is expected.

3. The user enters four values.

4. cin assigns values to variables when the user types them,

whereas the programmer must assign data when using the

assignment operator (=).

5. True. When printing strings, you do not need %s.

6. Arrays

7. The backslash “\” character is special

8. The following value prints, with one leading space: 123.456

Chapter 8
1. a. 5

b. 6

c. 5

2. a. 2

b. 7

3. a. a = (3+3) / (4+4);

b. x = (a-b)*((a-c) * (a-c));

c. f = (a*a)/(b*b*b);

d. d = ((8 - x*x)/(x - 9))-((4*2 - 1)/(x*x*x));

4. The area of a circle:

#include stdio.h>

const float PI = 3.14159;

main()

Appendix B ♦ Answers to Review Questions

706

{

 printf(“%f”, (PI*(4*4));

 return;

}

5. Assignment and printf() statements:

r = 100%4;

cout << r;

Chapter 9
1. The == operator

2. a. True

b. True

c. True

d. True

3. True

4. The if statement determines what code executes when the

relational test is true. The if-else statement determines what

happens for both the True and the False relational test.

5. No

6. a. False

b. False

c. False

Chapter 10
1. The &&, ||, and ! operators are the three logical operators.

2. a. False

b. False

707

EXAMPLE
C++ By

c. True

d. True

3. a. True

b. True

c. True

4. g is 25 and f got changed to 8

5. a. True

b. True

c. False

d. True

6. Yes

Chapter 11
1. The if-else statement

2. The conditional operator is the only C++ operator with three

arguments.

3. if (a == b)

 { ans = c + 2; }

else

 { ans = c + 3; }

4. True

5. The increment and decrement operators compile into single

assembly instructions.

6. A comma operator (,), which forces a left-to-right execution

of the statements on either side

7. The output cannot be determined reliably. Do not pass an

increment operator as an argument.

Appendix B ♦ Answers to Review Questions

708

8. The size of name is 20

9. a. True

b. True

c. False

d. False

Chapter 12
1. The while loop tests for a true condition at the beginning of

the loop. The do-while tests for the condition at the end of the

loop.

2. A counter variable increments by one. A total variable

increments by the addition to the total you are performing.

3. The ++ operator

4. If the body of the loop is a single statement, the braces are

not required. However, braces are always recommended.

5. There are no braces. The second cout always executes, re-

gardless of the result of the while loop’s relational test.

6. The stdlib.h header file

7. One time

8. By returning a value inside the exit() function’s parentheses

9. This is the outer loop

This is the outer loop

This is the outer loop

This is the outer loop

709

EXAMPLE
C++ By

Chapter 13
1. A loop is a sequence of one or more instructions executed

repeatedly.

2. False

3. A nested loop is a loop within a loop.

4. Because the expressions might be initialized elsewhere, such

as before the loop or in the body of the loop

5. The inner loop

6. 10

7

4

1

7. True

8. The body of the for loop stops repeating.

9. False, due to the semicolon after the first for loop

10. There is no output. The value of start is already less than end

when the loop begins; therefore, the for loop’s test is imme-

diately False.

Chapter 14
1. Timing loops force a program to pause.

2. Because some computers are faster than others.

3. If the continue and break statements were unconditional,

there would be little use for them.

4. Because of the unconditional continue statement, there is no

output.

5. *****

Appendix B ♦ Answers to Review Questions

710

6. A single variable rarely can hold a large enough value for

the timer’s count.

Chapter 15
1. The program does not execute sequentially, as it would

without goto.

2. The switch statement

3. A break statement

4. False because you should place the case most likely to

execute at the beginning of the case options.

5. switch (num)

{ case (1) : { cout << “Alpha”;

 break; }

 case (2) : { cout << “Beta”;

 break; }

 case (3) : { cout << “Gamma”;

 break; }

 default : { cout << “Other”;

 break; }

}

6. do

 { cout << “What is your first name? “;

 cin >> name;

 } while ((name[0] < ‘A’) || (name[0] > ‘Z’));

Chapter 16
1. True

2. main()

711

EXAMPLE
C++ By

3. Several smaller functions are better because each function

can perform a single task.

4. Function names always end with a pair of parentheses.

5. By putting separating comments between functions.

6. The function sq_25() cannot be nested in calc_it().

7. A function definition (a prototype).

8. True

Chapter 17
1. True

2. Local variables are passed as arguments.

3. False

4. The variable data types

5. Static

6. You should never pass global variables—they do not need to

be passed.

7. Two arguments (the string “The rain has fallen %d inches”,

and the variable, rainf)

Chapter 18
1. Arrays

2. Nonarray variables are always passed by value, unless you

override the default with & before each variable name.

3. True

4. No

5. Yes

Appendix B ♦ Answers to Review Questions

712

6. The data types of variables x, y, and z are not declared in the

receiving parameter list.

7. c

Chapter 19
1. By putting the return type to the left of the function name.

2. One

3. To prototype built-in functions.

4. int

5. False

6. Prototypes ensure that the correct number of parameters is

being passed.

7. Global variables are already known across functions.

8. The return type is float. Three parameters are passed: a

character, an integer, and a floating-point variable.

Chapter 20
1. In the function prototypes.

2. Overloaded functions

3. Overloaded functions

4. False. You can specify multiple default arguments.

5. void my_fun(float x, int i=7, char ch=’A’);

6. False. Overloaded functions must differ in their argument

lists, not only in their return values.

713

EXAMPLE
C++ By

Chapter 21
1. For portability between different computers

2. False. The standard output can be redirected to any device

through the operating system.

3. getch() assumes stdin for the input device.

4. get

5. > and <

6. getche()

7. False. The input from get goes to a buffer as you type it.

8. Enter

9. True

Chapter 22
1. The character-testing functions do not change the character

passed to them.

2. gets() and fgets()

3. floor() rounds down and ceil() rounds up.

4. The function returns 0 (false) because islower(‘s’) returns a 1

(true) and isalpha(1) is 0.

5. PeterParker

6. 8 9

7. True

8. Prog with a null zero at the end.

9. True

Appendix B ♦ Answers to Review Questions

714

Chapter 23
1. False

2. The array subscripts differentiate array elements.

3. C does not initialize arrays for you.

4. 0

5. Yes. All arrays are passed by address because an array name

is nothing more than an address to that array.

6. C++ initializes all types of global variables (and every other

static variable in your program) to zero or null zero.

Chapter 24
1. False

2. From the low numbers floating to the top of the array like

bubbles.

3. Ascending order

4. The name of an array is an address to the starting element of

that array.

5. a. Eagles

b. Rams

c. les

d. E

e. E

f. The statement prints the character string, s.

g. The third letter of “Eagles” (g) prints.

715

EXAMPLE
C++ By

Chapter 25
1. int scores[5][6];

2. char initials[4][10][20]

3. The first subscript represents rows and the last represents

columns.

4. 30 elements

5. a. 2

b. 1

c. 91

d. 8

6. Nested for loops step through multidimensional tables very

easily.

7. a. 78

b. 100

c. 90

Chapter 26
1. a. Integer pointer

b. Character pointer

c. Floating-point pointer

2. “Address of “

3. The * operator

4. pt_sal = &salary;

5. False

6. Yes

7. a. 2313.54

Appendix B ♦ Answers to Review Questions

716

b. 2313.54

c. invalid

d. invalid

8. b

Chapter 27
1. Array names are pointer constants, not pointer variables.

2. 8

3. a, c, and d are equivalent. Parentheses are needed around

iptr+4 and iptr+1 to make b and e valid.

4. You have to move only pointers, not entire strings.

5. a and d

Chapter 28
1. Structures hold groups of more than one value, each of

which can be a different data type.

2. Members

3. At declaration time and at runtime

4. Structures pass by copy.

5. False. Memory is reserved only when structure variables are

declared.

6. Globally

7. Locally

8. 4

717

EXAMPLE
C++ By

Chapter 29
1. True

2. Arrays are easier to manage.

3. a. inventory[32].price = 12.33;

b. inventory[11].part_no[0] = ‘X’;

c. inventory[96] = inventory[62];

4. a. item is not a structure variable.

b. inventory is an array and must have a subscript.

c. inventory is an array and must have a subscript.

Chapter 30
1. Write, append, and read.

2. Disks hold more data than memory.

3. You can access sequential files only in the same order that

they were originally written.

4. An error condition occurs.

5. The old file is overwritten.

6. The file is created.

7. C++ returns an end-of-file condition.

Chapter 31
1. Records are stored in files and structures are stored in

memory.

2. False

3. The file pointer continually updates to point to the next byte

to read.

Appendix B ♦ Answers to Review Questions

718

4. read() and write()

5. The open() function cannot be called without a filename.

Chapter 32
1. Data members and member functions

2. No

3. No

4. Private

5. Declare it with the public keyword.

719

EXAMPLE
C++ By

C

000 00 0000 0000 null

001 01 0000 0001

002 02 0000 0010

003 03 0000 0011 ♥
004 04 0000 0100 ◆
005 05 0000 0101 ♣
006 06 0000 0110 ♠
007 07 0000 0111

008 08 0000 1000

009 09 0000 1001

010 0A 0000 1010

011 0B 0000 1011

012 0C 0000 1100

013 0D 0000 1101

014 0E 0000 1110

015 0F 0000 1111

016 10 0001 0000

ASCII Table
(Including IBM Extended
Character Codes)

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

720

017 11 0001 0001

018 12 0001 0010

019 13 0001 0011 !!

020 14 0001 0100 ¶

021 15 0001 0101 §

022 16 0001 0110 –

023 17 0001 0111

024 18 0001 1000 ↑
025 19 0001 1001 ↓
026 1A 0001 1010 →
027 1B 0001 1011 ←
028 1C 0001 1100 FS

029 1D 0001 1101 GS

030 1E 0001 1110 RS

031 1F 0001 1111 US

032 20 0010 0000 SP

033 21 0010 0001 !

034 22 0010 0010 "

035 23 0010 0011 #

036 24 0010 0100 $

037 25 0010 0101 %

038 26 0010 0110 &

039 27 0010 0111 '

040 28 0010 1000 (

041 29 0010 1001)

042 2A 0010 1010 *

043 2B 0010 1011 +

044 2C 0010 1100 ’

045 2D 0010 1101 -

046 2E 0010 1110 .

047 2F 0010 1111 /

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

721

EXAMPLE
C++ By

048 30 0011 0000 0

049 31 0011 0001 1

050 32 0011 0010 2

051 33 0011 0011 3

052 34 0011 0100 4

053 35 0011 0101 5

054 36 0011 0110 6

055 37 0011 0111 7

056 38 0011 1000 8

057 39 0011 1001 9

058 3A 0011 1010 :

059 3B 0011 1011 ;

060 3C 0011 1100 <

061 3D 0011 1101 =

062 3E 0011 1110 >

063 3F 0011 1111 ?

064 40 0100 0000 @

065 41 0100 0001 A

066 42 0100 0010 B

067 43 0100 0011 C

068 44 0100 0100 D

069 45 0100 0101 E

070 46 0100 0110 F

071 47 0100 0111 G

072 48 0100 1000 H

073 49 0100 1001 I

074 4A 0100 1010 J

075 4B 0100 1011 K

076 4C 0100 1100 L

077 4D 0100 1101 M

078 4E 0100 1110 N

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

722

079 4F 0100 1111 O

080 50 0101 0000 P

081 51 0101 0001 Q

082 52 0101 0010 R

083 53 0101 0011 S

084 54 0101 0100 T

085 55 0101 0101 U

086 56 0101 0110 V

087 57 0101 0111 W

088 58 0101 1000 X

089 59 0101 1001 Y

090 5A 0101 1010 Z

091 5B 0101 1011 [

092 5C 0101 1100 \

093 5D 0101 1101]

094 5E 0101 1110 ^

095 5F 0101 1111 –

096 60 0110 0000 `

097 61 0110 0001 a

098 62 0110 0010 b

099 63 0110 0011 c

100 64 0110 0100 d

101 65 0110 0101 e

102 66 0110 0110 f

103 67 0110 0111 g

104 68 0110 1000 h

105 69 0110 1001 i

106 6A 0110 1010 j

107 6B 0110 1011 k

108 6C 0110 1100 l

109 6D 0110 1101 m

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

723

EXAMPLE
C++ By

110 6E 0110 1110 n

111 6F 0110 1111 o

112 70 0111 0000 p

113 71 0111 0001 q

114 72 0111 0010 r

115 73 0111 0011 s

116 74 0111 0100 t

117 75 0111 0101 u

118 76 0111 0110 v

119 77 0111 0111 w

120 78 0111 1000 x

121 79 0111 1001 y

122 7A 0111 1010 z

123 7B 0111 1011 {

124 7C 0111 1100 |

125 7D 0111 1101 }

126 7E 0111 1110 ~

127 7F 0111 1111 DEL

128 80 1000 0000 Ç

129 81 1000 0001 ü

130 82 1000 0010 é

131 83 1000 0011 â

132 84 1000 0100 ä

133 85 1000 0101 à

134 86 1000 0110 å

135 87 1000 0111 ç

136 88 1000 1000 ê

137 89 1000 1001 ë

138 8A 1000 1010 è

139 8B 1000 1011 ï

140 8C 1000 1100 î

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

724

º
ª

141 8D 1000 1101 ì

142 8E 1000 1110 Ä

143 8F 1000 1111 Å

144 90 1001 0000 É

145 91 1001 0001 æ

146 92 1001 0010 Æ

147 93 1001 0011 ô

148 94 1001 0100 ö

149 95 1001 0101 ò

150 96 1001 0110 û

151 97 1001 0111 ù

152 98 1001 1000 ÿ

153 99 1001 1001 Ö

154 9A 1001 1010 Ü

155 9B 1001 1011 ¢

156 9C 1001 1100 £

157 9D 1001 1101 ¥

158 9E 1001 1110 Pt

159 9F 1001 1111 ƒ

160 A0 1010 0000 á

161 A1 1010 0001 í

162 A2 1010 0010 ó

163 A3 1010 0011 ú

164 A4 1010 0100 ñ

165 A5 1010 0101 Ñ

166 A6 1010 0110

167 A7 1010 0111

168 A8 1010 1000 ®
169 A9 1010 1001 ©
170 AA 1010 1010 ø
171 AB 1010 1011 ´

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

725

EXAMPLE
C++ By

172 AC 1010 1100 ¨
173 AD 1010 1101 ≠
174 AE 1010 1110 Æ
175 AF 1010 1111 Ø
176 B0 1011 0000 ∞
177 B1 1011 0001 ±
178 B2 1011 0010 ≤
179 B3 1011 0011 |

180 B4 1011 0100 ¥
181 B5 1011 0101 µ
182 B6 1011 0110 ∂
183 B7 1011 0111 ∑
184 B8 1011 1000 ∏
185 B9 1011 1001 π
186 BA 1011 1010 ∫
187 BB 1011 1011 ª
188 BC 1011 1100 º
189 BD 1011 1101 Ω
190 BE 1011 1110 æ
191 BF 1011 1111 ™
192 C0 1100 0000 L

193 C1 1100 0001 ¡
194 C2 1100 0010 ¬
195 C3 1100 0011 √
196 C4 1100 0100 ƒ
197 C5 1100 0101 +
198 C6 1100 0110 ∆
199 C7 1100 0111 «
200 C8 1100 1000 »
201 C9 1100 1001 …
202 CA 1100 1010

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

726

203 CB 1100 1011

204 CC 1100 1100

205 CD 1100 1101 =

206 CE 1100 1110 Œ
207 CF 1100 1111 œ
208 D0 1101 0000 –
209 D1 1101 0001 —
210 D2 1101 0010 “
211 D3 1101 0011 ”
212 D4 1101 0100 ‘
213 D5 1101 0101 ’
214 D6 1101 0110 ÷
215 D7 1101 0111 ◊
216 D8 1101 1000

217 D9 1101 1001 Ÿ
218 DA 1101 1010 ⁄
219 DB 1101 1011 ¤
220 DC 1101 1100 ‹
221 DD 1101 1101 ›
222 DE 1101 1110 fi
223 DF 1101 1111 fl
224 E0 1110 0000 α
225 E1 1110 0001 β
226 E2 1110 0010 Γ
227 E3 1110 0011 π
228 E4 1110 0100 ‰
229 E5 1110 0101 Â
230 E6 1110 0110 µ

231 E7 1110 0111

232 E8 1110 1000 Φ
233 E9 1110 1001

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

727

EXAMPLE
C++ By

234 EA 1110 1010 Í
235 EB 1110 1011

236 EC 1110 1100 ∞
237 ED 1110 1101 ø

238 EE 1110 1110 Ó
239 EF 1110 1111 ∩
240 F0 1111 0000

241 F1 1111 0001 Ò
242 F2 1111 0010 Ú
243 F3 1111 0011 Û
244 F4 1111 0100 Ù
245 F5 1111 0101 ı
246 F6 1111 0110 ÷

247 F7 1111 0111 ˜
248 F8 1111 1000 °

249 F9 1111 1001 •

250 FA 1111 1010 •

251 FB 1111 1011 √
252 FC 1111 1100

253 FD 1111 1101 2

254 FE 1111 1110

255 FF 1111 1111

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

728

729

EXAMPLE
C++ By

D

C++ Precedence
Table

Precedence
Level Symbol Description Associativity

1
Highest () Function call Left to right

[] Array subscript

→ C++ indirect component

selector

:: C++ scope access/resolution

 . C++ direct component selector

2
Unary ! Logical negation Right to left

~ Bitwise (1’s) complement

+ Unary plus

- Unary minus

Appendix D ♦ C++ Precedence Table

730

Precedence
Level Symbol Description Associativity

++ Preincrement or postincrement

–– Predecrement or postdecrement

& Address of

* Indirection

sizeof (Returns size of operand, in
bytes.)

new (Dynamically allocates
C++ storage.)

delete (Dynamically deallocates
C++ storage.)

3
Member Left to right
Access .* C++ dereference

→* C++ dereference

4
Multipli-
cative * Multiply Left to right

/ Divide

% Remainder (modulus)

5
Additive + Binary plus Left to right

- Binary minus

6
Shift << Shift left Left to right

>> Shift right

731

EXAMPLE
C++ By

Precedence
Level Symbol Description Associativity

7
Relational < Less than Left to right

<= Less than or equal to

> Greater than

>= Greater than or equal to

8
Equality == Equal to Left to right

!= Not equal to

9 & Bitwise AND Left to right

10 ^ Bitwise XOR Left to right

11 | Bitwise OR Left to right

12 && Logical AND Left to right

13 || Logical OR Left to right

14
Condi-
tional ?: Right to left

15
Assignment = Simple assignment Right to left

*= Assign product

/= Assign quotient

Appendix D ♦ C++ Precedence Table

732

Precedence
Level Symbol Description Associativity

%= Assign remainder Right to left

+= Assign sum

-= Assign difference

&= Assign bitwise AND

^= Assign bitwise XOR

|= Assign bitwise OR

<<= Assign left shift

>>= Assign right shift

16
Comma , Evaluate Left to right

733

EXAMPLE
C++ By

E

Keyword and
Function
Reference

These are the 46 C++ standard keywords:

auto double new* switch

asm* else operator* template

break enum private* this*
case extern protected typedef

catch* float public* union

char for register unsigned

class* friend* return virtual*
const goto short void

continue if signed volatile

default inline* sizeof while

delete* int static

do long struct

* These keywords are specific to C++. All others exist in both C and C++.

Appendix E ♦ Keyword and Function Reference

734

The following are the built-in function prototypes, listed by their

header files. The prototypes describe the parameter data types that

each function requires.

stdio.h

int fclose(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fflush(FILE *stream);

int fgetc(FILE *stream);

char *fgets(char *, int, FILE *stream);

FILE *fopen(const char *filename, const char *mode);

int fprintf(FILE *stream, const char *format, ...);

int fputc(int, FILE *stream);

int fputs(const char *, FILE *stream);

size_t fread(void *, size_t, size_t, FILE *stream);

int fscanf(FILE *stream, const char *format, ...);

int fseek(FILE *stream, long offset, int origin);

size_t fwrite(const void *, size_t, size_t, FILE *stream);

int getc(FILE *stream);

int getchar(void);

char *gets(char *);

void perror(const char *);

int putc(int, FILE *stream);

int putchar(int);

int puts(const char *);

int remove(const char *filename);

void rewind(FILE *stream);

int scanf(const char *format, ...);

ctype.h

int isalnum(unsigned char);

int asalpha(unsigned char);

int iscntrl(unsigned char);

int isdigit(unsigned char);

int isgraph(unsigned char);

int islower(unsigned char);

735

EXAMPLE
C++ By

int isprint(unsigned char);

int ispunct(unsigned char);

int isspace(unsigned char);

int isupper(unsigned char);

int isxdigit(unsigned char);

int tolower(int);

int toupper(int);

string.h

char *strcat(char *, char *);

int strcmp(char *, char *);

int strcpy(char *, char *);

size_t strlen(char *);

math.h

double ceil(double);

double cos(double);

double exp(double);

double fabs(double);

double floor(double);

double fmod(double, double);

double log(double);

double log10(double);

double pow(double, double);

double sin(double);

double sqrt(double);

double tan(double);

stdlib.h

double atof(const char *);

int atoi(const char *);

long atol(const char *);

void exit(int);

int rand(void);

void srand(unsigned int);

Appendix E ♦ Keyword and Function Reference

736

737

EXAMPLE
C++ By

F

The Mailing List
Application

This appendix shows a complete program that contains most the

commands and functions you learned in this book. This program

manages a mailing list for your personal or business needs.

When you run the program, you are presented with a menu

of choices that guides you through the program’s operation.

Comments throughout the program offer improvements you

might want to make. As your knowledge and practice of C++

improve, you might want to expand this mailing list application

into a complete database of contacts and relatives.

Here is the listing of the complete program:

// Filename: MAILING.CPP

// * Mailing List Application *

// ------------------------

//

// This program enables the user to enter, edit, maintain, and

// print a mailing list of names and addresses.

//

// All commands and concepts included in this program are

// explained throughout the text of C++ By Example.

Appendix F ♦ The Mailing List Application

738

//

//

//

// These are items you might want to add or change:

// 1. Find your compiler’s clear screen function to

// improve upon the screen-clearing function.

// 2. Add an entry for the ‘code’ member to track different

// types of names and addresses (i.e., business codes,

// personal codes, etc.)

// 3. Search for a partial name (i.e., typing “Sm” finds

// “Smith” and “Smitty” and “Smythe” in the file).

// 4. When searching for name matches, ignore case (i.e.,

// typing “smith” finds “Smith” in the file).

// 5. Print mailing labels on your printer.

// 6. Allow for sorting a listing of names and address by name

// or ZIP code.

// Header files used by the program:

#include <conio.h>

#include <ctype.h>

#include <fstream.h>

#include <iostream.h>

#include <string.h>

const char FILENAME[] = “ADDRESS.DAT”;

// Prototype all of this program’s functions.

char get_answer(void);

void disp_menu (void);

void clear_sc (void);

void change_na (void);

void print_na (void);

void err_msg (char err_msg[]);

void pause_sc (void);

const int NAME_SIZE = 25;

const int ADDRESS_SIZE = 25;

const int CITY_SIZE = 12;

739

EXAMPLE
C++ By

const int STATE_SIZE = 3;

const int ZIPCODE_SIZE = 6;

const int CODE_SIZE = 7;

// Class of a name and address

class Mail

{

private:

 char name[NAME_SIZE]; // Name stored here, should

 // be Last, First order

 char address[ADDRESS_SIZE];

 char city[CITY_SIZE];

 char state[STATE_SIZE]; // Save room for null zero.

 char zipcode[ZIPCODE_SIZE];

 char code[CODE_SIZE]; // For additional expansion. You

 // might want to use this member

 // for customer codes, vendor codes,

 // or holiday card codes.

public:

 void pr_data(Mail *item)

 {

 // Prints the name and address sent to it.

 cout << “\nName : “ << (*item).name << “\n”;

 cout << “Address: “ << (*item).address << “\n”;

 cout << “City : “ << (*item).city << “\tState: “

 << (*item).state << “ Zipcode: “ << (*item).zipcode

 << “\n”;

 }

 void get_new_item(Mail *item)

 {

 Mail temp_item; // Holds temporary changed input.

 cout << “\nEnter new name and address information below\n(Press the “;

 cout << “Enter key without typing data to retain old "

 “information)\n\n”;

 cout << “What is the new name? “;

 cin.getline(temp_item.name, NAME_SIZE);

 if (strlen(temp_item.name)) // Only save new data if user

 { strcpy((*item).name, temp_item.name); } // types something.

 cout << “What is the address? “;

 cin.getline(temp_item.address, ADDRESS_SIZE);

Appendix F ♦ The Mailing List Application

740

 if (strlen(temp_item.address))

 { strcpy((*item).address, temp_item.address); }

 cout << “What is the city? “;

 cin.getline(temp_item.city, CITY_SIZE);

 if (strlen(temp_item.city))

 { strcpy((*item).city, temp_item.city); }

 cout << “What is the state? (2 letter abbreviation only) “;

 cin.getline(temp_item.state, STATE_SIZE);

 if (strlen(temp_item.state))

 { strcpy((*item).state, temp_item.state); }

 cout << “What is the ZIP code? “;

 cin.getline(temp_item.zipcode, ZIPCODE_SIZE);

 if (strlen(temp_item.zipcode))

 { strcpy((*item).zipcode, temp_item.zipcode); }

 (*item).code[0] = 0; // Null out the code member

 // (unused here).

 }

 void add_to_file(Mail *item);

 void change_na(void);

 void enter_na(Mail *item);

 void getzip(Mail *item);

};

void Mail::change_na(void)

{

// This search function can be improved by using the

// code member to assign a unique code to each person on the

// list. Names are difficult to search for since there are

// so many variations (such as Mc and Mac and St. and Saint).

 Mail item;

 fstream file;

 int ans;

 int s; // Holds size of structure.

 int change_yes = 0; // Will become TRUE if user finds

 char test_name[25]; // a name to change.

 cout << “\nWhat is the name of the person you want to change? “;

 cin.getline(test_name, NAME_SIZE);

 s = sizeof(Mail); // To ensure fread() reads properly.

741

EXAMPLE
C++ By

 file.open(FILENAME, ios::in | ios::out);

 if (!file)

 {

 err_msg(“*** Read error - Ensure file exists before "

 "reading it ***”);

 return;

 }

 do

 {

 file.read((unsigned char *)&item, sizeof(Mail));

 if (file.gcount() != s)

 {

 if (file.eof())

 { break; }

 }

 if (strcmp(item.name, test_name) == 0)

 {

 item.pr_data(&item); // Print name and address.

 cout << “\nIs this the name and address to “ <<

 “change? (Y/N) “;

 ans = get_answer();

 if (toupper(ans) == ‘N’)

 { break; } // Get another name.

 get_new_item(&item); // Enable user to type new

 // information.

 file.seekg((long)-s, ios::cur); // Back up a structure.

 file.write((const unsigned char *)(&item),

 sizeof(Mail)); // Rewrite information.

 change_yes = 1; // Changed flag.

 break; // Finished

 }

 }

 while (!file.eof());

 if (!change_yes)

 { err_msg(“*** End of file encountered before finding the name ***”);}

}

void Mail::getzip(Mail *item) // Ensure that ZIP code

 // is all digits.

{

 int ctr;

Appendix F ♦ The Mailing List Application

742

 int bad_zip;

 do

 {

 bad_zip = 0;

 cout << “What is the ZIP code? “;

 cin.getline((*item).zipcode, ZIPCODE_SIZE);

 for (ctr = 0; ctr < 5; ctr++)

 {

 if (isdigit((*item).zipcode[ctr]))

 { continue; }

 else

 {

 err_msg(“*** The ZIP code must consist of digits only ***”);

 bad_zip = 1;

 break;

 }

 }

 }

 while (bad_zip);

}

void Mail::add_to_file(Mail *item)

{

 ofstream file;

 file.open(FILENAME, ios::app); // Open file in append mode.

 if (!file)

 {

 err_msg(“*** Disk error - please check disk drive ***”);

 return;

 }

 file.write((const unsigned char *)(item), sizeof(Mail));

 // Add structure to file.

}

void Mail::enter_na(Mail *item)

{

 char ans;

743

EXAMPLE
C++ By

 do

 {

 cout << “\n\n\n\n\nWhat is the name? “;

 cin.getline((*item).name, NAME_SIZE);

 cout << “What is the address? “;

 cin.getline((*item).address, ADDRESS_SIZE);

 cout << “What is the city? “;

 cin.getline((*item).city, CITY_SIZE);

 cout << “What is the state? (2 letter abbreviation only)”;

 cin.getline((*item).state, STATE_SIZE);

 getzip(item); // Ensure that ZIP code is all digits.

 strcpy((*item).code, “ “); // Null out the code member.

 add_to_file(item); // Write new information to disk file.

 cout << “\n\nDo you want to enter another name “ <<

 “and address? (Y/N) “;

 ans = get_answer();

 }

 while (toupper(ans) == ‘Y’);

}

//**

// Defined constants

// MAX is total number of names allowed in memory for

// reading mailing list.

const int MAX = 250;

const char BELL = ‘\x07’;

//**

int main(void)

{

 char ans;

 Mail item;

 do

 {

 disp_menu(); // Display the menu for the user.

 ans = get_answer();

 switch (ans)

 {

 case ‘1’:

Appendix F ♦ The Mailing List Application

744

 item.enter_na(&item);

 break;

 case ‘2’:

 item.change_na();

 break;

 case ‘3’:

 print_na();

 break;

 case ‘4’:

 break;

 default:

 err_msg(“*** You have to enter 1 through 4 ***”);

 break;

 }

 }

 while (ans != ‘4’);

 return 0;

}

//**

void disp_menu(void) // Display the main menu of program.

{

 clear_sc(); // Clear the screen.

 cout << “\t\t*** Mailing List Manager ***\n”;

 cout << “\t\t --------------------\n\n\n\n”;

 cout << “Do you want to:\n\n\n”;

 cout << “\t1. Add names and addresses to the list\n\n\n”;

 cout << “\t2. Change names and addresses in the list\n\n\n”;

 cout << “\t3. Print names and addresses in the list\n\n\n”;

 cout << “\t4. Exit this program\n\n\n”;

 cout << “What is your choice? “;

}

//**

void clear_sc() // Clear the screen by sending 25 blank

 // lines to it.

{

 int ctr; // Counter for the 25 blank lines.

 for (ctr = 0; ctr < 25; ctr++)

745

EXAMPLE
C++ By

 { cout << “\n”; }

}

//**

void print_na(void)

{

 Mail item;

 ifstream file;

 int s;

 int linectr = 0;

 s = sizeof(Mail); // To ensure fread() reads properly.

 file.open(FILENAME);

 if (!file)

 {

 err_msg(“*** Error - Ensure file exists before"

 "reading it ***”);

 return;

 }

 do

 {

 file.read((signed char *)&item, s);

 if (file.gcount() != s)

 {

 if (file.eof()) // If EOF, quit reading.

 { break; }

 }

 if (linectr > 20) // Screen is full.

 {

 pause_sc();

 linectr = 0;

 }

 item.pr_data(&item); // Print the name and address.

 linectr += 4;

 }

 while (!file.eof());

 cout << “\n- End of list -”;

 pause_sc(); // Give user a chance to see names

 // remaining on-screen.

}

Appendix F ♦ The Mailing List Application

746

//**

void err_msg(char err_msg[])

{

 cout << “\n\n” << err_msg << BELL << “\n”;

}

//**

void pause_sc()

{

 cout << “\nPress the Enter key to continue...”;

 while (getch() != ‘\r’)

 { ; } // Wait for Enter key.

}

//**

char get_answer(void)

{

 char ans;

 ans = getch();

 while (kbhit())

 { getch(); }

 putch(ans);

 return ans;

}

747

EXAMPLE
C++ By

Glossary

Address. Each memory (RAM) location (each byte) has a unique

address. The first address in memory is 0, the second RAM location’s

address is 1, and so on until the last RAM location (thousands of

bytes later).

ANSI. American National Standards Institute, the committee that

approves computer standards.

Argument. The value sent to a function or procedure. This can be

a constant or a variable and is enclosed inside parentheses.

Array. A list of variables, sometimes called a table of variables.

Array of Structures. A table of one or more structure variables.

ASCII. Acronym for American Standard Code for Information

Interchange.

ASCII File. A file containing characters that can be used by any

program on most computers. Sometimes called a text file or an

ASCII text file.

AUTOEXEC.BAT. A batch file in PCs that executes a series of

commands whenever you start or reset the computer.

Automatic Variables. Local variables that lose their values when

their block (the one in which they are defined) ends.

Glossary ♦

748

Backup File. A duplicate copy of a file that preserves your work in

case you damage the original file. Files on a hard disk are commonly

backed up on floppy disks or tapes.

Binary. A numbering system based on only two digits. The only

valid digits in a binary system are 0 and 1. See also Bit.

Binary zero. Another name for null zero.

Bit. Binary digit, the smallest unit of storage on a computer. Each

bit can have a value of 0 or 1, indicating the absence or presence of

an electrical signal. See also Binary.

Bit Mask. A pattern of bits that changes other bits on and off to

meet a certain logical condition.

Bitwise Operators. C++ operators that manipulate the binary

representation of values.

Block. One or more statements treated as though they are a single

statement. A block is always enclosed in braces, { and }.

Boot. To start a computer with the operating system software in

place. You must boot your computer before using it.

Bubble Sort. A method of sorting data into ascending or descend-

ing order. See also Quicksort, Shell Sort.

Bug. An error in a program that prevents the program from

running correctly. The term originated when a moth short-circuited

a connection in one of the first computers, preventing the computer

from working!

Byte. A basic unit of data storage and manipulation. A byte is

equivalent to eight bits and can contain a value ranging from 0 to 255.

Cathode Ray Tube (CRT). The television-like screen, also called

the monitor. It is one place to which the output of the computer can

be sent.

Central Processing Unit (CPU). The controlling circuit respon-

sible for operations in the computer. These operations generally

include system timing, logical processing, and logical operations. It

controls every operation of the computer system. On PCs, the central

processing unit is called a microprocessor; it is stored on a single

integrated circuit chip.

749

EXAMPLE
C++ By

Code. A set of instructions written in a programming language.

See Source Code.

Comment. A message in a program, ignored by the computer, that

tells users what the program does.

Compile. Process of translating a program written in a program-

ming language such as C++ into machine code that your computer

understands.

Class. A C++ user-defined data type that consists of data members

and member functions. Its members are private by default.

Concatenation. The process of attaching one string to the end of

another or combining two or more strings into a longer string.

Conditional Loop. A series of C++ instructions that occurs a fixed

number of times.

Constant. Data defined with the const keyword that do not change

during a program run.

Constructor Function. The function executed when the program

declares an instance of a class.

CPU. Central Processing Unit.

CRT. Cathode Ray Tube.

Data. Information stored in the computer as numbers, letters, and

special symbols such as punctuation marks. This also refers to the

characters you input into your program so the program can produce

meaningful information.

Data Member. A data component of a class or structure.

Data Processing. What computers really do. They take data and

manipulate it into meaningful output. The meaningful output is

called information.

Data Validation. The process of testing the values entered in a

program. Checking whether a number is negative or positive or

simply ensuring that a number is in a certain range are two examples

of data validation.

Debug. Process of locating an error (bug) in a program and

removing it.

Glossary ♦

750

Declaration. A statement that declares the existence of a data

object or function. A declaration reserves memory.

Default. A predefined action or command that the computer

chooses unless you specify otherwise.

Default Argument List. A list of argument values, specified in a

function’s prototypes, that determine initial values of the arguments

if no values are passed for those arguments.

Definition. A statement that defines the format of a data object or

function. A definition reserves no memory.

Demodulate. To convert an analog signal into a digital signal for

use by a computer. See also Modulate.

Dereference. The process of finding a value to which a pointer

variable is pointing.

Destructor. The function called when a class instance goes out of

scope.

Determinate Loop. A for loop that executes a fixed number of

times.

Digital Computer. A term that comes from the fact that your

computer operates on binary (on and off) digital impulses of elec-

tricity.

Directory. A list of files stored on a disk. Directories within exist-

ing directories are called subdirectories.

Disk. A round, flat magnetic storage medium. Floppy disks are

made of flexible material and enclosed in 5 1/4-inch or 3 1/2-inch

protective cases. Hard disks consist of a stack of rigid disks housed

in a single unit. A disk is sometimes called external memory. Disk

storage is nonvolatile. When you turn off your computer, the disk’s

contents do not go away.

Disk Drive. A device that reads and writes data to a floppy or hard

disk.

Diskettes. Another name for the removable floppy disks.

Display. A screen or monitor.

751

EXAMPLE
C++ By

Display Adapter. Located in the system unit, the display adapter

determines the amount of resolution and the possible number of

colors on-screen.

DOS. Disk Operating System.

Dot-Matrix Printer. One of the two most common PC printers.

The laser printer is the other. A dot-matrix printer is inexpensive and

fast; it uses a series of small dots to represent printed text and

graphics.

Element. An individual variable in an array.

Execute. To run a program.

Expanded Memory. A tricky way of expanding your computer’s

memory capacity beyond the 640K barrier using a technique called

bank switching. See also Extended Memory.

Extended Memory. RAM above 640K, usually installed directly

on the motherboard of your PC. You cannot access this extra RAM

without special programs. See also Expanded Memory.

External Modem. A modem that sits in a box outside your com-

puter. See also Internal Modem.

Field. A member in a data record.

File. A collection of data stored as a single unit on a floppy or hard

disk. Files always have a filename that identifies them.

File Extension. Used by PCs and consists of a period followed by

up to three characters. The file extension follows the filename.

Filename. A unique name that identifies a file. Filenames can be

up to eight characters long, and can have a period followed by an

extension (normally three characters long).

Fixed Disk. See Hard Disk.

Fixed-Length Records. A record where each field takes the same

amount of disk space, even if that field’s data value does not fill the

field.

Floppy Disk. See Disk.

Glossary ♦

752

Format. Process of creating a “map” on the disk that tells the

operating system how the disk is structured. This process is how the

operating system keeps track of where files are stored.

Function. A self-contained coding segment designed to do a spe-

cific task. All C++ programs must have at least one function called

main(). Some functions are library routines that manipulate num-

bers, strings, and output.

Function Keys. The keys labeled F1 through F12 (some keyboards

only have up to F10).

Global Variables. A variable that can be seen from (and used by)

every statement in the program.

Hard Copy. The printout of a program (or its output). Also a safe

backup copy for a program in case the disk is erased.

Hard Disk. Sometimes called fixed disks. These hold much more

data and are many times faster than floppy disks. See Disk.

Hardware. The physical parts of the machine. Hardware has been

defined as “anything you can kick.”

Header Files. Files that contain prototypes of C++’s built-in

functions.

Hexadecimal. A numbering system based on 16 elements. Digits

are numbered 0 through F, as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, F.

Hierarchy of Operators. See Order of Operators.

Indeterminate Loop. A loop that continues an indeterminate

amount of times (unlike the for loop, which continues a known

amount of times).

Infinite Loop. The never-ending repetition of a block of C++

statements.

Information. The meaningful product from a program. Data go

into a program to produce meaningful output (information).

Inline Function. A function that compiles as inline code each time

the function is called.

753

EXAMPLE
C++ By

Input. The entry of data into a computer through a device such as

the keyboard.

Input-Process-Output. This model is the foundation of every-

thing that happens in your computer. Data are input, then processed

by your program in the computer, and finally information is output.

I/O. Acronym for Input/Output.

Integer Variable. Variables that can hold integers.

Internal Modem. A modem that resides inside the system unit.

See also External Modem.

Kilobyte (K). A unit of measurement that refers to 1,024 bytes.

Laser Printer. A type of printer that is faster, in general, than dot-

matrix printers. Laser printer output is much sharper than that of a

dot-matrix printer, because a laser beam actually burns toner ink

into the paper. Laser printers are more expensive than dot-matrix

printers.

Least Significant Bit. The rightmost bit of a byte. For example, a

binary 00000111 would have a 1 as the least significant bit.

Line Printer. Another name for your printer.

Link Editing. The last step the C++ compiler performs when

preparing your program for execution.

Literal. Data that remains the same during program execution.

Local Variable. A variable that can be seen from (and used by)

only the block in which it is defined.

Loop. The repeated execution of one or more statements.

Machine Language. The series of binary digits that a microproces-

sor executes to perform individual tasks. People seldom (if ever)

program in machine language. Instead, they program in assembly

language, and an assembler translates their instructions into ma-

chine language.

Main Module. The first function of a modular program called

main() that controls the execution of the other functions.

Glossary ♦

754

Maintainability. The computer industry’s word for the ability to

change and update programs written in a simple style.

Manipulator. A value used by a program to inform the stream to

modify one of its modes.

Math Operator. A symbol used for addition, subtraction, multi-

plication, division, or other calculations.

Megabyte (M). In computer terminology, approximately a mil-

lion bytes (1,048,576 bytes).

Member. A piece of a structure variable that holds a specific type

of data, or a class variable that holds a specific type of data or a

function acting on that data.

Member Function. A function defined inside a class.

Memory. Storage area inside the computer, used to temporarily

store data. The computer’s memory is erased when the power is off.

Menu. A list of commands or instructions displayed on-screen.

These lists organize commands and make a program easier to use.

Menu-Driven. Describes a program that provides menus for choos-

ing commands.

Microchip. A small wafer of silicon that holds computer compo-

nents and occupies less space than a postage stamp.

Microcomputer. A small computer that can fit on a desktop, such

as a PC. The microchip is the heart of the microcomputer. Microcom-

puters are much less expensive than their larger counterparts.

Microprocessor. The chip that does the calculations for PCs. Some-

times it is called the Central Processing Unit (CPU).

Modem. A piece of hardware that modulates and demodulates

signals so your computer can communicate with other computers

over telephone lines. See also External Modems, Internal Modems.

Modular Programming. The process of writing your programs in

several modules rather than as one long program. By breaking a

program into several smaller program-line routines, you can isolate

problems better, write correct programs faster, and produce pro-

grams that are much easier to maintain.

755

EXAMPLE
C++ By

Modulate. Before your computer can transmit data over a tele-

phone line, the information to be sent must be converted (modu-

lated) into analog signals. See also Demodulate.

Modulus. The integer remainder of division.

Monitor. The television-like screen that enables the computer to

display information. It is an output device.

Mouse. A hand-held device that you move across the desktop to

move an indicator, called a mouse pointer, across the screen. Used

instead of the keyboard to select and move items (such as text or

graphics), execute commands, and perform other tasks.

MS-DOS. An operating system for IBM and compatible PCs.

Multidimensional Arrays. Arrays with more than one dimen-

sion. As two-dimensional arrays, they are sometimes called tables or

matrices, which have rows and columns.

Nested Loop. A loop within a loop.

Null String. An empty string with an initial character of null zero

and with a length of 0.

Null Zero. The string-terminating character. All C++ string con-

stants and strings stored in character arrays end in null zero. The

ASCII value for the null zero is 0.

Numeric Functions. Library routines that work with numbers.

Object. C++ class members consisting of both data and member

functions.

Object Code. A “halfway step” between source code and execut-

able machine language. Object code consists mostly of machine

language but is not directly executable by the computer. It must first

be linked in order to resolve external references and address refer-

ences. See also Source Code, Machine Language.

Object-Oriented Programming. A programming approach that

treats data as objects capable of manipulating themselves.

Operator. An operator works on data and performs math calcula-

tions or changes data to other data types. Examples include the +, -, and

sizeof() operators.

Glossary ♦

756

Order of Operators. Sometimes called the hierarchy of operators
or the precedence of operators. It determines exactly how C++ com-

putes formulas.

Output Device. Where the results of a program are output, such

as the screen, the printer, or a disk file.

Overloading. The process of writing more than one function with

the same name. The functions must differ in their argument lists so

C++ can identify which one to call.

Parallel Arrays. Two arrays working side by side. Each element in

each array corresponds to one in the other array.

Parallel Port. A connector used to plug a device such as a printer

into the computer. Transferring data through a parallel port is much

faster than transferring data through a serial port.

Parameter. A list of variables enclosed in parentheses that follow

the name of a function or procedure. Parameters indicate the num-

ber and type of arguments that are sent to the function or procedure.

Passing by Address. Also called passing by reference. When an

argument (a local variable) is passed by address, the variable’s

address in memory is sent to, and is assigned to, the receiving

function’s parameter list. (If more than one variable is passed by

address, each of their addresses is sent to and assigned to the

receiving function’s parameters.) A change made to the parameter

in the function also changes the value of the argument variable.

Passing by Copy. Another name for passing by value.

Passing by Reference. Another name for passing by address.

Passing by Value. By default, all C++ variable arguments are

passed by value. When the value contained in a variable is passed to

the parameter list of a receiving function, changes made to the

parameter in the routine do not change the value of the argument

variable. Also called passing by copy.

Path. The route the computer travels from the root directory to any

subdirectories when locating a file. The path also refers to the

subdirectories that MS-DOS examines when you type a command

that requires it to find and access a file.

757

EXAMPLE
C++ By

Peripheral. A device attached to the computer, such as a modem,

disk drive, mouse, or printer.

Personal Computer. A microcomputer, also called a PC, which

stands for personal computer.

Pointer. A variable that holds the address of another variable.

Precedence of Operators. See Order of Operators.

Preprocessor Directive. A command, preceded by a #, that you

place in your source code that directs the compiler to modify the

source code in some fashion. The two most common preprocessor

directives are #define and #include.

Printer. A device that prints data from the computer to paper.

Private Class Member. A class member inaccessible except to the

class’s member functions.

Program. A group of instructions that tells the computer what

to do.

Programming Language. A set of rules for writing instructions for

the computer. Popular programming languages include BASIC,

C, Visual Basic, C++, and Pascal.

Prototype. The definition of a function; includes its name, return

type, and parameter list.

Public Class Member. A class member accessible to any function.

Quicksort. A method of sorting data values into ascending or

descending order (faster than a Bubble Sort.) See also Bubble Sort,
Shell Sort.

RAM. Random-Access Memory.

Random-Access File. Records in a file that can be accessed in any

order you want.

Random-Access Memory. Memory that your computer uses to

temporarily store data and programs. RAM is measured in kilobytes

and megabytes. Generally, the more RAM a computer has, the more

powerful programs it can run.

Glossary ♦

758

Read-Only Memory. A permanent type of computer memory. It

contains the BIOS (Basic Input/Output System), a special chip used

to provide instructions to the computer when you turn the compu-

ter on.

Real Numbers. Numbers that have decimal points and a frac-

tional part to the right of the decimal.

Record. Individual rows in files.

Relational Operators. Operators that compare data; they tell how

two variables or constants relate to each other. They tell you whether

two variables are equal or not equal, or which one is less than or more

than the other.

ROM. Read-Only Memory.

Scientific Notation. A shortcut method of representing numbers

of extreme values.

Sectors. A pattern of pie-shaped wedges on a disk. Formatting

creates a pattern of tracks and sectors where your data and programs

are stored.

Sequence Point/Comma Operator. This operator ensures that

statements are performed in a left-to-right sequence.

Sequential File. A file that has to be accessed one record at a time

beginning with the first record.

Serial Port. A connector used to plug in serial devices, such as a

modem or a mouse.

Shell Sort. A method of sorting values into ascending or de-

scending order. Named after the inventor of this method. See also

Bubble Sort, Quicksort.

Single-Dimensional Arrays. Arrays that have only one subscript.

Single-dimensional arrays represent a list of values.

Software. The data and programs that interact with your hard-

ware. The C++ language is an example of software.

Sorting. A method of putting data in a specific order (such as

alphabetical or numerical order), even if that order is not the same

order in which the elements were entered.

759

EXAMPLE
C++ By

Source Code. The C++ language instructions, written by pro-

grammers, that the C++ compiler translates into object code. See also

Object Code.

Spaghetti Code. Term used when there are too many gotos in a

program. If a program branches all over the place, it is difficult to

follow and trying to follow the logic resembles a “bowl of spaghetti.”

Static Variables. Variables that do not lose their values when the

block in which they are defined ends. See also Automatic Variables.

Standard Input Device. The target of each cout and output func-

tion. Normally the screen unless rerouted to another device at the

operating system’s prompt.

Standard Output Device. The target of each cin and input func-

tion. Normally the keyboard unless rerouted to another device at the

operating system’s prompt.

Stream. Literally, a stream of characters, one following another,

flowing among devices in your computer.

String. One or more characters terminated with a null zero.

String Constant. One or more groups of characters that end in a

null zero.

String Delimiter. See Null Zero.

String Literal. Another name for a String Constant.

Structure. A unit of related information containing one or more

members, such as an employee number, employee name, employee

address, employee pay rate, and so on.

Subscript. A number inside brackets that differentiates one ele-
ment of an array from another.

Syntax Error. The most common error a programmer makes.

Often a misspelled word.

System Unit. The large box component of the computer. The

system unit houses the PC’s microchip (the CPU).

Timing Loop. A loop used to delay the computer for a specific

amount of time.

Glossary ♦

760

Tracks. A pattern of paths on a disk. Formatting creates a pattern

of tracks and sectors where your data and programs go.

Truncation. The fractional part of a number (the part of the

number to the right of the decimal point) is taken off the number. No

rounding is done.

Two’s Complement. A method your computer uses to take the

negative of a number. This method, plus addition, allows the

computer to simulate subtraction.

Unary Operator. The addition or subtraction operator used before

a single variable or constant.

User-Friendliness. A program is user-friendly if it makes the user

comfortable and simulates an atmosphere that the user is already

familiar with.

Variable. Data that can change as the program runs.

Variable-Length Records. A record that takes up no wasted space

on the disk. As soon as a field’s data value is saved to the file, the next

field’s data value is stored after it. There is usually a special separat-

ing character between the fields so your programs know where the

fields begin and end.

Variable Scope. Sometimes called the visibility of variables, this

describes how variables are “seen” by your program. See also Global
Variables and Local Variables.

Volatile. Temporary state of memory. For example, when you

turn the computer off, all the RAM is erased.

Word. In PC usage, two consecutive bytes (16 bits) of data.

EXAMPLE

761

C++ By

Index

761

* (dereferencing) pointer opera-

tor, 542

* (multiplication) math operator,

64, 164

*= (compound operator), 177

+ (addition) math operator, 64,

164

++ (increment) operator, 225

+= (compound operator), 177

- (hyphen), 336

– (subtraction) math operator, 64,

164

-- (decrement) operator, 225

-= (compound operator), 177

. (dot) operator, 592, 608, 616

/ (division) math operator, 64,

164, 167-168

// (slashes), 46

/= (compound operator), 177

: (colon), 321

; (semicolon), 56, 114, 120, 190,

339

Symbols

! (NOT) logical operator, 208, 452

!= (not equal to) relational

operator, 186

(pound sign), 114

#define directive, 94, 120-128

#include directive, 61, 107,

115-120

% (modulus) math operator, 164,

167-168

%= (compound operator), 177

& (address of) pointer operator,

542

& (ampersand), 155, 391

&& (AND) logical operator, 208

() (parentheses), 46, 336, 365

“ ” (double quotation marks),

85, 117

‘ ’ (quotation marks), 89

, comma operator, 232-234, 758

* (asterisks), 345

Index ♦

762

< (input redirection symbol), 435

< (less than) relational operators,

186

< > (angled brackets), 117

<= (less than or equal to) rela-

tional operator, 186

= (assignment operator), 63,

174-178

= (equal sign), 80, 105, 400

== (equal to) relational operator,

186

> (greater than) relational opera-

tor, 186

> (output redirection symbol),

435

>= (greater than or equal to)

relational operator, 186

[] (brackets), 46, 100, 523

\ (backslash), 91

\n (newline character), 91,

135-136, 433, 635

\t (tab character), 138, 433

_ (underscore), 336

{ } (braces), 46, 56, 340

functions, 336

initializing arrays, 527

|| (OR) logical operator, 208

~Sphere() function, 663-670

2's complement, 692, 760

A

absolute values, 420-421, 461

access modes

random file, 648

read, 639

accessing

disks, 625

elements (arrays), 101

files, 627-628

modes, 630

random access, 627

sequential file access,

625-627

text mode, 630

members, classes, 675

RAM, 627

adapters, display, 24, 751

addition (+) math operator, 64,

164

address of (&) pointer operator,

542

addresses, 32, 559

& (address of) pointer opera-

tor, 542

arrays, passing, 386

integers, assigning floating-

point variables, 549

memory, 385, 681-682, 747

passing

nonarrays, 391-396

variables, 374, 385-394, 756

pointers, 542

addressing, 679

Algol programming language, 15

allocating memory, dynamic

allocation, 665

alphabetic testing functions,

450-451

Alt keys, 25

American National Standards

Insitute (ANSI), 13, 747

American Standard Code for

Information Interchange, see
ASCII

ampersand (&), 155, 391

analog signals, 29

AND (&&) logical operator, 208

angled brackets (< >), 117

ANSI (American National

Standards Institute), 747

appending

cout operator, 93

files, 628, 638-639

application-specific keys, 27

EXAMPLE

763

C++ By

arguments, 747

alphabetical, testing for, 451

default

lists, 415-417, 750

multiple, 417-420

member functions, 670-674

mismatched, 407

numeric, testing for, 451

passing, 364-366

receiving, 550

see also variables

arithmetic

binary, 690-692

pointers, 568-574

arrays, 100, 474-479, 747

as sizeof argument, 231

assigning to arrays, 486

brackets ([]), printing, 102

character pointers, 574

character, see character arrays

contents, changing, 563

data types, mixing, 609

declaring, 100, 475

strings, 478

subscripts, 482

defining, data type, 475

elements, 101, 751

accessing, 101

initializing all to zero, 481

inputting to, 611

subscripts, 101-102

filling

random values, 497

user input, 389

global, see global arrays

individual characters, 105

initializing, 104-105, 479-490

assignment operator, 480

braces ({ }), 527

brackets [], 480

multidimensional, 529

mapping to memory, 524-526

members, 615-622

multidimensional, see multidi-

mensional arrays

names

as pointers, 558-559

changing, 560

notation, 608-610

parallel, 756

passing, 388

by address, 386

functions, 387

to functions, 484

(of) pointers, 551-553

pointers, 493

printing with cout operator,

102

ragged-edge, 574

referencing, 508-515, 558

reserving memory, 476

searching, 494-495

for statement, 496

for values, 496-501

if statement, 496

sizes, 128, 476-477, 480

sorting, 494-495, 501-508, 758

ascending sort, 506

bubble sort, 502-505, 748

character arrays, 508

descending sort, 494, 506

nested loops, 504

numeric arrays, 508

quicksort, 502, 757

shell sort, 502, 758

(of) strings, 574-578

strings

printing, 563

storing, 574

(of) structures, 589, 747

structures, declaring, 606-615

subscripts, 474

two-dimensional, 525

type, specifying, 390

values, assigning, 103

see also nonarrays

Index ♦

764

arrow keys, 27

ascending sort, 506

ASCII (American Std. Code for

Information Interchange), 747

characters, 683

returning, 409

files, 747

text files, 115, 630

values, printing, 154

ASCII Table, 719, 722-727

ascii() function, 409

assigning

arrays to arrays, 486

floating-point variables, 549

literals

character, 89-93

integer, 83-84

string, 85

string values to character

arrays, 105

values

arrays, 103

elements, 479

members, 602

out-of-range subscripts, 479

strings, 107

to pointers, 545-546

to variables, 145

variables, 80-82

assignment operator (=), 63,

174-178, 480

assignment statements, 80, 105

pointers, initializing, 548

start expressions, 274

assignments

associating, 175-176

compound, 176-178

multiple, 175-176

statements, 174-178

associating assignments, 175-176

asterisks (*), 345

AT & T, 12

atof() function, 460

atoi() function, 460

atol() function, 460

auto keyword, 369

AUTOEXEC.BAT file, 747

automatic variables, 369-374, 747

B

backslash (\), 91

backup files, 748

base-2 numbers, 686

base-10 numbers, 689

base-16 numbers, 695

BCPL programming language, 15

BEEP, 314

binary

arithmetic, 690-692

digits, 683, 748

file format, 631

modes, 631

operations, 165

states of electricity, 21

zeros, 88, 748

binary numbers, 17, 165, 679,

686-690, 748

converting

from hexadecimal numbers,

697

to 2's complement, 692

to hexadecimal, 697

negative, 692-694

binary state of electricity, 683

bit mask, 240, 748

bits, 682-685, 748

high-order, 686

least-significant, 686, 753

low-order, 686

most-significant, 686

order, 686

sign, 693

bitwise operators, 235-244, 748

truth tables, 235-236

EXAMPLE

765

C++ By

blank

characters, 680

expressions, see null expres-

sion

lines, 136

blocks, 55

braces ({ }), 56

case, break statements, 312

statements, 246, 748

body (program)

functions, 336, 345

loops, indenting, 279

statements, 189, 342

boilerplates, 117

booting, 748

braces ({ }), 46, 56-57, 340

functions, 336

initializing arrays, 527

loops, 287

brackets ([]), 46, 100

angled (< >), 117

arrays, initializing, 480

dimensions, 523

printing arrays, 102

branching, 321

break statement, 256-260, 298-303

case blocks, 312

nested loops, 299

unconditional, 299

breaks, conditional, 257-258

bubble sort, see sorting arrays

buffered input functions, 440-442

bugs, see debugging

built-in editors, 40

built-in functions, prototypes,

734-735

bytes, 20, 682-685, 748

K (kilobytes), 20, 753

M (megabytes), 24, 754

reserving, arrays, 476

C

C++

comparing to other languages,

16

origination, 15-16

calculations

data types, mixing, 178-182

strings, 460

structure members, 597

called functions, 364

recognizing, 368-369

return values, 398

variables, changing, 387

calling functions, 337-349

repeatedly, 417

carriage returns, 439

case blocks, break statements,

312

case expressions, 312

case statements, 313, 319

cathode ray tube (CRT), 24, 748

ceil(x) function, 461

ceiling function, 461

central processing unit (CPU),

20-22, 748

cfront (UNIX) compiler, 43

CGA display adapter, 24

character arrays, 100-103

control_string, 149

erasing, passing to functions,

390

filenames, storing, 633

initializing, 480

pointing, to new strings, 563

reserving, 100, 480

sorting, 508

string values, assigning, 105

strings

comparing, 103-110

multiple, 512

printing, 135, 510

storing, 104

Index ♦

766

character formatting constants,

defining, 440

character functions, 450-455

conversion, 453-455

tolower(c), 454

toupper(c), 454

isalnum(c), 451

isalpha(c), 450

isdigit(c), 451

islower(c), 450

isupper(c), 450

isxdigit(c), 451

passing to, 451

testing, 450-453

for digits, 451

iscntrl(c), 453

isgraphic(c), 453

isprint(c), 453

ispunct(c), 453

isspace(c), 453

character I/O functions, 432-446

character literals, 64, 89-93

character pointers, 563-568

arrays

defining, 574

storing, 574

filenames, 633

string constants, changing, 566

character strings, variables, 100

character variables, 75

character-based literals, 62

characters

\t (tab), 138

ASCII, 683, 409

comparing, 199

conversion, 151-154

individual, arrays, 105

newline (\n), 135-136

string-terminating, 101,

457-458

cin, 144-148, 248-249

input, keyboard, 144

values, variables, 145

classes, 661-670, 749

functions, defining, 754

member functions, 662-676

members

accessing, 675

data, 662

private, 674, 757

public, 757

visibility, 674-675

objects, 663

public, 662, 674

close() function, 629

closing files, 629-634

code, 749

modules, see functions

object, 755

source, see source code

spaghetti, 759

unreachable, 305

colon (:), 321

columns, printing, 139-140, 534

combining functions, cout and

ofstream, 437

combining redirection symbols,

436

comma (,) operator, 232-234, 758

comments, 46, 57-61, 749

comparing

characters, 199

data, relational operators, 186

internal data, bit-by-bit, 235

literals to variables, 192

loops, if vs. while, 255

numbers, 199

variables, 192

compatibility,

AT & T, 12

with other computers, 433

compile-time operator, 231

compiled languages, 37

compilers, 37, 42-44

C++, 11

cfront (UNIX), 43

EXAMPLE

767

C++ By

compiling, 43, 113, 749

compound assignments, 176-178

compound operators, 177

compound relational operators,

see logical operators

compound relational tests, 207

computers

digital, 29, 750

microcomputers, 754

personal (PCs), 757

see also microcomputers

concatenation, 456, 749

conditional breaks, 257-258

conditional loops, 749

conditional operators, 222-225

CONFIG.SYS file, FILES= state-

ment, 629

console, 434

const keyword, 94, 120, 749

constant variables, 94-95

constants, 94, 749, 759

defining

character formatting, 440

variables as, 120

numeric, printing, 151

pointers, 560-562

string

changing, 566

printing, 150

see also literals and pointer

constants

construct statements, 246

constructor functions, 663, 749

multiple, 673

overloading, 673

constructs, loops, 276

continue statement, 303-307

control characters, I/O functions,

433

control operators, 139-144

control_string, 149, 155

controlling

format string, 149

function calls, 338

statements conditionally, 185

conversion characters, 151-154

floating-point, 151

functions, 453-455

for printing, 297

setw manipulator, 140

converting

binary numbers

to 2's complement, 692

to hexadecimal, 697

data types automatically, 179

hexadecimal numbers to

binary numbers, 697

strings to numbers, 460-461

to floating-point number,

460

to integers, 460

to uppercase, 240

copy, passing by, 379, 547, 756

copying

literals, in strings, 107

members, structure variables,

598

cos(x) function, 464

count expressions

increments, 281

loops, 274, 278

counter variables, 262, 265, 360

nested loops, 288

counters, 260-268

cout, 65, 85

\n, 91

appending, 93

combining with ofstream, 437

format, 134

labeling output, 136

literals, printing, 83

printing

arrays, 102

strings, 134-144

Index ♦

768

CPU (central processing unit),

20-22, 748

creating files, 628, 648

CRT (cathode-ray tube), 24

Ctrl keys, 25

ctype.h header file, 450, 734

cube() function, 674

cursor, 24, 27

D

data

hiding, 675

passive, 663

data comparison, 186

data members, 662, 749

data processing, 29

data types, 75-79

arrays

defining, 475

mixing, 609

casting, 179-182

converting automatically, 179

int, 400

members, 584

mixing, 82

in calculations, 178-182

variables, 179

pointers, 542

values, truncating, 179

variables, 72-73

weak, 16

data validation, 195, 749

data-driven programs, 185

debugging, 47, 748-749

decision statements, 189

declaring, 750

arrays, 100, 475

of pointers, 551

strings, 478

of structures, 606-615

subscripts, 482

automatic local variables, 369

elements and initializing,

479-486

global variables, 358

pointers, 543-545

file, 632

global, 542

local, 542

while initializing, 545

statements, 101

structures, 591

types, parameters, 366

variables, 62, 73

signed prefix, 166

static, 370

decrement (--) operator, 225, 233

decrementing

expressions, 228

pointers, 568

variables, 225-230, 282

default argument list, 415-420,

750

default line, switch statement,

312

defaults, 750

defined literals, 121

arrays, sizes, 128

replacing, 126

variables, 122

defining

arrays

character pointers, 574

data types, 475

of structures, 589

constants, character format-

ting, 440

floating-point literals, 127

functions, 340, 365

in classes, 754

in functions, 341

literals, 365

structures, 587-591

globally, 595

nested, 602

EXAMPLE

769

C++ By

variables, 365

after opening brace, 355

as constants, 120

outside functions, 355

structure, 595

definition line, 406, 750

Del key, 27

delay value, 296

delimiters, strings, 88, 759

demodulated signals, 29, 750

dereferencing (*) pointer opera-

tor, 542, 750

descending sort, 494, 506

see also sorting arrays

designating literals

floating-point, 79

long, 79

unsigned, 79

designing programs, 38-39

destructor function, 665, 750

determinate loops, 750

devices

default, overriding, 436

flushing, 458

get() function, 438

I/O (standard), 434

input, standard, 759

output, 134, 756, 759

redirecting from MS-DOS,

435-436

standard, 434

digital computer, 29, 750

digital testing, functions, 451

digits

binary, 683

testing for, character func-

tions, 451

dimensions, designating with

braces ({ }), 523, 527

directives, 757

#define, 94

#include, 61

directories, 750

paths, 756

subdirectories, 750

disk drives, 23, 750

disk operating system (DOS), 751

diskettes, see floppy disks

disks, 22-24, 626-627, 750

files

accessing, 625-628

appending, 628

creating, 628

opening/closing, 629-634

fixed, see hard disks

floppy, see floppy disks

formatting, 23, 752

hard, see hard disks

measurements, 680-681

sectors, 758

size, 24

tracks, 23, 760

disk drives, 23

see also hard disks

display adapters, 24, 751

CGA, 24

EGA, 24

MCGA, 24

VGA, 24

see also monitors; screens

displaying error messages,

nested loops, 296

division (/) math operator, 64,

164, 167-168

do-while loop, 252-255

DOS (disk operating system),

30-32, 751

dot (.) operator, 592, 608, 616

dot-matrix printer, 25, 751, 753

double subscripts, 616

dynamic memory allocation, 665

Index ♦

770

E

EDIT editor, 41

editing, linking, 753

editors, 37-42

built-in, 40

EDIT, 41

EDLIN, 41

ISPF, 42

EGA display adapters, 24

electricity (states), 21, 683

elements (arrays), 101, 751

accessing, 101

assigning values, 479

initializing, 486-492

all to zero, 481

at declaration time,

479-486

inputting, 611

members, 584

referencing with subscripts,

476

reserving, 103

space between, 476

storing, 476

subscripts, 101-102, 474

elements (pointers),

dereferencing, 576

else statement, 198-203

embedding functions, 668

endless loops, 323

environments

integrated, 40-41

variables, 256

equal sign (=), 80, 105, 400

equal to (==) relational operator,

186

equality testing, 187

erasing character arrays by

passing to functions, 390

error messages, 46-48

displaying, nested loops, 296

illegal initialization, 102

syntax, 46

escape key, 25

escape-sequence characters,

91-92

executable files, 42

executing, 751

functions repeatedly, 347

programs

falling through, 312

stopping, manually, 250

see also running programs

exit() function, 256-260

isolating, 256

stdlib.h header file, 256

exiting

conditional breaks, 257-258

loops, 256-260, 303

exp(x) function, 465

expanded memory, 21, 751

see also extended memory

expressions

case, 312

count, 274

increments, 281

loops, 278

incrementing/decrementing,

228

loops

start, 278

test, 275, 283

nonconditional, 190

null, 285

start, 274

switch statement, 312

test, 274

parentheses, 246

extended memory, 21, 681, 751

see also expanded memory

extensions (filenames), 42, 751

external functions, 117

external memory, 22

external modem, 28, 751

EXAMPLE

771

C++ By

F

fabs(x) function, 461

factorial, 290

fflush() function, 458

fgets() function, 457

fields, 751

file pointers, 631, 650

declaring globally, 632

positioning, 650-656

file_ptr pointer, 629

filenames, 751

#include directive, 115

character pointers, 633

conventions, 43

extensions, 42, 751

recommended, 43

storing character arrays, 633

files, 751

accessing, 627-628

modes, 630, 639, 648

random access, 627

sequential file access,

625-627

text mode, 630

appending, 628, 638-639

ASCII, 630, 747

AUTOEXEC.BAT, 747

backup, 748

CONFIG.SYS, FILES= state-

ment, 629

creating, 648

directories, 750

disk, creating, 628

executable, 42

formats, binary, 631

header, see header files

include, order, 118

opening/closing, 629-634, 647

pointing, 629

random, see random files

random-access, 628, 757

reading, 639-642

reading to specific points,

649-656

records, 635, 758

fields, 646

fixed-length, 647

sequential, 627-629, 758

string.h, 107

writing to, 634-637

FILES= statement, 629

fill_structs() function, 597

filling arrays

random values, 497

user input, 389

fixed disks, see hard disks

fixed-length records, 647, 751

floating-point

conversion characters, 151

literals, 79

defining, 127

designating, 79

numbers, 63, 76

converting to, 460

printing, 140

value, 138

variables, 100, 142

assigning to integer

addresses, 549

printing, 152

floor(x) mathematical function,

462

floppy disks, 22, 750-751

flushing devices, 458

fmod(x, y) function, 462

for loops, 273-286

body, 279

expressions

count, 274

start, 274

test, 274

nested, 286-291

tables, multidimensional,

530-537

Index ♦

772

for statement, 274, 290, 298-303,

496

format statements, assignment,

80

formats

#include directive, 115

conditional operator, 222

cout, 134

files, binary, 631

programs, 53-54

multiple-function, 338

strings (controlling), 149

formatted output, printing,

436-437

formatting

disks, 23, 752

output, 437-446

formulas, subscripts, referencing

elements, 476

fputs(s, dev) function, 457

fractions, rounding, 140

function calls, 332, 337-339

controlling, 338

increment/decrement

operators, 233

invocation, 339

nested, 402

return values, 401

tracing, 340

function invocation, 339

function keys, 27, 752

function-calling statements, 337

functions, 331-332, 752

{ } (braces), 336

~Sphere(), 663-670

arrays

filling with user input, 389

passing, 387

ascii(), 409

atof(), 460

atoi(), 460

atol(), 460

body, 336, 345

buffered/nonbuffered, 444

built-in, prototypes, 734-735

called, changing variables, 387

calling, 337-349, 364

recognizing, 368-369

repeatedly, 417

character, 450-455

conversion, 453-455

isalnum(c), 451

isalpha(c), 450

iscntrl(c), 453

isdigit(c), 451

isgraph(c), 453

islower(c), 450

isprint(c), 453

ispunct(c), 453

isspace(c), 453

isupper(c), 450

isxdigit(c), 451

passing to, 451

prototypes, 450

testing, 450, 453

testing for digits, 451

tolower(c), 454

toupper(c), 454

character arrays, erasing, 390

cin, 248

close(), 629

constructor, 663, 673, 749

cube(), 674

defining, 340, 365

in classes, 754

in functions, 341

definition line, 406

destructor, 665, 750

embedding, 668

exit(), 256-260

isolating, 256

stdlib.h header file, 256

external, 117

fflush(), 458

fill_structs(), 597

EXAMPLE

773

C++ By

get(), 438-444

getch(), 444-446

I/O, 656-658

character, 437-446

control characters, 433

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(), 457, 635

puts(), 457, 635

read(array, count), 656

remove(filename), 656

write(array, count), 656

in-line, 668-670, 752

input

buffered, 440

building, 442

mirror-image, 637

keyboard values, 392

length, 335

logarithmic, 465

exp(x), 465

log(x), 465

log10(x), 465

main, 56

main(), 56-57, 61, 332, 335

OOP, 665

prototyping, 409

mathematical, 461-464

ceil(x), 461

fabs(x), 461

floor(x), 462

fmod(x, y), 462

pow(), 463

pow(x, y), 462

sqrt(x), 462

member, 754

arguments, 670-674

classes, 662-676

multiple execution, 347

naming, 335-337

_ (underscore), 336

name-mangling, 422

rules, 335

next_fun(), 338

nonbuffered, 444

numeric, 461-467, 755

ofstream, 436-437

open(), 629, 648

overloading, 415, 420-425, 756

parentheses, 336, 365

passing arrays, 484

pr_msg(), 416

print_it(), 525

printf(), 65, 126, 149-150,

191, 407

prototypes, 338, 397, 405-411

ctype.h header file, 734

math.h header file, 461, 735

self-prototyping, 406

stdio.h header file, 734

stdlib.h header file, 460, 735

string.h header file, 735

put(), 438-444

putch(), 444-446

rand(), 465-466, 497

receiving, 364, 382

redefining, 121-126

return statements, 337, 345

return values, 398-405

returning, 337-349

scanf(), 126, 149, 154-157

passing variables, 546

prototyping, 407

seekg(), 649-656

separating, 345

setw(), 140

sizeof(), 476-477

sort, saving, 508

Sphere(), 663-670

square(), 674

strcat(), 456

strcpy(), 107, 408

string, 455-461

fgets(s, len, dev), 457

fputs(s, dev), 457

Index ♦

774

gets(s), 457

I/O, 456-459

puts(s), 457

strcat(s1, s2), 456

strcmp(s1, s2), 456

strlen(s1), 456

testing, 456

strlen(), 251

surface_area(), 663-670

testing

alphabetic conditions,

450-451

digits, 451

numeric arguments, 451

third_fun(), 338

trigonometric

cos(x), 464

sin(x), 464

tan(x), 464

values, returning, 374

variables, types, 152

volume(), 663-670

writing, 332-337

see also routines

G

get() function, 438-444

getch() function, 444-446

gets() function, 457, 635

global arrays, initializing, 479

global pointers, declaring, 542

global variables, 73, 354-369, 752

declaring, 358

passing, 364

returning, 398

goto statement, 321-326

graphics monitors, 24

greater than (>) relational ope-

rator, 186

greater than or equal to (>=)

relational operator, 186

H

hard copy, 752

hard disks, 22, 751-752

see also disk drives

hardware, 17-29, 752

disks, 22-24

indepedence, 17

memory, 20-22

modems, 28-29

monitors, 24

mouse, 28

printers, 25

system unit, 20-22

header files, 117-118, 752

ctype.h

function prototypes, 734

prototypes, 450

iomanip.h, 408

iostream.h, 117, 408

math.h

function prototypes, 735

prototypes, 461

stdio.h

function prototypes, 408,

734

printf() function, 150

stdlib.h

exit() function, 256

function prototypes, 735

prototypes, 460

string.h, 118

function prototypes, 735

prototypes, 456

hexadecimals, 17, 83, 695-698, 752

converting

from binary, 697

to binary numbers, 697

hiding data, 675

hierarchy of operators, see order

of precedence

high-order bit, 686

hyphen (-), 336

EXAMPLE

775

C++ By

I

I/O (input/output), 753

character, 432-436

devices (standard), 434

functions, 656-658

character, 437-446

control characters, 433

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(), 635

gets(s), 457

puts(), 457, 635

read(array, count), 656

remove(filename), 656

strings, 456-459

write(array, count), 656

rerouting, 434

statements, 17

stream, 432-436

strings, 457

if loop, 189-199, 255, 496

if tests, relational, 209

illegal initialization, 102

in-line functions, 668-670

include files, order, 118

increment (++) operator, 225, 233

incrementing

expressions, 228

pointers, 568

variables, 225-230

increments as count expressions,

281

indeterminate loops, 752

infinite loops, 246, 752

initial values of static variables,

370

initializing

arrays, 104-105, 479-490

assignment operator, 480

braces ({ }), 527

brackets [], 480

global, 479

multidimensional, 529

character arrays, reserved, 480

elements, 479-492

illegal, 102

members individually, 591

multidimensional arrays,

526-530

pointers, 545

assignment statements, 548

while declaring, 545

structures, 591

dot (.) operator, 592

members, 591-600

variables

structures, 591

to zero, 176

inline functions, 752

input, 30, 753

arrays, filling, 389

buffered, 441-442

characters, echoing, 444

devices, standard, 759

functions

buffered, 440

building, 442

mirror-image, 637

keyboard, 435

statements, 17

stdin, 434-435

stream header, 117

terminating

fgets(), 457

gets(), 457

values, 248

input redirection symbol (<), 435

input-output-process model, 30

input/output, see I/O

Ins key, 27

int data type, 400

integer literals, 83-84

integer variables, 73, 152, 753

Index ♦

776

integers, 63

address, assigning floating-

point variables, 549

converting to, 460

integrated environments, 40, 41

internal modem, 28, 753

internal truths, 210

interpreted languages, 37

iomanip.h header file, 139, 408

iostream.h header file, 117, 408

isalnum(c) function, 451

isalpha(c) function, 450

iscntrl(c) function, 453

isdigit(c) function, 451

isgraph(c) function, 453

islower(c) function, 450

ISPF editor, 42

isprint(c) function, 453

ispunct(c) function, 453

isspace(c) function, 453

isupper(c) function, 450

isxdigit(c) function, 451

iterations, 282, 296

J–K

justification, 140, 574-575

K (kilobytes), 680

keyboard, 25-28

Alt keys, 25

application-specific keys, 27

arrow keys, 27

Ctrl keys, 25

Del key, 27

escape key, 25

function keys, 27

input, 435

inputting, 144

Ins key, 27

numeric keypad, 27

PgDn, 27

PgUp key, 27

Shift keys, 25

values, 392

keys, function, 752

keywords, 733

auto, 369

const, 94, 120, 749

void, 406

kilobytes (K), 20, 680, 753

L

labels

output, 86, 136

statement, 321-322

languages

Algol, 15

BCPL, 15

C, 13

compiled, 37

interpreted, 37

machine, 753

weakly typed, 16

laser printers, 25, 751, 753

least-significant bit, 686, 753

length

functions, 335

strings, 89, 251

less than (<) relational operators,

186

less than or equal to (<=) rela-

tional operator, 186

line printer, 753

link editing, 753

linking, 43-44

lists

arguments, default, 416-417,

750

prototypes, multiple default

arguments, 417

variables, 474

see also arrays

literals, 62, 82-93, 94, 103, 753, 759

character, 64, 89-93

character-based, 62

comparing to variables, 192

copying in strings, 107

EXAMPLE

777

C++ By

defined, 121, 365

replacing, 126

variables, 122

designating

floating-point, 79

long, 79

unsigned, 79

floating-point, 79, 127

integer, 83-84

numeric

defining, 127

overriding default, 79

octal, 83

printing with cout operator, 83

relational operators, 186

string

assigning, 85

defining, 127

endings, 87-89

printing, 85

suffixes, 79

local pointers, 542

local variables, 354-369, 753

automatic, 369, 747

changing, 354

defining, 355

multiple functions, 363

names, overlapping, 360

passing, 363-364

receiving functions, 368

value, losing, 355

log(x) function, 465

log10(x) function, 465

logarithmic functions, 465

exp(x), 465

log(x), 465

log10(x), 465

logic, 211-215, 222

logical operators, 207-215

! (NOT), 208

&& (AND), 208

|| (OR), 208

bitwise, 235-244

order of precedence, 216

truth tables, 208

loop variables, 282

loop-counting variables, 361

looping statements, 246

loops, 247-252, 753

conditional, 749

constructs, 276

conversion characters for

printing, 297

determinate, 750

do-while, 252-255

endless, 323

exiting, 256-260, 303

expressions

count, 274, 278

start, 274, 278

test, 274-275, 283

for, 273-286

body, indenting, 279

multidimensional tables,

530-537

nested, 286-291

if (compared to while loop),

255

indeterminate, 752

infinite, 246, 752

nested, 755

braces, 287

break statement, 299

counter variables, 288

multidimensional tables,

530

sorting arrays, 504

timing loops, 296

statements, 277

timing, 295-298, 759

iterations, 296

nested loops, 296

while, 245, 255

low-order bit, 686

lowercase letters, 55, 122

Index ♦

778

M

M (megabytes), 681

machine language, 753

mailing list program, 737-746

main module, 753

main() function, 56-57, 61, 332,

335

OOP, 665

prototyping, 409

maintainability of programs, 174

manipulators, 754

mapping arrays to memory,

524-526

masking, 240

matching braces ({ }), 56

math hierarchy, see order of

precedence

math operators, 754

% (modulus or remainder),

164, 167-168

* (multiplication), 64, 164

+ (addition), 64, 164

- (subtraction), 64, 164

/ (division), 64, 164, 167-168

order of precendence, 168-174

math.h header file, function

prototypes, 461, 735

mathematical calculations on

strings, 460

mathematical functions

ceil(x), 461

fabs(x), 461

floor(x), 462

fmod(x, y), 462

pow(), 463

pow(x, y), 462

sqrt(x), 462

mathematical summation

symbol, 290

mathematics, factorial, 290

matrices, see multidimensional

arrays; tables

MCGA display adapter, 24

measurements

disks, 680-681

memory, 680-681

megabytes (M), 24, 754

member functions, 662, 754

arguments, 670-674

classes, 662-676

members, 584, 749, 754

arrays, 615-622

classes

accessing, 675

constructor functions, 663

data, 662

functions, 662

private, 674, 757

public, 757

visibility, 674-675

data types, 584

initializing individually, 591

structures

copying, 598

initializing, 591-600

values, assigning with dot

operator, 602

memory, 20-22, 680-682, 754

& (address of) pointer opera-

tor, 543

addresses, 32, 385, 681-682,

747

arrays, mapping, 524-526

bytes, 680, 748

dynamic allocation, 665

expanded, 21, 751

extended, 21, 681, 751

external, 22

K (kilobytes), 20, 680, 753

M (megabytes), 24, 681, 754

measurements, 680-681

padding, 476

reserving

arrays, 476

structure tags, 585

volatility, 22, 760

EXAMPLE

779

C++ By

menu-driven programs, 754

menus, 754

messages, error, see error

messages

microchips, 18, 754

microcomputers, 17, 754

microprocessors, 754

minimum routine, 224

mirror-image input functions,

637

models, see prototypes

modems, 28-29, 754

external, 751

internal, 753

modes

binary, 631

file access, 630

text, 630

modifers, setprecision, 408

modular programming, 332, 754

modulated signals, 29

modules of code, 331

modulus (%) math operator, 164,

167-168, 755

monitors, 24

graphics, 24

monochrome, 24

see also displays; screens

most-significant bit, 686

mouse, 28, 755

moving cursor with arrow keys,

27

MS-DOS, 30-32, 435-436, 755

multidimensional arrays,

520-522, 755

for loops, 530-537

initializing, 526-530

reserving, 522-524

storing, row order, 526

subscripts, 520-522

see also tables; matrices

multiple-choice statement, 312

multiplication (*) math operator,

64, 164

N

name-mangling, 422

naming

arrays

as pointers, 558-559

changing, 560

disks drives, 23

files, 751

functions, 335-337

overloading, 415

rules, 335

pointers, 542, 543

structures, 585

variables, 70-71, 360

invalid names, 71

local, overlapping, 360

spaces, 71

negative numbers, 166

binary, 692-694

nested

function calls, 402

structures, 600-603

nested loops, 755

braces, 287

break statement, 299

counter variables, 288

error messages, displaying,

296

for, 286-291

multidimensional tables, 530

sorting arrays, 504

timing loops, 296

newline (\n) character, 135-136,

433, 635

next_fun() function, 338

nonarrays, passing by address,

391-396

nonbuffered functions, 444

nonconditional expressions, 190

nonzero values, 451

NOT (!) logical operator, 208, 452

not equal to (!=) relational

operator, 186

Index ♦

780

notation

array, 608-610

mixing, 609

scientific, 758

see also pointer notation

null

character, 88

expression, 285

strings, 755

zero, 101, 755

numbers

2's complement, 692

absolute value, 461

binary, 17, 165, 748

see also binary numbers

comparing, 199

converting from strings,

460-461

floating-point, 63, 76, 140

hexadecimal, see hexadecimal

numbers

integers, 63

justification, 140

negative, 166, 692-694

printing, 139

random-number processing,

465-469

real, 76, 758

rounding, 461-462

signed, 693

square, 196

tables, printing, 138

unsigned, 693

numeric

arguments, testing functions,

451

arrays, sorting, 508

constants, printing, 151

functions, 461-467, 755

keypad, 27

literals

defining, 127

overriding default, 79

variables, printing, 151

O

object code, 755

object-oriented programming, see
OOP

objects, 663, 755

octal literals, 83

ofstream function, 436-437

on-screen printing, 125

OOP (object-oriented program-

ming), 14, 661, 665, 755

open() function, 629, 648

opening files, 629-634, 647-649

operations

binary, 165

direction, 175-176

operators, 16-17, 408, 755

! (NOT), 452

. (dot), 608, 616

assignment (=), 174-178

arrays, initializing, 480

binary, 165

bitwise, 234-241, 748

logical, 235-244

cin, 144-148

comma (,), 232-234, 758

compile-time, 231

compound, 177

conditional, 222-225

control, 139-144

cout, 83, 93, 134-148

decrement (--), 225, 233

dot (.), 592

increment (++), 225, 233

logical, 207-215

! (NOT), 208

&& (AND), 208

|| (OR), 208

truth tables, 208

math, 754

* (multiplication), 64

+ (addition), 64

- (subtraction), 64

/ (division), 64

EXAMPLE

781

C++ By

order of precedence, 216, 752

overloaded, 542

pointers

& (address of), 542

* (dereferencing), 542

postfix, 225-227

precedence, 16, 756

prefix, 225-227

primary, order of

precendence, 169

relational, 185-189, 209, 758

see also relational operators

sizeof, 230-232

ternary, 222

unary, 165-166, 760

OR (||) logical operator, 208

order of case statements, 319

order of bits, 686

order of precedence, 752, 756-757

logical operators, 216

math operators, 168-174

parentheses, 170-174

primary operators, 169

table, 729-732

origin values, 650

origins of C++, 15-16

output

controlling, operators, 139-144

devices, 134, 756

standard, 759

formatting

carriage returns, 439

printing, 436-437

labeling, 86, 136

redirecting, 134

rerouting to printer, 436

screen, 24

stdout, 435

stream, 434

output redirection symbol (>),

435

output statements, 17

overlapping names of local

variables, 360

overloading, 756

constructor functions, 673

functions, 415, 420-425

name-mangling, 422

operators, 542

overriding

keyboard default device, 436

passing by copy, 547

overwriting variables, 354, 363

P

padding memory, 476

parallel arrays, 756

parallel port, 756

parameters, 756

passing, 374-375

pointers, 546-551

receiving, 364

types, declaring, 366

see also variables

parentheses (), 46

conditional_expression, 223

empty, 365

functions, 336

order of precedence, 170-174,

216

type casting, 180

passing

arguments, see passing vari-

ables

arrays, 388

by address, 386

functions, 387

to functions, 484

by copy, overriding, 547

local variables, 364

nonarrays by address, 391-396

one-way, 398

parameters, 374-375

values to character functions,

451

Index ♦

782

variables, 363-369

by address, 374, 385-394,

756

by copy, 379, 756

by reference, 374, 385, 756

by value, 379-384, 756

global, 364

structure, 595

to scanf() function, 546

passive data, 663

paths, 756

PCs (personal computers), 18,

757

percent sign (%), 167

peripherals, 757

personal computers (PCs), 757

PgDn key, 27

PgUp key, 27

placeholders, 246

pointer arithmetic, 568-574

pointer constants, 560-562

pointer notation, 558, 561, 568,

609

pointer variables, 155

pointers, 493, 541, 757

addresses, 542

arrays, 552-553

declaring, 551

names, 558-559

assigning values, 545-546

changing, 560-562

character, see character

pointers

data types, 542

declaring, 543-545

decrementing, 568

elements, dereferencing, 576

file, 631, 650

declaring globally, 632

positioning, 650-656

file_ptr, 629

global, declaring, 542

incrementing, 568

initializing, 545

assignment statements, 548

while declaring, 545

local, declaring, 542

naming, 542-543

operators

& (address of), 542

* (dereferencing), 542

parameters, 546-551

prefixing, 548

reference, as arrays, 561

to files, 629

ports

parallel, 756

serial, 758

positioning pointers (file),

650-656

positive relational tests, 252

postfix operator, 225-227

pound sign (#), 114

pow() function, 463

pow(x, y) function, 462

pr_msg() function, 416

precedence, see order of prece-

dence

precedence table, 729-732

prefix operators, 225-227

prefixes

pointers, 548

signed, declaring variables,

166

preprocessor directives, 113-115,

757

#define, 120-128

#include, 115-120

; (semi-colon), 114

see also individual listings

preprocessors, 43

primary operators, order of

precendence, 169

print_it() function, 525

printers, 25, 757

dot-matrix, 25, 751-753

laser, 25, 751-753

EXAMPLE

783

C++ By

line, 753

rerouting, 436

writing to, 637-638

printf() function, 65, 126,

149-150, 191

prototyping, 407

stdio.h header file, 150

strings, constants, 150

printing

arrays

brackets ([]), 102

cout operator, 102

blank lines, 136

columns, 534

setw manipulator, 139-140

constants, numeric, 151

conversion characters, 297

floating-point values, zeros,

153

literals

cout operator, 83

string, 85

numbers, 139-140

on-screen, 125

output, formatted, 436-437

rows, 534

strings, 102

cout operator, 134-144

from character arrays, 135

in arrays, 563

in character arrays, 510

printf() function, 150

tables, numbers, 138

titles, 535

values, ASCII, 154

variables

floating-point, 152

integer, 152

numeric, 151

private class members, 757

program editors, see editors

program listings, 38

programming, object-oriented,

see OOP

programming languages, see
languages

programs, 30, 36-38, 757

comments, 749

data-driven, 185

designing, 38-39

formats, 53-54

mailing list, 737-746

maintainability, 174

menu-driven, 754

modular programming, 332

multiple-function formats, 338

readability, 54-55

routines, 332

sample, 44-46

skeleton, 333

string length, 250

structured programming, 332

typing, 37

prototypes, 338, 757

built-in functions, 397,

405-411, 734-735

character functions, 450

ctype.h header file, 734

character functions, 450

fill_structs() function, 597

header files, 408

lists, multiple default argu-

ments, 417

main() function, 409

math.h header file, 461, 735

printf() function, 407

scanf() function, 407

self-prototyping functions, 406

string.h header file, 735

stdio.h header file, 408, 734

stdlib.h header file, 460, 735

ato() function, 460

string.h header file (string

functions), 456

public class members, 662, 674,

757

put() function, 438-444

putch() function, 444-446

puts() function, 457, 635

Index ♦

784

Q–R

quicksort, see sorting arrays

quotation marks (“ ”), 85, 89, 117

ragged-edge arrays, 574

RAM (random-access memory),

20-22, 747, 757

accessing, 627

rand() function, 465-466, 497

random files, 628, 757

accessing, 627, 648

creating, 648

opening, 647-649

records, 646

fields, 646

fixed-length, 647

random-number processing,

465-469

read access mode, 639

read(array, count) function, 656

read-only memory (ROM), 758

reading

files, 639-642

to files, specific points, 649-656

real numbers, 76, 758

receiving arguments (& prefix),

550

receiving functions, 364

local variables, 368

variables, renaming passed,

382

records, 635, 646, 758

fields, 646, 751

fixed-length, 647, 751

variable-length, 760

redefining

functions, 121-126

statements, 121-126

redirection

< (input redirection symbol),

435

> (output redirection symbol),

435

combining symbols, 436

devices from MS-DOS,

435-436

output, 134

reference, passing variables, 374,

385, 756

reference pointers as arrays, 561

referencing

* (dereferencing) pointer

operator, 542

addresses (%c control code),

512

arrays, 508-515

subscripts, 558

elements, subscripts, 476-474

relational if tests, 209

relational logic, 187

relational operators, 185-189, 758

!= (not equal to), 186

< (less than), 186

<= (less than or equal to), 186

== (equal to), 186

> (greater than), 186

>= (greater than or equal to),

186

compound, 209

relational tests, 252

internal truths, 210

positive, 252

remainder (%) math operator, 164

remove(filename) function, 656

renaming variables, passed, 382

replacing defined literals, 126

reserving

arrays

character, 100, 480

multidimensional, 522-524

of pointers, 551

elements, 103

memory

arrays, 476

structure tags, 585

uppercase letters, 55

variables, 365

EXAMPLE

785

C++ By

resolution (screens), 24

return statements, 337, 345

return values, 374, 402

calling functions, 398

function calls, 401

functions, 398-405

global variables, 398

type, 400

returning functions, 337-349

ROM (read-only memory), 758

rounding

fractions, 140

numbers, 461-462

routines, 332

minimum, 224

see also functions

row order, multidimensional

arrays, 526

rows, printing, 534

running programs, see executing

programs

S

sample programs, 44-46

saving sort functions, 508

scanf() function, 126, 149,

154-157

& (ampersand), 155

passing variables, 546

pointer variables, 155

prototyping, 407

variable names

scientific notation, 758

scope, variable, 760

screens

cursor, 24

output, 24

resolution, 24

see also displays; monitor

scrolling text, 24

searching arrays, 494-495

for statement, 496

for values, 496-501

if statement, 496

sections, see blocks

sectors, 758

seekg() function, 649-656

self-prototyping function, 406

semicolon (;), 56, 114, 120, 190,

339

separating functions, 345

sequence point, see comma

operator

sequential files, 625-629, 758

serial ports, 758

setprecision modifier, 408

setw manipulator, 408

conversion characters, 140

printing columns, 139-140

string width, 140

setw() function, 140

shell sort, see sorting arrays

Shift keys, 25

sign bit, 693

signals

analog, 29

demodulated, 29, 750

modulated, 29

signed

numbers, 693

prefix, variables, declaring,

166

variables, numeric, 78

sin(x) function, 464

size

arrays, 476-477, 480

variables, 76-77

sizeof operator, 230-232

sizeof() function, 476-477

skeleton programs, 333

slashes (//), 46

software, 19, 29-34, 758

sort functions, saving, 508

sort_ascend file, 508

sort_descend file, 508

Index ♦

786

sorting arrays, 494-495, 501-508,

758

ascending sort, 506

bubble sort, 502-505, 748

character arrays, 508

descending sort, 494, 506

nested loops, 504

numeric arrays, 508

quicksort, 502, 757

shell sort, 502, 758

source code, 40, 759

modifying, 113-115

text, including, 117

space

between elements, 476

in variable names, 71

spaghetti code, 759

specifying types in arrays, 390

Sphere() function, 663-670

sqrt(x) function, 462

square numbers, 196

square root, 462

square() function, 674

standard input device, 434, 759

see also stdin

standard output device, 759

see also stdout

standards, ANSI, 13

start expressions, loops, 274, 278

statements

assignment, 80, 105, 174-178

initializing pointers, 548

start expressions, 274

assignments, multiple, 175-176

blocks, 246-748

body, 189

break, 256-260, 298-303

case, 313, 319

construct, 246

continue, 303-307

controlling, conditionally, 185

cout, 85, 102

decision, 189

declaration, 101

do-while, 252-255

else, 198-203

FILES=, 629

for, 274, 290, 298-303

function-calling, 337

goto, 321-326

I/O (input/output), 17

if, 189-199

input, 17

labels, 321-322

looping, 246, 277

multiple-choice, 312

output, 17

redefining, 121-126

return functions, 337

semicolon (;), 56

separating, 232

struct, 587-591

switch, 312-321, 342

while, 246-247

states of electricity, 21, 683

static variables, 369-374, 759

declaring, 370

initial values, 370

stdin, 434-435

stdio.h header file

function prototypes, 408, 734

printf() function, 150

stdlib.h header file

exit() function, 256

function prototypes, 460, 735

stdout, 434-435

storage, disks, 750

storing

arrays

character pointers, 574

strings, 574

elements (arrays), 476

filenames, character arrays,

633

multidimensional arrays, 526

EXAMPLE

787

C++ By

strings, 100, 104, 563

user input, strings, 565

variables, 385-386

strcat() function, 456

strcmp() function, 456

strcpy() function, 107, 408

stream I/O, 432-436

streams, 434, 759

string constants, 566

string delimiter, 88, 759

string functions, 455-461

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(s), 457

I/O, 456-459

prototypes, string.h header

file, 456

puts(s), 457

testing, 456

strcat(), 456

strcmp(), 456

strlen(), 456

string length programs, 250

string literals

assigning, 85

defining, 127

endings, 87-89

printing, 85

string variables, 100

string-terminating characters,

457-458, 755

string.h header file, 107, 118

function prototypes, 456, 735

strings, 759

arrays

declaring, 478

printing, 563

storing, 574

arrays of, 574-578

character variables, 100

character arrays

comparing, 103-110

multiple, 512

concatenating, 456

constants, 759

control_string, 149, 155

converting to numbers,

460-461

empty, 755

format, controlling, 149

I/O, 457

inputting, 442

length, 89, 251

literals, 107, 759

mathematical calculations, 460

null, 755

printing, 102

cout operator, 134-144

from character arrays, 135

in character arrays, 510

printf() function, 150

reserving elements, 103

shortening, 107

storing, 100, 104, 563

terminating character, 101

user input, storing, 565

values

assigning, 107

assigning to character

arrays, 105

width, 140

strlen() function, 251, 456

struct statement, 587-591

structured programming, 332

structures, 584-587, 759

arrays, declaring, 606-615

arrays of, 747

declaring, 591

defining, 587-591

arrays of, 589

globally, 595

initializing, 591-592

members

calculations, 597

initializing, 591-600

names, 585

Index ♦

788

nested, 600-603

tags, 585

variables

copying members, 598

defining, 595

initializing, 591

passing, 595

specifying, 588

subdirectories, 750

subfunctions, 398

subroutines, 398

subscripts, 101-102, 474, 759

arrays

declaring, 482

referencing, 558

double, 616

formulas, referencing

elements, 476

multidimensional arrays, 522

multiple (multidimensional

arrays), 520

out-of-range (nonreserved),

assigning values, 479

referencing, 474

subtraction (-) math operator, 64,

164

suffixes, literals, 79

summation symbol, 290

surface_area() function,

663-670

swapping variables, 502, 550

switch statements, 312-321

body, 342

default line, 312

expressions, 312

syntax errors, 46, 759

system unit, 20-22

T

tab (\t) character, 138, 433

tables

arrays of structure variables,

747

hierarchy, 511

justification, 574, 575

multidimensional, 530-537

numbers, printing, 138

see also arrays; matrices;

multidimensional arrays

tan(x) function, 464

terminating

string-terminating characters,

457-458

strings, 101

ternary operators, 222

test expressions

expressions, 283

loops, 274-275

parentheses, 246

testing

alphabetic conditions,

functions, 450-451

character testing functions,

450, 453

compound relational tests, 207

digital, functions, 451

equality, 187

if, relational, 209

strings, functions, 456

relational, 252

internal truths, 210

positive, 252

values, 749

text

boilerplates, 117

scrolling, 24

source code, including, 117

text mode, 630

third_fun() function, 338

timing loops, 295-298, 759

iterations, 296

nested loop, 296

titles, printing, 535

tolower(c) function, 454

totals, 260-270

toupper(c) function, 454

tracing function calls, 340

tracks (disks), 23, 760

EXAMPLE

789

C++ By

transistors (electricity), 21

trigonometric functions

cos(x), 464

sin(x), 464

tan(x), 464

truncation, 179, 760

truth tables, 208, 235-236

truths, internal, 210

two-dimensional arrays, 525

see also multidimensional

arrays

two's complement, 692

type casting (data types), 179-182

types

arrays, specifying, 390

parameters, declaring, 366

return values, 400

variables, 584

see also structures

see also data types

typing programs, 37

U

unary operators, 165-166, 760

unconditional break statements,

299

underscore (_), 336

UNIX, cfront compiler, 43

unreachable code, 305

unsigned literals, designating, 79

unsigned numbers, 693

unsigned variables, 84

uppercase letters, 55, 240

V

validating data, 195

values

arrays, searching for, 495,

496-501

ASCII, printing, 154

assigning

arrays, 103

elements, 479

out-of-range subscripts, 479

to pointers, 545-546

to variables, 145

data types, truncating, 179

delay, 296

floating-point, 138

initial, static variables, 370

keyboard, 392

members, assigning with dot

operator, 602

nonzero, 451

origin, 650

local variables, 355

passing variables by, 379-384,

756

passing to character functions,

451

returning from functions, 374

strings, assigning, 105-107

testing, 749

totaling, 265

variables

assigning, 80-82

assignment operator (=), 63

cin function, 145

entering directly, 154

updating, 176

see also return values

variable scope, 353-362, 760

variable-length records, 760

variables, 62-63, 70-82, 760

addresses, 385-386

arrays, 747, 751

automatic, 369-374, 747

changing, called functions, 387

character, 75

character strings, 100

comparing to literals, 192

constant, 94-95

counter, 262, 265, 288, 360

data types, 179

declaring, 62, 73, 166

decrementing, 225-230

defined literals, 122

Index ♦

790

defining, 365

after opening brace, 355

as constants, 120

outside functions, 355

environment, 256

equality, determining, 186

floating-point, 100, 142, 152

global, see global variables

incrementing, 225-230

initializing to zero, 176

integer, 73, 152, 753

local, see local variables

loop, decrementing, 282

loop-counting, 361

lowercase letters, 122

naming, 70-71, 360

& (ampersand), 155

invalid names, 71

spaces, 71

numeric, signed, 78

overwriting, 354, 363

parameters, 756

passing, 363-369

by address, 374, 385-394,

756

by copy, 379, 756

by reference, 374, 385, 756

by value, 379-384, 756

renaming, 382

to scanf() function, 546

pointer, 155, 757

scanf() function, 155

printing, numeric, 151

ranges, 76-77

relational operators, 186

reserving, 365

size, 76-77

static, 369-374, 759

storing, 385-386

string, 100

see also string variables

structure

copying members, 598

defining, 595

initializing, 591

passing, 595

specifying, 588

swapping, 502, 550

types, 72-79, 584

functions, 152

long, 77

see also structures

unsigned, 84

values

assigning, 80-82, 145

assignment operator (=), 63

cin function, 145

entering directly, 154

updating, 176

VGA display adapters, 24

void keyword, 406

volatile (memory), 22, 760

volume() function, 663-670

W

weakly typed (language), 16

see also data types

while loops, 245-247, 255

white space, 55

width, strings, 140

width specifiers, 153

words, 760

write(array, count) function,

656

writing

functions, 332-337

to files, 635-637

to printers, 637-638

X–Y–Z

zeros, 87-89, 101

binary, 88, 748

floating-point values, 138, 153

null, 103, 755

subscripts, 102

variables, initializing, 176

Computer Books from Que Mean PC Performance!
Look Your Best with WordPerfect 5.1 .. $24.95
Look Your Best with WordPerfect forWindows $24.95
Microsoft Word Quick Reference .. $ 9.95
Using Ami Pro .. $24.95
Using LetterPerfect .. $22.95
Using Microsoft Word 5.5: IBM Version, 2nd Edition $24.95
Using MultiMate .. $24.95
Using PC-Write .. $22.95
Using Professional Write ... $22.95
Using Professional Write Plus for Windows $24.95
Using Word for Windows 2, Special Edition $27.95
Using WordPerfect 5 .. $27.95
Using WordPerfect 5.1, Special Edition .. $27.95
Using WordPerfect for Windows, Special Edition $29.95
Using WordStar 7 ... $19.95
Using WordStar, 3rd Edition .. $27.95
WordPerfect 5.1 Power Macros ... $39.95
WordPerfect 5.1 QueCards .. $19.95
WordPerfect 5.1 Quick Reference ... $ 9.95
WordPerfect 5.1 QuickStart ... $19.95
WordPerfect 5.1 Tips, Tricks, and Traps ... $24.95
WordPerfect for Windows Power Pack ... $39.95
WordPerfect for Windows Quick Reference $ 9.95
WordPerfect for Windows Quick Start .. $19.95
WordPerfect Power Pack ... $39.95
WordPerfect Quick Reference ... $ 9.95

Hardware/Systems

Batch File and Macros Quick Reference ... $ 9.95
Computerizing Your Small Business ... $19.95
DR DOS 6 Quick Reference .. $ 9.95
Easy DOS ... $19.95
Easy Windows .. $19.95
Fastback Quick Reference .. $ 8.95
Hard Disk Quick Reference ... $ 8.95
Hard Disk Quick Reference, 1992 Edition .. $ 9.95
Introduction to Hard Disk Management .. $24.95
Introduction to Networking .. $24.95
Introduction to PC Communications .. $24.95
Introduction to Personal Computers, 2nd Edition $19.95
Introduction to UNIX ... $24.95
Laplink Quick Reference ... $ 9.95
MS-DOS 5 Que Cards .. $19.95
MS-DOS 5 Quick Reference .. $ 9.95
MS-DOS 5 QuickStart ... $19.95
MS-DOS Quick Reference ... $ 8.95
MS-DOS QuickStart, 2nd Edition .. $19.95
Networking Personal Computers, 3rd Edition $24.95
Que's Computer Buyer's Guide, 1992 Edition $14.95
Que's Guide to CompuServe .. $12.95
Que's Guide to DataRecovery .. $29.95
Que's Guide to XTree ... $12.95
Que's MS-DOS User's Guide, Special Edition $29.95
Que's PS/1 Book ... $22.95
TurboCharging MS-DOS ... $24.95
Upgrading and Repairing PCs .. $29.95
Upgrading and Repairing PCs, 2nd Edition $29.95
Upgrading to MS-DOS 5 ... $14.95
Using GeoWorks Pro ... $24.95
Using Microsoft Windows 3, 2nd Edition ... $24.95
Using MS-DOS 5 ... $24.95
Using Novell NetWare, 2nd Edition .. $29.95
Using OS/2 2.0 ... $24.95
Using PC DOS, 3rd Edition ... $27.95
Using Prodigy ... $19.95
Using UNIX ... $29.95
Using Windows 3.1 .. $26.95
Using Your Hard Disk ... $29.95
Windows 3 Quick Reference ... $ 8.95
Windows 3 QuickStart ... $19.95
Windows 3.1 Quick Reference .. $ 9.95
Windows 3.1 QuickStart .. $19.95

Desktop Publishing/Graphics

CorelDRAW! Quick Reference ... $ 8.95
Harvard Graphics 3 Quick Reference .. $ 9.95
Harvard Graphics Quick Reference ... $ 9.95
Que’s Using Ventura Publisher .. $29.95
Using DrawPerfect ... $24.95
Using Freelance Plus .. $24.95
Using Harvard Graphics 3 .. $29.95
Using Harvard Graphics for Windows ... $24.95
Using Harvard Graphics, 2nd Edition .. $24.95
Using Microsoft Publisher ... $22.95
Using PageMaker 4 for Windows .. $29.95
Using PFS: First Publisher, 2nd Edition .. $24.95
Using PowerPoint ... $24.95
Using Publish It! .. $24.95

Macintosh/Apple II

Easy Macintosh .. $19.95
HyperCard 2 QuickStart ... $19.95
PageMaker 4 for the Mac Quick Reference $ 9.95
The Big Mac Book, 2nd Edition .. $29.95
The Little Mac Book .. $12.95
QuarkXPress 3.1 Quick Reference .. $ 9.95
Que's Big Mac Book, 3rd Edition .. $29.95
Que's Little Mac Book, 2nd Edition ... $12.95
Que's Mac Classic Book ... $24.95
Que’s Macintosh Multimedia Handbook ... $24.95
System 7 Quick Reference ... $ 9.95
Using 1-2-3 for the Mac ... $24.95
Using AppleWorks, 3rd Edition ... $24.95
Using Excel 3 for the Macintosh .. $24.95
Using FileMaker Pro .. $24.95
Using MacDraw Pro ... $24.95
Using MacroMind Director .. $29.95
Using MacWrite Pro .. $24.95
Using Microsoft Word 5 for the Mac ... $27.95
Using Microsoft Works: Macintosh Version,
 2nd Edition ... $24.95
Using Microsoft Works for the Mac .. $24.95
Using PageMaker 4 for the Macintosh ... $24.95
Using Quicken 3 for the Mac ... $19.95
Using the Macintosh with System 7 ... $24.95
Using Word for the Mac, Special Edition .. $24.95
Using WordPerfect 2 for the Mac .. $24.95
Word for the Mac Quick Reference ... $ 9.95

Programming/Technical

Borland C++ 3 By Example ... $21.95
Borland C++ Programmer's Reference .. $29.95
C By Example .. $21.95
C Programmer’s Toolkit, 2nd Edition .. $39.95
Clipper Programmer's Reference ... $29.95
DOS Programmer’s Reference, 3rd Edition $29.95
FoxPro Programmer's Reference .. $29.95
Network Programming in C ... $49.95
Paradox Programmer's Reference .. $29.95
Programming in Windows 3.1 ... $39.95
QBasic By Example ... $21.95
Turbo Pascal 6 By Example ... $21.95
Turbo Pascal 6 Programmer's Reference ... $29.95
UNIX Programmer’s Reference ... $29.95
UNIX Shell Commands Quick Reference ... $ 8.95
Using Assembly Language, 2nd Edition .. $29.95
Using Assembly Language, 3rd Edition .. $29.95
Using BASIC ... $24.95
Using Borland C++ .. $29.95
Using Borland C++ 3, 2nd Edition .. $29.95
Using C ... $29.95
Using Microsoft C .. $29.95
Using QBasic ... $24.95
Using QuickBASIC 4 ... $24.95
Using QuickC for Windows ... $29.95
Using Turbo Pascal 6, 2nd Edition .. $29.95
Using Turbo Pascal for Windows .. $29.95
Using Visual Basic ... $29.95
Visual Basic by Example ... $21.95
Visual Basic Programmer's Reference ... $29.95
Windows 3.1 Programmer's Reference .. $39.95

For More Information,
Call Toll Free!

1-800-428-5331
All prices and titles subject to change without notice.
Non-U.S. prices may be higher. Printed in the U.S.A.

Spreadsheets

1-2-3 Beyond the Basics .. $24.95
1-2-3 for DOS Release 2.3 Quick Reference $ 9.95
1-2-3 for DOS Release 2.3 QuickStart ... $19.95
1-2-3 for DOS Release 3.1+ Quick Reference $ 9.95
1-2-3 for DOS Release 3.1+ QuickStart .. $19.95
1-2-3 for Windows Quick Reference ... $ 9.95
1-2-3 for Windows QuickStart ... $19.95
1-2-3 Personal Money Manager ... $29.95
1-2-3 Power Macros ... $39.95
1-2-3 Release 2.2 QueCards ... $19.95
Easy 1-2-3 .. $19.95
Easy Excel .. $19.95
Easy Quattro Pro .. $19.95
Excel 3 for Windows QuickStart ... $19.95
Excel for Windows Quick Reference ... $ 9.95
Look Your Best with 1-2-3 .. $24.95
Quatrro Pro 3 QuickStart ... $19.95
Quattro Pro Quick Reference ... $ 9.95
Using 1-2-3 for DOS Release 2.3, Special Edition $29.95
Using 1-2-3 for Windows ... $29.95
Using 1-2-3 for DOS Release 3.1+, Special Edition $29.95
Using Excel 4 for Windows, Special Edition $29.95
Using Quattro Pro 4, Special Edition ... $27.95
Using Quattro Pro for Windows .. $24.95
Using SuperCalc5, 2nd Edition .. $29.95

Databases

dBASE III Plus Handbook, 2nd Edition .. $24.95
dBASE IV 1.1 Qiuck Reference .. $ 9.95
dBASE IV 1.1 QuickStart .. $19.95
Introduction to Databases ... $19.95
Paradox 3.5 Quick Reference ... $ 9.95
Paradox Quick Reference, 2nd Edition .. $ 9.95
Using AlphaFOUR ... $24.95
Using Clipper, 3rd Edition ... $29.95
Using DataEase .. $24.95
Using dBASE IV .. $29.95
Using FoxPro 2 .. $29.95
Using ORACLE ... $29.95
Using Paradox 3.5, Special Edition .. $29.95
Using Paradox for Windows .. $26.95
Using Paradox, Special Edition .. $29.95
Using PC-File ... $24.95
Using R:BASE ... $29.95

Business Applications

CheckFree Quick Reference .. $ 9.95
Easy Quicken ... $19.95
Microsoft Works Quick Reference .. $ 9.95
Norton Utilities 6 Quick Reference .. $ 9.95
PC Tools 7 Quick Reference .. $ 9.95
Q&A 4 Database Techniques ... $29.95
Q&A 4 Quick Reference .. $ 9.95
Q&A 4 QuickStart .. $19.95
Q&A 4 Que Cards .. $19.95
Que’s Computer User’s Dictionary, 2nd Edition $10.95
Que’s Using Enable .. $29.95
Quicken 5 Quick Reference ... $ 9.95
SmartWare Tips, Tricks, and Traps, 2nd Edition $26.95
Using DacEasy, 2nd Edition .. $24.95
Using Microsoft Money ... $19.95
Using Microsoft Works: IBM Version .. $22.95
Using Microsoft Works for Windows, Special Edition $24.95
Using MoneyCounts ... $19.95
Using Pacioli 2000 ... $19.95
Using Norton Utilities 6 ... $24.95
Using PC Tools Deluxe 7 ... $24.95
Using PFS: First Choice ... $22.95
Using PFS: WindowWorks .. $24.95
Using Q&A 4 ... $27.95
Using Quicken 5 ... $19.95
Using Quicken for Windows .. $19.95
Using Smart .. $29.95
Using TimeLine ... $24.95
Using TurboTax: 1992 Edition .. $19.95

CAD

AutoCAD Quick Reference, 2nd Edition ... $ 8.95
Using AutoCAD, 3rd Edition ... $29.95

Word Processing

Easy WordPerfect ... $19.95
Easy WordPerfect for Windows ... $19.95

Order Your Disk Program Today!
You can save yourself hours of tedious, error-prone typing by

ordering the companion disk to C++ By Example. The disk contains

the source code for all the complete programs and many of the

shorter samples in the book. Appendix F’s complete mailing-list

application is also included on the disk, as well as the answers to

many of the review exercises.

You will get code that shows you how to use most the features of

C++. Samples include code for keyboard control, screen control, file

I/O, control statements, structures, pointers, and more.

Disks are available in 3 1/2-inch format (high density). The cost is

$10 per disk. (When ordering outside the US, please add $5 for

shipping and handling.)

Just make a copy of this page, fill in the blanks, and mail it with your

check or money order to:

C++ Disk
Greg Perry

P.O. Box 35752

Tulsa, OK 74135-0752

Please print the following information:

Payment method: Check_____ Money Order_____

Number of Disks:____________@ $10.00 =___________

Name:__

Street Address:__

City:_______________________________________State:_______________

ZIP:_______________

(On foreign orders, please use a separate page to give your mailing

address in the format required by your post office.)

Checks and money orders should be made payable to:

Greg Perry

(This offer is made by Greg Perry, not by Que Corporation.)

493

EXAMPLE
C++ By

24

Array Processing

C++ provides many ways to access arrays. If you have programmed

in other computer languages, you will find that some of C++’s array

indexing techniques are unique. Arrays in the C++ language are

closely linked with pointers. Chapter 26, “Pointers,” describes the

many ways pointers and arrays interact. Because pointers are so

powerful, and because learning about arrays provides a good foun-

dation for learning about pointers, this chapter attempts to describe

in detail how to reference arrays.

This chapter discusses the different types of array processing.

You learn how to search an array for one or more values, find the

highest and lowest values in an array, and sort an array into

numerical or alphabetical order.

This chapter introduces the following concepts:

♦ Searching arrays

♦ Finding the highest and lowest values in arrays

♦ Sorting arrays

♦ Advanced subscripting with arrays

Many programmers see arrays as a turning point. Gaining an

understanding of array processing makes your programs more

accurate and allows for more powerful programming.

Chapter 24 ♦ Array Processing

494

Searching Arrays
Arrays are one of the primary means by which data is stored in

C++ programs. Many types of programs lend themselves to process-

ing lists (arrays) of data, such as an employee payroll program, a

scientific research of several chemicals, or customer account pro-

cessing. As mentioned in the previous chapter, array data usually is

read from a disk file. Later chapters describe disk file processing. For

now, you should understand how to manipulate arrays so you see

the data exactly the way you want to see it.

Chapter 23, “Introducing Arrays,” showed how to print arrays

in the same order that you entered the data. This is sometimes done,

but it is not always the most appropriate method of looking at data.

For instance, suppose a high school used C++ programs for its

grade reports. Suppose also that the school wanted to see a list of the

top 10 grade-point averages. You could not print the first 10 grade-

point averages in the list of student averages because the top 10

GPAs might not (and probably will not) appear as the first 10 array

elements. Because the GPAs would not be in any sequence, the

program would have to sort the array into numeric order, from high

GPAs to low, or else search the array for the 10 highest GPAs.

You need a method for putting arrays in a specific order. This

is called sorting an array. When you sort an array, you put that array

in a specific order, such as in alphabetical or numerical order. A

dictionary is in sorted order, and so is a phone book.

When you reverse the order of a sort, it is called a descending
sort. For instance, if you wanted to look at a list of all employees in

descending salary order, the highest-paid employees would be

printed first.

Figure 24.1 shows a list of eight numbers in an array called

unsorted. The middle list of numbers is an ascending sorted version

of unsorted. The third list of numbers is a descending version of

unsorted.

Array elements do
not always appear in
the order in which
they are needed.

495

EXAMPLE
C++ By

Figure 24.1. A list of unsorted numbers sorted into an ascending and a
descending order.

Before you learn to sort, it would be helpful to learn how to

search an array for a value. This is a preliminary step in learning to

sort. What if one of those students received a grade change? The

computer must be able to access that specific student’s grade to

change it (without affecting the others). As the next section shows,

programs can search for specific array elements.

NOTE: C++ provides a method for sorting and searching lists

of strings, but you will not understand how to do this until you

learn about pointers, starting in Chapter 26, “Pointers.” The

sorting and searching examples and algorithms presented in

this chapter demonstrate sorting and searching arrays of num-

bers. The same concepts will apply (and will actually be much

more usable for “real-world” applications) when you learn

how to store lists of names in C++.

Chapter 24 ♦ Array Processing

496

Searching for Values
You do not have to know any new commands to search an array

for a value. Basically, the if and for loop statements are all you need.

To search an array for a specific value, look at each element in that

array, and compare it to the if statement to see whether they match.

If they do not, you keep searching down the array. If you run out of

array elements before finding the value, it is not in the array.

You can perform several different kinds of searches. You might

have to find the highest or the lowest value in a list of numbers. This

is informative when you have much data and want to know the

extremes of the data (such as the highest and lowest sales region in

your division). You also can search an array to see whether it

contains a matching value. For example, you can see whether an

item is already in an inventory by searching a part number array for

a match.

The following programs illustrate some of these array-

searching techniques.

Examples

1. To find the highest number in an array, compare each

element with the first one. If you find a higher value, it

becomes the basis for the rest of the array. Continue until

you reach the end of the array and you will have the highest

value, as the following program shows.

Identify the program and include the I/O header file. You want to
find the highest value in an array, so define the array size as a
constant, then initialize the array.

Loop through the array, comparing each element to the highest
value. If an element is higher than the highest value saved, store
the element as the new high value. Print the highest value found in
the array.

// Filename: C24HIGH.CPP

// Finds the highest value in the array.

#include <iostream.h>

const int SIZE = 15;

void main()

You do not have to
sort an array to find
its extreme values.

497

EXAMPLE
C++ By

{

 // Puts some numbers in the array.

 int ara[SIZE]={5,2,7,8,36,4,2,86,11,43,22,12,45,6,85};

 int high_val, ctr;

 high_val = ara[0]; // Initializes with first

 // array element.

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // the higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “

 << high_val << “\n”;

 return;

}

The output of the program is the following:

The highest number in the list is 86.

You have to save the element if and only if it is higher than

the one you are comparing. Finding the smallest number in

an array is just as easy, except that you determine whether

each succeeding array element is less than the lowest value

found so far.

2. The following example expands on the previous one by

finding the highest and the lowest value. First, store the first

array element in both the highest and the lowest variable to

begin the search. This ensures that each element after that

one is tested to see whether it is higher or lower than the

first.

This example also uses the rand() function from Chapter 22,

“Character, String, and Numeric Functions,” to fill the array

with random values from 0 to 99 by applying the modulus

operator (%) and 100 against whatever value rand() produces.

The program prints the entire array before starting the

search for the highest and the lowest.

Chapter 24 ♦ Array Processing

498

// Filename: C24HILO.CPP

// Finds the highest and the lowest value in the array.

#include <iostream.h>

#include <stdlib.h>

const int SIZE = 15;

void main()

{

 int ara[SIZE];

 int high_val, low_val, ctr;

 // Fills array with random numbers from 0 to 99.

 for (ctr=0; ctr<SIZE; ctr++)

 { ara[ctr] = rand() % 100; }

 // Prints the array to the screen.

 cout << “Here are the “ << SIZE << “ random numbers:\n”;

 for (ctr=0; ctr<SIZE; ctr++)

 { cout << ara[ctr] << “\n”; }

 cout << “\n\n”; // Prints a blank line.

 high_val = ara[0]; // Initializes first element to

 // both high and low.

 low_val = ara[0];

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 if (ara[ctr] < low_val)

 { low_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “ <<

 high_val << “\n”;

 cout << “The lowest number in the list is “ <<

 low_val << “\n”;

 return;

}

499

EXAMPLE
C++ By

Here is the output from this program:

Here are the 15 random numbers:

46

30

82

90

56

17

95

15

48

26

4

58

71

79

92

The highest number in the list is 95

The lowest number in the list is 4

3. The next program fills an array with part numbers from an

inventory. You must use your imagination, because the

inventory array normally would fill more of the array, be

initialized from a disk file, and be part of a larger set of

arrays that hold descriptions, quantities, costs, selling prices,

and so on. For this example, assignment statements initialize

the array. The important idea from this program is not the

array initialization, but the method for searching the array.

NOTE: If the newly entered part number is already on file, the

program tells the user. Otherwise, the part number is added to

the end of the array.

// Filename: C24SERCH.CPP

// Searches a part number array for the input value. If

Chapter 24 ♦ Array Processing

500

// the entered part number is not in the array, it is

// added. If the part number is in the array, a message

// is printed.

#include <iostream.h>

const int MAX = 100;

void fill_parts(long int parts[MAX]);

void main()

{

 long int search_part; // Holds user request.

 long int parts[MAX];

 int ctr;

 int num_parts=5; // Beginning inventory count.

 fill_parts(parts); // Fills the first five elements.

 do

 {

 cout << “\n\nPlease type a part number...”;

 cout << “(-9999 ends program) “;

 cin >> search_part;

 if (search_part == -9999)

 { break; } // Exits loop if user wants.

 // Scans array to see whether part is in inventory.

 for (ctr=0; ctr<num_parts; ctr++) // Checks each item.

 { if (search_part == parts[ctr]) // If it is in

 // inventory...

 { cout << “\nPart “ << search_part <<

 “ is already in inventory”;

 break;

 }

 else

 { if (ctr == (num_parts-1)) // If not there,

 // adds it.

 { parts[num_parts] = search_part; // Adds to

 // end of array.

 num_parts++;

 cout << search_part <<

 “ was added to inventory\n”;

501

EXAMPLE
C++ By

 break;

 }

 }

 }

 } while (search_part != -9999); // Loops until user

 // signals end.

 return;

}

void fill_parts(long int parts[MAX])

{

 // Assigns five part numbers to array for testing.

 parts[0] = 12345;

 parts[1] = 24724;

 parts[2] = 54154;

 parts[3] = 73496;

 parts[4] = 83925;

 return;

}

Here is the output from this program:

Please type a part number...(-9999 ends program) 34234

34234 was added to inventory

Please type a part number...(-9999 ends program) 83925

Part 83925 is already in inventory

Please type a part number...(-9999 ends program) 52786

52786 was added to inventory

Please type a part number...(-9999 ends program) -9999

Sorting Arrays
There are many times when you must sort one or more arrays.

Suppose you were to take a list of numbers, write each number on

a separate piece of paper, and throw all the pieces of paper into the

air. The steps you take—shuffling and changing the order of the

Chapter 24 ♦ Array Processing

502

pieces of paper and trying to put them in order—are similar to what

your computer goes through to sort numbers or character data.

Because sorting arrays requires exchanging values of elements

back and forth, it helps if you first learn the technique for swapping

variables. Suppose you had two variables named score1 and score2.

What if you wanted to reverse their values (putting score2 into the

score1 variable, and vice versa)? You could not do this:

score1 = score2; // Does not swap the two values.

score2 = score1;

Why doesn’t this work? In the first line, the value of score1 is

replaced with score2’s value. When the first line finishes, both score1

and score2 contain the same value. Therefore, the second line cannot

work as desired.

To swap two variables, you have to use a third variable to hold

the intermediate result. (This is the only function of this third

variable.) For instance, to swap score1 and score2, use a third variable

(called hold_score in this code), as in

hold_score = score1; // These three lines properly

score1 = score2; // swap score1 and score2.

score2 = hold_score;

This exchanges the values in the two variables.

There are several different ways to sort arrays. These methods

include the bubble sort, the quicksort, and the shell sort. The basic goal

of each method is to compare each array element to another array

element and swap them if the higher value is less than the other.

The theory behind these sorts is beyond the scope of this book,

however, the bubble sort is one of the easiest to understand. Values

in the array are compared to each other, a pair at a time, and

swapped if they are not in back-to-back order. The lowest value

eventually “floats” to the top of the array, like a bubble in a glass of

soda.

Figure 24.2 shows a list of numbers before, during, and after a

bubble sort. The bubble sort steps through the array and compares

pairs of numbers to determine whether they have to be swapped.

Several passes might have to be made through the array before it is

The lowest values in
a list “float” to the
top with the bubble
sort algorithm.

503

EXAMPLE
C++ By

finally sorted (no more passes are needed). Other types of sorts

improve on the bubble sort. The bubble sort procedure is easy to

program, but it is slower compared to many of the other methods.

Figure 24.2. Sorting a list of numbers using the bubble sort.

Chapter 24 ♦ Array Processing

504

The following programs show the bubble sort in action.

Examples

1. The following program assigns 10 random numbers between

0 and 99 to an array, then sorts the array. A nested for loop is

perfect for sorting numbers in the array (as shown in the

sort_array() function). Nested for loops provide a nice mech-

anism for working on pairs of values, swapping them if

needed. As the outside loop counts down the list, referenc-

ing each element, the inside loop compares each of the

remaining values to those array elements.

// Filename: C24SORT1.CPP

// Sorts and prints a list of numbers.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

505

EXAMPLE
C++ By

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number to

 // 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with

 int ctr1, ctr2; // Need two loop counters to

 // swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs.

 { if (ara[ctr1] > ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

The output from this program appears next. If any two ran-

domly generated numbers were the same, the bubble sort

would work properly, placing them next to each other in the

list.

Chapter 24 ♦ Array Processing

506

Here are the unsorted numbers:

46

30

82

90

56

17

95

15

48

26

Here are the sorted numbers:

15

17

26

30

46

48

56

82

90

95

2. The following program is just like the previous one, except it

prints the list of numbers in descending order.

A descending sort is as easy to write as an ascending sort.

With the ascending sort (from low to high values), you

compare pairs of values, testing to see whether the first is

greater than the second. With a descending sort, you test to

see whether the first is less than the second one.

// Filename: C24SORT2.CPP

// Sorts and prints a list of numbers in reverse

// and descending order.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

To produce a
descending sort, use
the less-than (<)
logical operator
when swapping array
elements.

507

EXAMPLE
C++ By

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number

 // to 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with.

Chapter 24 ♦ Array Processing

508

 int ctr1, ctr2; // Need two loop counters

 // to swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs

 // Notice the difference in descending (here)

 // and ascending.

 { if (ara[ctr1] < ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

TIP: You can save the previous programs’ sort functions in two

separate files named sort_ascend and sort_descend. When you

must sort two different arrays, #include these files inside your

own programs. Even better, compile each of these routines

separately and link the one you need to your program. (You

must check your compiler’s manual to learn how to do this.)

You can sort character arrays just as easily as you sort numeric

arrays. C++ uses the ASCII character set for its sorting comparisons.

If you look at the ASCII table in Appendix C, you will see that

numbers sort before letters and that uppercase letters sort before

lowercase letters.

Advanced Referencing
of Arrays

The array notation you have seen so far is common in computer

programming languages. Most languages use subscripts inside

brackets (or parentheses) to refer to individual array elements. For

instance, you know the following array references describe the first

509

EXAMPLE
C++ By

and fifth element of the array called sales (remember that the

starting subscript is always 0):

sales[0]

sales[4]

C++ provides another approach to referencing arrays. Even

though the title of this section includes the word “advanced,” this

array-referencing method is not difficult. It is very different, how-

ever, especially if you are familiar with another programming

language’s approach.

There is nothing wrong with referring to array elements in the

manner you have seen so far, however, the second approach, unique

to C and C++, will be helpful when you learn about pointers in

upcoming chapters. Actually, C++ programmers who have pro-

grammed for several years rarely use the subscript notation you

have seen.

In C++, an array’s name is not just a label for you to use in

programs. To C++, the array name is the actual address where the

first element begins in memory. Suppose you define an array called

amounts with the following statement:

int amounts[6] = {4, 1, 3, 7, 9, 2};

Figure 24.3 shows how this array is stored in memory. The

figure shows the array beginning at address 405,332. (The actual

addresses of variables are determined by the computer when you

load and run your compiled program.) Notice that the name of the

array, amounts, is located somewhere in memory and contains the

address of amounts[0], or 405,332.

You can refer to an array by its regular subscript notation, or by

modifying the address of the array. The following refer to the third

element of amounts:

amounts[3] and (amounts + 3)[0]

Because C++ considers the array name to be an address in

memory that contains the location of the first array element, nothing

keeps you from using a different address as the starting address and

referencing from there. Taking this one step further, each of the

following also refers to the third element of amounts:

An array name is
the address of the
starting element of
the array.

Chapter 24 ♦ Array Processing

510

(amounts+0)[3] and (amounts+2)[1] and (amounts-2)[5]

(1+amounts)[2] and (3+amounts)[0] and (amounts+1)[2]

You can print any of these array elements with cout.

Figure 24.3. The array name amounts holds the address of amounts[0].

When you print strings inside character arrays, referencing the

arrays by their modified addresses is more useful than with integers.

Suppose you stored three strings in a single character array. You

could initialize this array with the following statement:

char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',’S’,‘a’,’m’,’\0'};

Figure 24.4 shows how this array might look in memory. The

array name, names, contains the address of the first element, names[0]

(the letter T).

511

EXAMPLE
C++ By

CAUTION: The hierarchy table in Appendix D, “C++ Prece-

dence Table,” shows that array subscripts have precedence

over addition and subtraction. Therefore, you must enclose

array names in parentheses if you want to modify the name as

shown in these examples. The following are not equivalent:

(2+amounts)[1] and 2+amounts[1]

The first example refers to amounts[3] (which is 7). The second

example takes the value of amounts[1] (which is 1 in this ex-

ample array) and adds 2 to it (resulting in a value of 3).

This second method of array referencing might seem like more

trouble than it is worth, but learning to reference arrays in this

fashion will make your transition to pointers much easier. An

array name is actually a pointer, because the array contains the

address of the first array element (it “points” to the start of the

array).

Figure 24.4. Storing more than one string in a single character array.

Chapter 24 ♦ Array Processing

512

You have yet to see a character array that holds more than one

string, but C++ allows it. The problem with such an array is how

you reference, and especially how you print, the second and third

strings. If you were to print this array using cout:

cout << names;

C++ would print the following:

Ted

Because cout requires a starting address, you can print the three

strings with the following couts:

cout << names; // Prints Ted

cout << (names+4); // Prints Eva

cout << (names+8); // Prints Sam

To test your understanding, what do the following couts print?

cout << (names+1);

cout << (names+6);

The first cout prints ed. The characters ed begin at (names+1) and

the cout stops printing when it reaches the null zero. The second cout

prints a. Adding six to the address at names produces the address

where the a is located. The “string” is only one character long

because the null zero appears in the array immediately after the a.

To sum up character arrays, the following refer to individual

array elements (single characters):

names[2] and (names+1)[1]

The following refer to addresses only, and as such, you can print the

full strings with cout:

names and (names+4)

CAUTION: Never use the printf()’s %c control code to print an

address reference, even if that address contains a character.

Print strings by specifying an address with %s, and single

characters by specifying the character element with %c.

cout prints strings
in arrays starting at
the array’s address
and continuing until
it reaches the null
zero.

513

EXAMPLE
C++ By

The following examples are a little different from most you

have seen. They do not perform “real-world” work, but were

designed as study examples for you to familiarize yourself with this

new method of array referencing. The next few chapters expand on

these methods.

Examples

1. The following program stores the numbers from 100 to 600

in an array, then prints elements using the new method of

array subscripting.

// Filename: C24REF1.CPP

// Print elements of an integer array in different ways.

#include <iostream.h>

void main()

{

 int num[6] = {100, 200, 300, 400, 500, 600};

 cout << “num[0] is \t” << num[0] << “\n”;

 cout << “(num+0)[0] is \t” << (num+0)[0] << “\n”;

 cout << “(num-2)[2] is \t” << (num-2)[2] << “\n\n”;

 cout << “num[1] is \t” << num[1] << “\n”;

 cout << “(num+1)[0] is \t” << (num+1)[0] << “\n\n”;

 cout << “num[5] is \t” << num[5] << “\n”;

 cout << “(num+5)[0] is \t” << (num+5)[0] << “\n”;

 cout << “(num+2)[3] is \t” << (num+2)[3] << “\n\n”;

 cout << “(3+num)[1] is \t” << (3+num)[1] << “\n”;

 cout << “3+num[1] is \t” << 3+num[1] << “\n”;

 return;

}

Here is the output of this program:

num[0] is 100

(num+0)[0] is 100

(num-2)[2] is 100

Chapter 24 ♦ Array Processing

514

num[1] is 200

(num+1)[0] is 200

num[5] is 600

(num+5)[0] is 600

(num+2)[3] is 600

(3+num)[1] is 500

3+num[1] is 203

2. The following program prints strings and characters from a

character array. The couts all print properly.

// Filename: C24REF2.CPP

// Prints elements and strings from an array.

#include <iostream.h>

void main()

{

 char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',

 ’S’, ‘a’,’m’,’\0'};

 // Must use extra percent (%) to print %s and %c.

 cout << “names “ << names << “\n”;

 cout << “names+0 “ << names+0 << “\n”;

 cout << “names+1 “ << names+1 << “\n”;

 cout << “names+2 “ << names+2 << “\n”;

 cout << “names+3 “ << names+3 << “\n”;

 cout << “names+5 “ << names+5 << “\n”;

 cout << “names+8 “ << names+8 << “\n\n”;

 cout << “(names+0)[0] “ << (names+0)[0] << “\n”;

 cout << “(names+0)[1] “ << (names+0)[1] << “\n”;

 cout << “(names+0)[2] “ << (names+0)[2] << “\n”;

 cout << “(names+0)[3] “ << (names+0)[3] << “\n”;

 cout << “(names+0)[4] “ << (names+0)[4] << “\n”;

 cout << “(names+0)[5] “ << (names+0)[5] << “\n\n”;

 cout << “(names+2)[0] “ << (names+2)[0] << “\n”;

 cout << “(names+2)[1] “ << (names+2)[1] << “\n”;

 cout << “(names+1)[4] “ << (names+1)[4] << “\n\n”;

 return;

}

515

EXAMPLE
C++ By

Study the output shown below by comparing it to the pro-

gram. You will learn more about strings, characters, and

character array referencing from studying this one example

than from 20 pages of textual description.

names Ted

names+0 Ted

names+1 ed

names+2 d

names+3

names+5 va

names+8 Sam

(names+0)[0] T

(names+0)[1] e

(names+0)[2] d

(names+0)[3]

(names+0)[4] E

(names+0)[5] v

(names+2)[0] d

(names+2)[1]

(names+1)[4] v

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You must access an array in the same order

you initialized it.

2. Where did the bubble sort get its name?

3. Are the following values sorted in ascending or descending

order?

33 55 78 78 90 102 435 859

976 4092

4. How does C++ use the name of an array?

Chapter 24 ♦ Array Processing

516

5. Given the following array definition:

char teams[] = {‘E’,’a’,’g’,’l’,’e’,’s’,’\0',

 ’R’, ‘a’,’m’,’s’,’\0'};

What is printed with each of these statements? (Answer

“invalid” if the cout is illegal.)

a. cout << teams;

b. cout << teams+7;

c. cout << (teams+3);

d. cout << teams[0];

e. cout << (teams+0)[0];

f. cout << (teams+5);

Review Exercises
1. Write a program to store six of your friends’ ages in a single

array. Assign the ages in random order. Print the ages, from

low to high, on-screen.

2. Modify the program in Exercise 1 to print the ages in de-

scending order.

3. Using the new approach of subscripting arrays, rewrite the

programs in Exercises 1 and 2. Always put a 0 in the sub-

script brackets, modifying the address instead (use

(ages+3)[0] rather than ages[3]).

4. Sometimes parallel arrays are used in programs that must

track more than one list of values that are related. For in-

stance, suppose you had to maintain an inventory, tracking

the integer part numbers, prices, and quantities of each item.

This would require three arrays: an integer part number

array, a floating-point price array, and an integer quantity

array. Each array would have the same number of elements

(the total number of parts in the inventory). Write a program

to maintain such an inventory, and reserve enough elements

517

EXAMPLE
C++ By

for 100 parts in the inventory. Present the user with an input

screen. When the user enters a part number, search the part

number array. When you locate the position of the part,

print the corresponding price and quantity. If the part does

not exist, enable the user to add it to the inventory, along

with the matching price and quantity.

Summary
You are beginning to see the true power of programming

languages. Arrays give you the ability to search and sort lists of

values. Sorting and searching are what computers do best; comput-

ers can quickly scan through hundreds and even thousands of

values, looking for a match. Scanning through files of paper by hand,

looking for just the right number, takes much more time. By step-

ping through arrays, your program can quickly scan, print, sort, and

calculate a list of values. You now have the tools to sort lists of

numbers, as well as search for values in a list.

You will use the concepts learned here for sorting and search-

ing lists of character string data as well, when you learn a little more

about the way C++ manipulates strings and pointers. To help build

a solid foundation for this and more advanced material, you now

know how to reference array elements without using conventional

subscripts.

Now that you have mastered this chapter, the next one will be

easy. Chapter 25, “Multidimensional Arrays,” shows you how you

can keep track of arrays in a different format called a matrix. Not all

lists of data lend themselves to matrices, but you should be prepared

for when you need them.

Chapter 24 ♦ Array Processing

518

519

EXAMPLE
C++ By

25

Multidimensional
Arrays

Some data fits in lists, such as the data discussed in the previous two

chapters, and other data is better suited for tables of information.

This chapter takes arrays one step further. The previous chapters

introduced single-dimensional arrays; arrays that have only one

subscript and represent lists of values.

This chapter introduces arrays of more than one dimension,

called multidimensional arrays. Multidimensional arrays, sometimes

called tables or matrices, have at least two dimensions (rows and

columns). Many times they have more than two.

This chapter introduces the following concepts:

♦ Multidimensional arrays

♦ Reserving storage for multidimensional arrays

♦ Putting data in multidimensional arrays

♦ Using nested for loops to process multidimensional arrays

If you understand single-dimensional arrays, you should have

no trouble understanding arrays that have more than one dimen-

sion.

Chapter 25 ♦ Multidimensional Arrays

520

Multidimensional Array
Basics

A multidimensional array is an array with more than one

subscript. Whereas a single-dimensional array is a list of values, a

multidimensional array simulates a table of values, or multiple

tables of values. The most commonly used table is a two-

dimensional table (an array with two subscripts).

Suppose a softball team wanted to keep track of its players’

batting records. The team played 10 games, and there are 15 players

on the team. Table 25.1 shows the team’s batting record.

Table 25.1. A softball team’s batting record.

Player Game
Name 1 2 3 4 5 6 7 8 9 10

Adams 2 1 0 0 2 3 3 1 1 2

Berryhill 1 0 3 2 5 1 2 2 1 0

Downing 1 0 2 1 0 0 0 0 2 0

Edwards 0 3 6 4 6 4 5 3 6 3

Franks 2 2 3 2 1 0 2 3 1 0

Grady 1 3 2 0 1 5 2 1 2 1

Howard 3 1 1 1 2 0 1 0 4 3

Jones 2 2 1 2 4 1 0 7 1 0

Martin 5 4 5 1 1 0 2 4 1 5

Powers 2 2 3 1 0 2 1 3 1 2

Smith 1 1 2 1 3 4 1 0 3 2

Smithtown 1 0 1 2 1 0 3 4 1 2

Townsend 0 0 0 0 0 0 1 0 0 0

Ulmer 2 2 2 2 2 1 1 3 1 3

Williams 2 3 1 0 1 2 1 2 0 3

A multidimensional
array has more than
one subscript.

521

EXAMPLE
C++ By

Do you see that the softball table is a two-dimensional table? It

has rows (the first dimension) and columns (the second dimension).

Therefore, this is called a two-dimensional table with 15 rows and 10

columns. (Generally, the number of rows is specified first.)

Each row has a player’s name, and each column has a game

number associated with it, but these are not part of the actual data.

The data consists of only 150 values (15 rows by 10 columns). The

data in a two-dimensional table always is the same type of data; in

this case, every value is an integer. If it were a table of salaries, every

element would be a floating-point decimal.

The number of dimensions, in this case two, corresponds to the

dimensions in the physical world. The single-dimensioned array is

a line, or list of values. Two dimensions represent both length and

width. You write on a piece of paper in two dimensions; two

dimensions represent a flat surface. Three dimensions represent

width, length, and depth. You have seen 3-D movies. Not only do the

images have width and height, but they also seem to have depth.

Figure 25.1 shows what a three-dimensional array looks like if it has

a depth of four, six rows, and three columns. Notice that a three-

dimensional table resembles a cube.

It is difficult to visualize more than three dimensions. How-

ever, you can think of each dimension after three as another occur-

rence. In other words, a list of one player’s season batting record can

be stored in an array. The team’s batting record (as shown in Table

25.1) is two-dimensional. The league, made of up several teams’

batting records, represents a three-dimensional table. Each team

(the depth of the table) has rows and columns of batting data. If there

is more than one league, it is another dimension (another set of data).

C++ enables you to store several dimensions, although “real-

world” data rarely requires more than two or three.

A three-dimensional
table has three
dimensions: depth,
rows, and columns.

Chapter 25 ♦ Multidimensional Arrays

522

Figure 25.1. Representing a three-dimensional table (a cube).

Reserving Multidimensional
Arrays

When you reserve a multidimensional array, you must inform

C++ that the array has more than one dimension by putting more

than one subscript in brackets after the array name. You must put a

separate number, in brackets, for each dimension in the table. For

example, to reserve the team data from Table 25.1, you use the

following multidimensional array declaration.

3 columns

4 deep

6 rows

523

EXAMPLE
C++ By

Declare an integer array called teams with 15 rows and 10 columns.

int teams[15][10]; // Reserves a two-dimensional table.

CAUTION: Unlike other programming languages, C++ re-

quires you to enclose each dimension in brackets. Do not

reserve multidimensional array storage like this:

int teams[15,10]; // Invalid table declaration.

Properly reserving the teams table produces a table with 150

elements. Figure 25.2 shows what each element’s subscript looks

like.

columns

Figure 25.2. Subscripts for the softball team table.

rows

Chapter 25 ♦ Multidimensional Arrays

524

If you had to track three teams, each with 15 players and 10

games, the three-dimensional table would be created as follows:

int teams[3][15][10]; // Reserves a three-dimensional table.

When creating a two-dimensional table, always put the maxi-

mum number of rows first, and the maximum number of columns

second. C++ always uses 0 as the starting subscript of each dimen-

sion. The last element, the lower-right element of the teams table, is

teams[2][14][9].

Examples

1. Suppose you wanted to keep track of utility bills for the

year. You can store 12 months of four utilities in a two-

dimensional table of floating-point amounts, as the follow-

ing array declaration demonstrates:

float utilities[12][4]; // Reserves 48 elements.

You can compute the total number of elements in a multi-

dimensional array by multiplying the subscripts. Because

12 times 4 is 48, there are 48 elements in this array (12 rows,

4 columns). Each of these elements is a floating-point data

type.

2. If you were keeping track of five years’ worth of utilities,

you have to add an extra dimension. The first dimension is

the years, the second is the months, and the last is the indi-

vidual utilities. Here is how you reserve storage:

float utilities[5][12][4]; // Reserves 240 elements.

Mapping Arrays to Memory
C++ approaches multidimensional arrays a little differently

than most programming languages do. When you use subscripts,

you do not have to understand the internal representation of multi-

dimensional arrays. However, most C++ programmers think a

deeper understanding of these arrays is important, especially when

programming advanced applications.

The far-right
dimension always
represents columns,
the next represents
rows, and so on.

525

EXAMPLE
C++ By

A two-dimensional array is actually an array of arrays. You

program multidimensional arrays as though they were tables with

rows and columns. A two-dimensional array is actually a single-

dimensional array, but each of its elements is not an integer, floating-

point, or character, but another array.

Knowing that a multidimensional array is an array of other

arrays is critical when passing and receiving such arrays. C++

passes all arrays, including multidimensional arrays, by address.

Suppose you were using an integer array called scores, reserved as a

5-by-6 table. You can pass scores to a function called print_it(), as

follows:

print_it(scores); // Passes table to a function.

The function print_it() has to identify the type of parameter

being passed to it. The print_it() function also must recognize that

the parameter is an array. If scores were one-dimensional, you could

receive it as

print_it(int scores[]) // Works only if scores

 // is one-dimensional.

or

print_it(int scores[10]) // Assuming scores

 // has 10 elements.

If scores were a multidimensional table, you would have to

designate each pair of brackets and put the maximum number of

subscripts in its brackets, as in

print_it(int scores[5][6]) // Inform print_it() of

 // the array’s dimensions.

or

print_it(int scores[][6]) // Inform print_it() of

 // the array’s dimensions.

Notice you do not have to explicitly state the maximum sub-

script on the first dimension when receiving multidimensional

Chapter 25 ♦ Multidimensional Arrays

526

arrays, but you must designate the second. If scores were a three-

dimensional table, dimensioned as 10 by 5 by 6, you would receive

it with print_it() as

print_it(int scores[][5][6]) // Only first dimension

 // is optional.

or

print_it(int scores[10][5][6]) // Inform print_it() of

 // array’s dimensions.

You should not have to worry too much about the way tables

are physically stored. Even though a two-dimensional table is

actually an array of arrays (and each of those arrays contains another

array if it is a three-dimensional table), you can use subscripts to

program multidimensional arrays as if they were stored in row-and-

column order.

Multidimensional arrays are stored in row order. Suppose you

want to keep track of a 3-by-4 table. The top of Figure 25.3 shows

how that table (and its subscripts) are visualized. Despite the

two-dimensional table organization, your memory is still sequen-

tial storage. C++ has to map multidimensional arrays to single-

dimensional memory, and it does so in row order.

Each row fills memory before the next row is stored. Figure 25.3

shows how a 3-by-4 table is mapped to memory.

The entire first row (table[0][0] through table[0][3]) is stored

first in memory before any of the second row. A table is actually an

array of arrays, and, as you learned in previous chapters, array

elements are always stored sequentially in memory. Therefore, the

first row (array) completely fills memory before the second row.

Figure 25.3 shows how two-dimensional arrays map to memory.

Defining Multidimensional
Arrays

C++ is not picky about the way you define a multidimensional

array when you initialize it at declaration time. As with single-

dimensional arrays, you initialize multidimensional arrays with

C++ stores
multidimensional
arrays in row order.

527

EXAMPLE
C++ By

braces that designate dimensions. Because a multidimensional ar-

ray is an array of arrays, you can nest braces when you initialize

them.

Figure 25.3. Mapping a two-dimensional table to memory.

The following three array definitions fill the three arrays ara1,

ara2, and ara3, as shown in Figure 25.4:

int ara1[5] = {8, 5, 3, 25, 41}; // One-dimensional array.

int ara2[2][4]={{4, 3, 2, 1},{1, 2, 3, 4}};

int ara3[3][4]={{1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12}};

Memory

First row

Second row

Third row

Fourth row

Chapter 25 ♦ Multidimensional Arrays

528

Figure 25.4. After initializing a table.

Notice that the multidimensional arrays are stored in row

order. In ara3, the first row receives the first four elements of the

definition (1, 2, 3, and 4).

ara1

ara2

ara3

529

EXAMPLE
C++ By

TIP: To make a multidimensional array initialization match

the array’s subscripts, some programmers like to show how

arrays are filled. Because C++ programs are free-form, you can

initialize ara2 and ara3 as

int ara2[2][4]={{4, 3, 2, 1}, // Does exactly the same

 {1, 2, 3, 4}}; // thing as before.

int ara3[3][4]={{1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}; // Visually more

 // obvious.

You can initialize a multidimensional array as if it were single-

dimensional in C++. You must keep track of the row order if you do

this. For instance, the following two definitions also reserve storage

for and initialize ara2 and ara3:

int ara2[2][4]={4, 3, 2, 1, 1, 2, 3, 4};

int ara3[3][4]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

There is no difference between initializing ara2 and ara3 with or

without the nested braces. The nested braces seem to show the

dimensions and how C++ fills them a little better, but the choice of

using nested braces is yours.

TIP: Multidimensional arrays (unless they are global) are not

initialized to specific values unless you assign them values at

declaration time or in the program. As with single-dimensional

arrays, if you initialize one or more of the elements, but not all

of them, C++ fills the rest with zeros. If you want to fill an entire

multidimensional array with zeros, you can do so with the

following:

float sales[3][4][7][2] = {0}; // Fills all sales

 // with zeros.

Chapter 25 ♦ Multidimensional Arrays

530

One last point to consider is how multidimensional arrays are

viewed by your compiler. Many people program in C++ for years,

but never understand how tables are stored internally. As long as

you use subscripts, a table’s internal representation should not

matter. When you learn about pointer variables, however, you

might want to know how C++ stores your tables in case you want to

reference them with pointers (as shown in the next few chapters).

Figure 25.5 shows the way C++ stores a 3-by-4 table in memory.

Unlike single-dimensional arrays, each element is stored contigu-

ously, but notice how C++ views the data. Because a table is an array

of arrays, the array name contains the address of the start of the

primary array. Each of those elements points to the arrays it contains

(the data in each row). This coverage of table storage is for your

information only, at this point. As you become more proficient in

C++, and write more powerful programs that manipulate internal

memory, you might want to review this table storage method.

Tables and for Loops
As the following examples show, nested for loops are useful

when you want to loop through every element of a multidimen-

sional table.

For instance, the section of code,

for (row=0; row<2; row++)

 { for (col=0; col<3; col++)

 { cout << row << “ “ << col “\n”; }

 }

produces the following output:

0 0

0 1

0 2

1 0

1 1

1 2

531

EXAMPLE
C++ By

ara name

An array of arrays

First row

Third
row

Second
row

Fourth
row

Figure 25.5. Internal representation of a two-dimensional table.

Chapter 25 ♦ Multidimensional Arrays

532

These numbers are the subscripts, in row order, for a two-row

by three-column table dimensioned with

int table[2][3];

Notice there are as many for loops as there are subscripts in the

array (two). The outside loop represents the first subscript (the

rows), and the inside loop represents the second subscript (the

columns). The nested for loop steps through each element of the

table.

You can use cin, gets(), get, and other input functions to fill a

table, and you also can assign values to the elements when declaring

the table. More often, the data comes from data files on the disk.

Regardless of what method stores the values in multidimensional

arrays, nested for loops are excellent control statements to step

through the subscripts. The following examples demonstrate how

nested for loops work with multidimensional arrays.

Examples

1. The following statements reserve enough memory elements

for a television station’s ratings (A through D) for one week:

char ratings[7][48];

These statements reserve enough elements to hold seven

days (the rows) of ratings for each 30-minute time slot (48 of

them in a day).

Every element in a table is always the same type. In this case,

each element is a character variable. Some are initialized

with the following assignment statements:

shows[3][12] = ‘B’; // Stores B in 4th row, 13th column.

shows[1][5] = ‘A’ ; // Stores C in 2nd row, 6th column.

shows[6][20] = getch(); // Stores the letter the user types.

2. A computer company sells two sizes of disks: 3 1/2-inch and

5 1/4-inch. Each disk comes in one of four capacities: single-

sided double-density, double-sided double-density, single-

sided high-density, and double-sided high-density.

Nested loops work
well with multi-
dimensional arrays.

533

EXAMPLE
C++ By

The disk inventory is well-suited for a two-dimensional

table. The company determined that the disks have the

following retail prices:

Double Density High Density

Single Double Single Double

3 1/2-inch 2.30 2.75 3.20 3.50

5 1/4-inch 1.75 2.10 2.60 2.95

The company wants to store the price of each disk in a table

for easy access. The following program stores the prices with

assignment statements.

// Filename: C25DISK1.CPP

// Assigns disk prices to a table.

#include <iostream.h>

#include <iomanip.h>

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col; // Subscript variables.

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices.

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\n”; }

 }

 return;

}

Chapter 25 ♦ Multidimensional Arrays

534

This program displays the prices as follows:

$2.39

$2.75

$3.29

$3.59

$1.75

$2.19

$2.69

$2.95

It prints them one line at a time, without any descriptive

titles. Although the output is not labeled, it illustrates how

you can use assignment statements to initialize a table, and

how nested for loops can print the elements.

3. The preceding disk inventory would be displayed better if

the output had descriptive titles. Before you add titles, it is

helpful for you to see how to print a table in its native row

and column format.

Typically, you use a nested for loop, such as the one in the

previous example, to print rows and columns. You should

not output a newline character with every cout, however. If

you do, you see one value per line, as in the previous

program’s output, which is not the row and column format

of the table.

You do not want to see every disk price on one line, but you

want each row of the table printed on a separate line. You

must insert a cout << “\n”; to send the cursor to the next line

each time the row number changes. Printing newlines after

each row prints the table in its row and column format, as

this program shows:

// Filename: C25DISK2.CPP

// Assigns disk prices to a table

// and prints them in a table format.

#include <iostream.h>

#include <iomanip.h>

void main()

{

535

EXAMPLE
C++ By

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\t”;

 }

 cout << “\n”; // Prints a new line after each row.

 }

 return;

}

Here is the output of the disk prices in their native table

order:

$2.39 $2.75 $3.29 $3.59

$1.75 $2.19 $2.69 $2.95

4. To add the titles, simply print a row of titles before the first

row of values, then print a new column title before each

column, as shown in the following program:

// Filename: C25DISK3.CPP

// Assigns disk prices to a table

// and prints them in a table format with titles.

#include <iostream.h>

#include <iomanip.h>

Chapter 25 ♦ Multidimensional Arrays

536

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the column titles.

 cout << “\tSingle-sided\tDouble-sided\tSingle-sided\t” <<

 “Double-sided\n”;

 cout << “\tDouble-density\tDouble-density\tHigh-density” <<

 “\tHigh-density\n”;

 // Print the prices

 for (row=0; row<2; row++)

 { if (row == 0)

 { cout << “3-1/2\”\t”; } // Need \” to

 // print quotation.

 else

 { cout << “5-1/4\”\t”; }

 for (col=0; col<4; col++) // Print the current row.

 { cout << setprecision(2) << “$” << disks[row][col]

 << “\t\t”;

 }

 cout << “\n”; // Print a newline after each row.

 }

 return;

}

537

EXAMPLE
C++ By

Here is the output from this program:

 Single-sided Double-sided Single-sided Double-sided

 Double-density Double-density High-density High-density

3-1/2" $2.39 $2.75 $3.29 $3.59

5-1/4" $1.75 $2.19 $2.69 $2.95

Review Questions
The answers to the review questions are in Appendix B.

1. What statement reserves a two-dimensional table of integers

called scores with five rows and six columns?

2. What statement reserves a three-dimensional table of four

character arrays called initials with 10 rows and 20 columns?

3. In the following statement, which subscript (first or second)

represents rows and which represents columns?

int weights[5][10];

4. How many elements are reserved with the following

statement?

int ara[5][6];

5. The following table of integers is called ara:

4 1 3 5 9

10 2 12 1 6

25 42 2 91 8

What values do the following elements contain?

a. ara[2][2]

b. ara[0][1]

c. ara[2][3]

d. ara[2][4]

Chapter 25 ♦ Multidimensional Arrays

538

6. What control statement is best for stepping through multi-

dimensional arrays?

7. Notice the following section of a program:

int grades[3][5] = {80,90,96,73,65,67,90,68,92,84,70,

 55,95,78,100};

What are the values of the following:

a. grades[2][3]

b. grades[2][4]

c. grades[0][1]

Review Exercises
1. Write a program that stores and prints the numbers from 1

to 21 in a 3-by-7 table. (Hint: Remember C++ begins sub-

scripts at 0.)

2. Write a program that reserves storage for three years’ worth

of sales data for five salespeople. Use assignment statements

to fill the table with data, then print it, one value per line.

3. Instead of using assignment statements, use the cin function

to fill the salespeople data from Exercise 2.

4. Write a program that tracks the grades for five classes, each

having 10 students. Input the data using the cin function.

Print the table in its native row and column format.

Summary
You now know how to create, initialize, and process multidi-

mensional arrays. Although not all data fits in the compact format

of tables, much does. Using nested for loops makes stepping through

a multidimensional array straightforward.

539

EXAMPLE
C++ By

One of the limitations of a multidimensional array is that each

element must be the same data type. This keeps you from being able

to store several kinds of data in tables. Chapter 28, “Structures,”

shows you how to store data in different ways to overcome this

limitation.

Chapter 25 ♦ Multidimensional Arrays

540

541

EXAMPLE
C++ By

26

Pointers

C++ reveals its true power through pointer variables. Pointer vari-

ables (or pointers, as they generally are called) are variables that

contain addresses of other variables. All variables you have seen so

far have held data values. You understand that variables hold

various data types: character, integer, floating-point, and so on.

Pointer variables contain the location of regular data variables; they

in effect point to the data because they hold the address of the data.

When first learning C++, students of the language tend to shy

away from pointers, thinking that pointers will be difficult. Pointers

do not have to be difficult. In fact, after you work with them for a

while, you will find they are easier to use than arrays (and much

more flexible).

This chapter introduces the following concepts:

♦ Pointers

♦ Pointers of different data types

♦ The “address of” (&) operator

♦ The dereferencing (*) operator

♦ Arrays of pointers

Chapter 26 ♦ Pointers

542

Pointers offer a highly efficient means of accessing and chang-

ing data. Because pointers contain the actual address of your data,

your compiler has less work to do when finding that data in

memory. Pointers do not have to link data to specific variable names.

A pointer can point to an unnamed data value. With pointers, you

gain a “different view” of your data.

Introduction to Pointer
Variables

Pointers are variables. They follow all the normal naming rules

of regular, nonpointer variables. As with regular variables, you

must declare pointer variables before using them. There is a type of

pointer for every data type in C++; there are integer pointers,

character pointers, floating-point pointers, and so on. You can

declare global pointers or local pointers, depending on where you

declare them.

About the only difference between pointer variables and regu-

lar variables is the data they hold. Pointers do not contain data in the

usual sense of the word. Pointers contain addresses of data. If you

need a quick review of addresses and memory, see Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review.”

There are two pointer operators in C++:

& The “address of” operator

* The dereferencing operator

Don’t let these operators throw you; you might have seen them

before! The & is the bitwise AND operator (from Chapter 11, “Addi-

tional C++ Operators”) and the * means, of course, multiplication.

These are called overloaded operators. They perform more than one

function, depending on how you use them in your programs. C++

does not confuse * for multiplication when you use it as a

dereferencing operator with pointers.

Pointers contain
addresses of other
variables.

543

EXAMPLE
C++ By

Any time you see the & used with pointers, think of the words

“address of.” The & operator always produces the memory address

of whatever it precedes. The * operator, when used with pointers,

either declares a pointer or dereferences the pointer’s value. The

next section explains each of these operators.

Declaring Pointers

Because you must declare all pointers before using them, the

best way to begin learning about pointers is to understand how to

declare and define them. Actually, declaring pointers is almost as

easy as declaring regular variables. After all, pointers are variables.

If you must declare a variable that holds your age, you could do

so with the following variable declaration:

int age=30; // Declare a variable to hold my age.

Declaring age like this does several things. It enables C++ to

identify a variable called age, and to reserve storage for that variable.

Using this format also enables C++ to recognize that you will store

only integers in age, not floating-point or double floating-point data.

The declaration also requests that C++ store the value of 30 in age

after it reserves storage for age.

Where did C++ store age in memory? As the programmer, you

should not really care where C++ stores age. You do not have to

know the variable’s address because you will never refer to age by its

address. If you want to calculate with or print age, you call it by its

name, age.

TIP: Make your pointer variable names meaningful. The name

file_ptr makes more sense than x13 for a file-pointing variable,

although either name is allowed.

Suppose you want to declare a pointer variable. This pointer

variable will not hold your age, but it will point to age, the variable

that holds your age. (Why you would want to do this is explained in

this and the next few chapters.) p_age might be a good name for the

pointer variable. Figure 26.1 illustrates what you want to do. The

Chapter 26 ♦ Pointers

544

figure assumes C++ stored age at the address 350,606. Your C++

compiler, however, arbitrarily determines the address of age, so it

could be anything.

Figure 26.1. p_age contains the address of age; p_age points to the age
variable.

The name p_age has nothing to do with pointers, except that it

is the name you made up for the pointer to age. Just as you can name

variables anything (as long as the name follows the legal naming

rules of variables), p_age could just as easily have been named house,

x43344, space_trek, or whatever else you wanted to call it. This

reinforces the idea that a pointer is just a variable you reserve in your

program. Create meaningful variable names, even for pointer vari-

ables. p_age is a good name for a variable that points to age (as would

be ptr_age and ptr_to_age).

To declare the p_age pointer variable, you must program the

following:

int * p_age; // Declares an integer pointer.

Similar to the declaration for age, this declaration reserves a

variable called p_age. The p_age variable is not a normal integer

variable, however. Because of the dereferencing operator, *, C++

knows this is to be a pointer variable. Some C++ programmers

prefer to declare such a variable without a space after the *, as

follows:

int *p_age; // Declares an integer pointer.

545

EXAMPLE
C++ By

Either method is okay, but you must remember the * is not part

of the name. When you later use p_age, you will not prefix the name

with the *, unless you are dereferencing it at the time (as later

examples show).

TIP: Whenever the dereferencing operator, *, appears in a

variable definition, the variable being declared is always a

pointer variable.

Consider the declaration for p_age if the asterisk were not there:

C++ would think you were declaring a regular integer variable. The

* is important, because it tells C++ to interpret p_age as a pointer

variable, not as a normal, data variable.

Assigning Values to Pointers

p_age is an integer pointer. This is very important. p_age can

point only to integer values, never to floating-point, double floating-

point, or even character variables. If you needed to point to a

floating-point variable, you might do so with a pointer declared as

float *point; // Declares a floating-point pointer.

As with any automatic variable, C++ does not initialize point-

ers when you declare them. If you declared p_age as previously

described, and you wanted p_age to point to age, you would have to

explicitly assign p_age to the address of age. The following statement

does this:

p_age = &age; // Assign the address of age to p_age.

What value is now in p_age? You do not know exactly, but you

know it is the address of age, wherever that is. Rather than assign the

address of age to p_age with an assignment operator, you can declare

and initialize pointers at the same time. These lines declare and

initialize both age and p_age:

int age=30; // Declares a regular integer

 // variable, putting 30 in it.

Pointers can point
only to data of their
own type.

Chapter 26 ♦ Pointers

546

int *p_age=&age; // Declares an integer pointer,

 // initializing it with the address

 // of p_age.

These two lines produce the variables described in Figure 26.1.

If you wanted to print the value of age, you could do so with the

following cout:

cout << age; // Prints the value of age.

You also can print the value of age like this:

cout << *p_age; // Dereferences p_age.

The dereference operator produces a value that tells the pointer

where to point. Without the *, the last cout would print an address

(the address of age). With the *, the cout prints the value at that

address.

You can assign a different value to age with the following

statement:

age=41; // Assigns a new value to age.

You also can assign a value to age like this:

*p_age=41;

This declaration assigns 41 to the value to which p_age points.

TIP: The * appears before a pointer variable in only two

places—when you declare a pointer variable, and when you

dereference a pointer variable (to find the data it points to).

Pointers and Parameters

Now that you understand the pointer’s * and & operators, you

can finally see why scanf()’s requirements were not as strict as they

first seemed. While passing a regular variable to scanf(), you had to

prefix the variable with the & operator. For instance, the following

scanf() gets three integer values from the user:

scanf(“ %d %d %d”, &num1, &num2, &num3);

547

EXAMPLE
C++ By

This scanf() does not pass the three variables, but passes the

addresses of the three variables. Because scanf() knows the exact

locations of these parameters in memory (because their addresses

were passed), it goes to those addresses and puts the keyboard input

values into those addresses.

This is the only way scanf() could work. If you passed these

variables by copy, without putting the “address of” operator (&)

before them, scanf() would get the keyboard input and fill a copy of

the variables, but not the actual variables num1, num2, and num3. When

scanf() then returned control to your program, you would not have

the input values. Of course, the cin operator does not have the

ampersand (&) requirement and is easier to use for most C++

programs.

You might recall from Chapter 18, “Passing Values,” that you

can override C++’s normal default of passing by copy (or “by

value”). To pass by address, receive the variable preceded by an & in

the receiving function. The following function receives tries by

address:

pr_it(int &tries); // Receive integer tries in pr_it() by

 // address (pr it would normally receive

 // tries by copy).

Now that you understand the & and * operators, you can

understand completely the passing of nonarray parameters by

address to functions. (Arrays default to passing by address without

requiring that you use &.)

Examples

1. The following section of code declares three regular vari-

ables of three different data types, and three corresponding

pointer variables:

char initial= ‘Q’; // Declares three regular variables

int num=40; // of three different types.

float sales=2321.59;

Chapter 26 ♦ Pointers

548

char *p_initial=&initial; // Declares three pointers.

int * ptr_num=# // Pointer names and spacing

float * sales_add = &sales; // after * are not critical.

2. Just like regular variables, you can initialize pointers with

assignment statements. You do not have to initialize them

when you declare them. The next few lines of code are

equivalent to the code in Example 1:

char initial; // Declares three regular variables

int num; // of three different types.

float sales;

char *p_initial; // Declares three pointers but does

int * ptr_num; // not initialize them yet.

float * sales_add;

initial=’Q’; // Initializes the regular variables

num=40; // with values.

sales=2321.59;

p_initial=&initial; // Initializes the pointers with

ptr_num=# // the addresses of their

sales_add=&sales; // corresponding variables.

Notice that you do not put the * operator before the pointer

variable names when assigning them values. You would

prefix a pointer variable with the * only if you were

dereferencing it.

NOTE: In this example, the pointer variables could have been

assigned the addresses of the regular variables before the

regular variables were assigned values. There would be no

difference in the operation. The pointers are assigned the

addresses of the regular variables no matter what the data in

the regular variables are.

549

EXAMPLE
C++ By

Keep the data type of each pointer consistent with its corre-

sponding variable. Do not assign a floating-point variable to

an integer’s address. For instance, you cannot make the

following assignment statement:

p_initial = &sales; // Invalid pointer assignment.

because p_initial can point only to character data, not to

floating-point data.

3. The following program is an example you should study

closely. It shows more about pointers and the pointer opera-

tors, & and *, than several pages of text can do.

// Filename: C26POINT.CPP

// Demonstrates the use of pointer declarations

// and operators.

#include <iostream.h>

void main()

{

 int num=123; // A regular integer variable.

 int *p_num; // Declares an integer pointer.

 cout << “num is “ << num << “\n”; // Prints value of num.

 cout << “The address of num is “ << &num << “\n”;

 // Prints num’s location.

 p_num = # // Puts address of num in p_num,

 // in effect making p_num point

 // to num.

 // No * in front of p_num.

 cout << “*p_num is “ << *p_num << “\n”; // Prints value

 // of num.

 cout << “p_num is “ << p_num << “\n”; // Prints location

 // of num.

 return;

}

Chapter 26 ♦ Pointers

550

Here is the output from this program:

num is 123

The address of num is 0x8fbd0ffe

*p_num is 123

p_num is 0x8fbd0ffe

If you run this program, you probably will get different

results for the value of p_num because your compiler will

place num at a different location, depending on your memory

setup. The value of p_num prints in hexadecimal because it is

an address of memory. The actual address does not matter,

however. Because the pointer p_num always contains the

address of num, and because you can dereference p_num to get

num’s value, the actual address is not critical.

4. The following program includes a function that swaps the

values of any two integers passed to it. You might recall that

a function can return only a single value. Therefore, before

now, you could not write a function that changed two

different values and returned both values to the calling

function.

To swap two variables (reversing their values for sorting, as

you saw in Chapter 24, “Array Processing”), you need the

ability to pass both variables by address. Then, when the

function reverses the variables, the calling function’s vari-

ables also are swapped.

Notice the function’s use of dereferencing operators before

each occurrence of num1 and num2. It does not matter at which

address num1 and num2 are stored, but you must make sure

that you dereference whatever addresses were passed to the

function.

Be sure to receive arguments with the prefix & in functions

that receive by address, as done here.

551

EXAMPLE
C++ By

Identify the program and include the I/O header file. This program swaps
two integers, so initialize two integer variables in main(). Pass the variables
to the swapping function, called swap_them, then switch their values. Print
the results of the swap in main().

// Filename: C26SWAP.CPP

// Program that includes a function that swaps

// any two integers passed to it

#include <iostream.h>

void swap_them(int &num1, int &num2);

void main()

{

 int i=10, j=20;

 cout << “\n\nBefore swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 swap_them(i, j);

 cout << “\n\nAfter swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 return;

}

void swap_them(int &num1, int &num2)

{

 int temp; // Variable that holds

 // in-between swapped value.

 temp = num1; // The calling function’s variables

 num1 = num2; // (and not copies of them) are

 num2 = temp; // changed in this function.

 return;

}

Arrays of Pointers
If you have to reserve many pointers for many different values,

you might want to declare an array of pointers. You know that you

can reserve an array of characters, integers, long integers, and

floating-point values, as well as an array of every other data type

available. You also can reserve an array of pointers, with each

pointer being a pointer to a specific data type.

Chapter 26 ♦ Pointers

552

Figure 26.2. An array of 10 integer pointers.

The following reserves an array of 20 character pointer

variables:

char *cpoint[20]; // Array of 20 character pointers.

Again, the asterisk is not part of the array name. The asterisk

lets C++ know that this is an array of integer pointers and not just

an array of integers.

The following reserves an array of 10 integer pointer variables:

int *iptr[10]; // Reserves an array of 10 integer pointers

Figure 26.2 shows how C++ views this array. Each element

holds an address (after being assigned values) that points to other

values in memory. Each value pointed to must be an integer. You can

assign an element from iptr an address just as you would for

nonarray pointer variables. You can make iptr[4] point to the

address of an integer variable named age by assigning it like this:

iptr[4] = &age; // Make iptr[4] point to address of age.

553

EXAMPLE
C++ By

Some beginning C++ students get confused when they see such

a declaration. Pointers are one thing, but reserving storage for arrays

of pointers tends to bog novices down. However, reserving storage

for arrays of pointers is easy to understand. Remove the asterisk

from the previous declaration as follows,

char cpoint[20];

and what do you have? You have just reserved a simple array of 20

characters. Adding the asterisk tells C++ to go one step further:

rather than an array of character variables, you want an array of

character pointing variables. Rather than having each element be a

character variable, you have each element hold an address that

points to characters.

Reserving arrays of pointers will be much more meaningful

after you learn about structures in the next few chapters. As with

regular, nonpointing variables, an array makes processing several

pointer variables much easier. You can use a subscript to reference

each variable (element) without having to use a different variable

name for each value.

Review Questions
Answers to review questions are in Appendix B.

1. What type of variable is reserved in each of the following?

a. int *a;

b. char * cp;

c. float * dp;

2. What words should come to mind when you see the &

operator?

3. What is the dereferencing operator?

4. How would you assign the address of the floating-point

variable salary to a pointer called pt_sal?

5. True or false: You must define a pointer with an initial value

when declaring it.

Chapter 26 ♦ Pointers

554

6. In both of the following sections of code:

int i;

int * pti;

i=56;

pti = &i;

and

int i;

int * pti;

pti = &i; // These two lines are reversed

i=56; // from the preceding example.

is the value of pti the same after the fourth line of each

section?

7. In the following section of code:

float pay;

float *ptr_pay;

pay=2313.54;

ptr_pay = &pay;

What is the value of each of the following (answer “invalid”

if it cannot be determined):

a. pay

b. *ptr_pay

c. *pay

d. &pay

8. What does the following declare?

double *ara[4][6];

a. An array of double floating-point values

b. An array of double floating-point pointer variables

c. An invalid declaration statement

555

EXAMPLE
C++ By

NOTE: Because this is a theory-oriented chapter, review exer-

cises are saved until you master Chapter 27, “Pointers and

Arrays.”

Summary
Declaring and using pointers might seem troublesome at this

point. Why assign *p_num a value when it is easier (and clearer) to

assign a value directly to num? If you are asking yourself that

question, you probably understand everything you should from

this chapter and are ready to begin learning the true power of

pointers: combining pointers and array processing.

Chapter 26 ♦ Pointers

556

557

EXAMPLE
C++ By

27

Pointers and
Arrays

Arrays and pointers are closely related in the C++ programming

language. You can address arrays as if they were pointers and

address pointers as if they were arrays. Being able to store and access

pointers and arrays gives you the ability to store strings of data in

array elements. Without pointers, you could not store strings of data

in arrays because there is no fundamental string data type in C++ (no

string variables, only string literals).

This chapter introduces the following concepts:

♦ Array names and pointers

♦ Character pointers

♦ Pointer arithmetic

♦ Ragged-edge arrays of string data

This chapter introduces concepts you will use for much of your

future programming in C++. Pointer manipulation is important to

the C++ programming language.

Chapter 27 ♦ Pointers and Arrays

558

Array Names as Pointers
An array name is just a pointer, nothing more. To prove this,

suppose you have the following array declaration:

int ara[5] = {10, 20, 30, 40, 50};

If you printed ara[0], you would see 10. Because you now fully

understand arrays, this is the value you would expect.

But what if you were to print *ara? Would *ara print anything?

If so, what? If you thought an error message would print because ara

is not a pointer but an array, you would be wrong. An array name

is a pointer. If you print *ara, you also would see 10.

Recall how arrays are stored in memory. Figure 27.1 shows

how ara would be mapped in memory. The array name, ara, is

nothing more than a pointer pointing to the first element of the array.

Therefore, if you dereference that pointer, you dereference the value

stored in the first element of the array, which is 10. Dereferencing ara

is exactly the same thing as referencing to ara[0], because they both

produce the same value.

An array name is a
pointer.

Figure 27.1. Storing the array called ara in memory.

You now see that you can reference an array with subscripts or

with pointer dereferencing. Can you use pointer notation to print

the third element of ara? Yes, and you already have the tools to do

so. The following cout prints ara[2] (the third element of ara) without

using a subscript:

cout << *(ara+2) ; // Prints ara[2].

ara

559

EXAMPLE
C++ By

The expression *(ara+2) is not vague at all, if you remember that

an array name is just a pointer that always points to the array’s first

element. *(ara+2) takes the address stored in ara, adds two to the

address, and dereferences that location. The following holds true:

ara+0 points to ara[0]

ara+1 points to ara[1]

ara+2 points to ara[2]

ara+3 points to ara[3]

ara+4 points to ara[4]

Therefore, to print, store, or calculate with an array element,

you can use either the subscript notation or the pointer notation.

Because an array name contains the address of the array’s first

element, you must dereference the pointer to get the element’s

value.

Internal Locations

C++ knows the internal data size requirements of characters,

integers, floating-points, and the other data types on your

computer. Therefore, because ara is an integer array, and

because each element in an integer array consumes two to four

bytes of storage, depending on the computer, C++ adds two or

four bytes to the address if you reference arrays as just shown.

If you write *(ara+3) to refer to ara[3], C++ would add six or

twelve bytes to the address of ara to get the third element. C++

does not add an actual three. You do not have to worry about

this, because C++ handles these internals. When you write

*(ara+3), you are actually requesting that C++ add three integer

addresses to the address of ara. If ara were a floating-point

array, C++ would add three floating-point addresses to ara.

Chapter 27 ♦ Pointers and Arrays

560

Pointer Advantages
Although arrays are actually pointers in disguise, they are

special types of pointers. An array name is a pointer constant, not a

pointer variable. You cannot change the value of an array name,

because you cannot change constants. This explains why you cannot

assign an array new values during a program’s execution. For

instance, even if cname is a character array, the following is not valid

in C++:

cname = “Christine Chambers”; // Invalid array assignment.

The array name, cname, cannot be changed because it is a

constant. You would not attempt the following

5 = 4 + 8 * 21; // Invalid assignment

because you cannot change the constant 5 to any other value. C++

knows that you cannot assign anything to 5, and C++ prints an error

message if you attempt to change 5. C++ also knows an array name

is a constant and you cannot change an array to another value. (You

can assign values to an array only at declaration time, one element

at a time during execution, or by using functions such as strcpy().)

This brings you to the most important reason to learn pointers:

pointers (except arrays referenced as pointers) are variables. You

can change a pointer variable, and being able to do so makes

processing virtually any data, including arrays, much more power-

ful and flexible.

Examples

1. By changing pointers, you make them point to different

values in memory. The following program demonstrates

how to change pointers. The program first defines two

floating-point values. A floating-point pointer points to the

first variable, v1, and is used in the cout. The pointer is then

changed so it points to the second floating-point variable, v2.

// Filename: C27PTRCH.CPP

// Changes the value of a pointer variable.

#include <iostream.h>

An array name is a
pointer constant.

561

EXAMPLE
C++ By

#include <iomanip.h>

void main()

{

 float v1=676.54; // Defines two

 float v2=900.18; // floating-point variables.

 float * p_v; / Defines a floating-point pointer.

 p_v = &v1; // Makes pointer point to v1.

 cout << “The first value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 676.54.

 p_v = &v2; // Changes the pointer so it

 // points to v2.

 cout << “The second value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 900.18.

 return;

}

Because they can change pointers, most C++ programmers

use pointers rather than arrays. Because arrays are easy to

declare, C++ programmers sometimes declare arrays and

then use pointers to reference those arrays. If the array data

changes, the pointer helps to change it.

2. You can use pointer notation and reference pointers as

arrays with array notation. The following program declares

an integer array and an integer pointer that points to the

start of the array. The array and pointer values are printed

using subscript notation. Afterwards, the program uses

array notation to print the array and pointer values.

Study this program carefully. You see the inner workings of

arrays and pointer notation.

// Filename: C27ARPTR.CPP

// References arrays like pointers and

// pointers like arrays.

#include <iostream.h>

void main()

{

 int ctr;

 int iara[5] = {10, 20, 30, 40, 50};

Chapter 27 ♦ Pointers and Arrays

562

 int *iptr;

 iptr = iara; // Make iptr point to array’s first

 // element. This would work also:

 // iptr = &iara[0];

 cout << “Using array subscripts:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << iara[ctr] << “\t” << iptr[ctr] << “\n”; }

 cout << “\nUsing pointer notation:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << *(iara+ctr) << “\t” << *(iptr+ctr) << “\n”; }

 return;

}

Here is the program’s output:

Using array subscripts:

iara iptr

10 10

20 20

30 30

40 40

50 50

Using pointer notation:

iara iptr

10 10

20 20

30 30

40 40

50 50

563

EXAMPLE
C++ By

Using Character Pointers
The ability to change pointers is best seen when working with

character strings in memory. You can store strings in character

arrays, or point to them with character pointers. Consider the

following two string definitions:

char cara[] = “C++ is fun”; // An array holding a string

char *cptr = “C++ By Example”; // A pointer to the string

Figure 27.2 shows how C++ stores these two strings in memory.

C++ stores both in basically the same way. You are familiar with the

array definition. When assigning a string to a character pointer, C++

finds enough free memory to hold the string and assign the address

of the first character to the pointer. The previous two string defini-

tion statements do almost exactly the same thing; the only difference

between them is that the two pointers can easily be exchanged (the

array name and the character pointers).

Because cout prints strings starting at the array or pointer name

until the null zero is reached, you can print each of these strings with

the following cout statements:

cout << “String 1: “ << cara << “\n”;

cout << “String 2: “ << cptr << “\n”;

You print strings in arrays and pointed-to strings the same

way. You might wonder what advantage one method of storing

strings has over the other. The seemingly minor difference between

these stored strings makes a big difference when you change them.

Suppose you want to store the string Hello in the two strings.

You cannot assign the string to the array like this:

cara = “Hello”; // Invalid

Because you cannot change the array name, you cannot assign

it a new value. The only way to change the contents of the array is by

assigning the array characters from the string an element at a time,

or by using a built-in function such as strcpy(). You can, however,

make the character array point to the new string like this:

Character pointers
can point to the first
character of a string.

Chapter 27 ♦ Pointers and Arrays

564

cptr = “Hello”; // Change the pointer so

 // it points to the new string.

Figure 27.2. Storing two strings: One in an array and one pointed to by a
pointer variable.

565

EXAMPLE
C++ By

TIP: If you want to store user input in a string pointed to by a

pointer, first you must reserve enough storage for that input

string. The easiest way to do this is to reserve a character array,

then assign a character pointer to the beginning element of that

array like this:

char input[81]; // Holds a string as long as

 // 80 characters.

char *iptr=input; // Also could have done this:

 // char *iptr=&input[0];

Now you can input a string by using the pointer:

gets(iptr); // Make sure iptr points to

 // the string typed by the user.

You can use pointer manipulation, arithmetic, and modifica-

tion on the input string.

Examples

1. Suppose you want to store your sister’s full name and print

it. Rather than using arrays, you can use a character pointer.

The following program does just that.

// Filename: C27CP1.CPP

// Stores a name in a character pointer.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s name is “ << c << “\n”;

 return;

}

This prints the following:

My sister’s name is Bettye Lou Horn

Chapter 27 ♦ Pointers and Arrays

566

2. Suppose you must change a string pointed to by a character

pointer. If your sister changed her last name to Henderson,

your program can show both strings in the following man-

ner:

Identify the program and include the I/O header file. This program
uses a character pointer, c, to point to a string literal in memory.
Point to the string literal, and print the string. Make the character-
pointer point to a new string literal, then print the new string.

// Filename: C27CP2.CPP

// Illustrates changing a character string.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c = “Bettye Lou Henderson”; // Assigns new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The output is as follows:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Bettye Lou Henderson

3. Do not use character pointers to change string constants.

Doing so can confuse the compiler, and you probably will

not get the results you expect. The following program is

similar to those you just saw. Rather than making the charac-

ter pointer point to a new string, this example attempts to

change the contents of the original string.

// Filename: C27CP3.CPP

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

567

EXAMPLE
C++ By

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last name

 // (the twelfth character).

 c = “Henderson”; // Assigns a new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The program seems to change the last name from Horn

to Henderson, but it does not. Here is the output of this

program:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Henderson

Why didn’t the full string print? Because the address

pointed to by c was incremented by 11, c still points to

Henderson, so that was all that printed.

4. You might guess at a way to fix the previous program.

Rather than printing the string stored at c after assigning it

to Henderson, you might want to decrement it by 11 so it

points to its original location, the start of the name. The code

to do this follows, but it does not work as expected. Study

the program before reading the explanation.

// Filename: C27CP4.C

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last

 // name (the twelfth character).

Chapter 27 ♦ Pointers and Arrays

568

 c = “Henderson”; // Assigns a new string to c.

 c -= 11; // Makes c point to its

 // original location (???).

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

This program produces garbage at the second cout. There are

actually two string literals in this program. When you first

assign c to Bettye Lou Horn, C++ reserves space in memory

for the constant string and puts the starting address of the

string in c.

When the program then assigns c to Henderson, C++ finds

room for another character constant, as shown in Figure 27.3.

If you subtract 11 from the location of c, after it points to the

new string Henderson, c points to an area of memory your

program is not using. There is no guarantee that printable

data appears before the string constant Henderson. If you want

to manipulate parts of the string, you must do so an element

at a time, just as you must with arrays.

Pointer Arithmetic
You saw an example of pointer arithmetic when you accessed

array elements with pointer notation. By now you should be com-

fortable with the fact that both of these array or pointer references

are identical:

ara[sub] and *(ara + sub)

You can increment or decrement a pointer. If you increment a

pointer, the address inside the pointer variable increments. The

pointer does not always increment by one, however.

Suppose f_ptr is a floating-point pointer indexing the first

element of an array of floating-point numbers. You could initialize

f_ptr as follows:

float fara[] = {100.5, 201.45, 321.54, 389.76, 691.34};

f_ptr = fara;

569

EXAMPLE
C++ By

New string in memory

Figure 27.3. Two string constants appear in memory because two string
constants are used in the program.

Chapter 27 ♦ Pointers and Arrays

570

Figure 27.4 shows what these variables look like in memory.

Each floating-point value in this example takes four bytes of memory.

Figure 27.4. A floating-point array and a pointer.

If you print the value of *f_ptr, you see 100.5. Suppose you

increment f_ptr by one with the following statement:

f_ptr++;

C++ does not add one to the address in f_ptr, even though it

seems as though one should be added. In this case, because floating-

point values take four bytes each on this machine, C++ adds four to

f_ptr. How does C++ know how many bytes to add to f_ptr? C++

knows from the pointer’s declaration how many bytes of memory

pointers take. This is why you have to declare the pointer with the

correct data type.

After incrementing f_ptr, if you were to print *f_ptr, you would

see 201.45, the second element in the array. If C++ added only one to

the address in f_ptr, f_ptr would point only to the second byte, 100.5.

This would output garbage to the screen.

NOTE: When you increment a pointer, C++ adds one full data-

type size (in bytes) to the pointer, not one byte. When you

decrement a pointer, C++ subtracts one full data type size (in

bytes) from the pointer.

Incrementing a
pointer can add
more than one byte
to the pointer.

571

EXAMPLE
C++ By

Examples

1. The following program defines an array with five values. An

integer pointer is then initialized to point to the first element

in the array. The rest of the program prints the dereferenced

value of the pointer, then increments the pointer so it points

to the next integer in the array.

Just to show you what is going on, the size of integer values

is printed at the bottom of the program. Because (in this

case) integers take two bytes, C++ increments the pointer by

two so it points to the next integer. (The integers are two

bytes apart from each other.)

// Filename: C27PTI.CPP

// Increments a pointer through an integer array.

#include <iostream.h>

void main()

{

 int iara[] = {10,20,30,40,50};

 int *ip = iara; // The pointer points to

 // The start of the array.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n\n”;

 cout << “The integer size is “ << sizeof(int);

 cout << “ bytes on this machine \n\n”;

 return;

}

Chapter 27 ♦ Pointers and Arrays

572

Here is the output from the program:

10

20

30

40

50

The integer size is two bytes on this machine

2. Here is the same program using a character array and a

character pointer. Because a character takes only one byte of

storage, incrementing a character pointer actually adds just

one to the pointer; only one is needed because the characters

are only one byte apart.

// Filename: C27PTC.CPP

// Increments a pointer through a character array.

#include <iostream.h>

void main()

{

 char cara[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

 char *cp = cara; // The pointers point to

 // the start of the array.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n\n”;

 cout << “The character size is “ << sizeof(char);

 cout << “ byte on this machine\n”;

 return;

}

3. The next program shows the many ways you can add to,

subtract from, and reference arrays and pointers. The pro-

gram defines a floating-point array and a floating-point

pointer. The body of the program prints the values from the

array using array and pointer notation.

573

EXAMPLE
C++ By

// Filename: C27ARPT2.CPP

// Comprehensive reference of arrays and pointers.

#include <iostream.h>

void main()

{

 float ara[] = {100.0, 200.0, 300.0, 400.0, 500.0};

 float *fptr; // Floating-point pointer.

 // Make pointer point to array’s first value.

 fptr = &ara[0]; // Also could have been this:

 // fptr = ara;

 cout << *fptr << “\n”; // Prints 100.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 200.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 300.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 400.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 500.0

 fptr = ara; // Points to first element again.

 cout << *(fptr+2) << “\n”; // Prints 300.00 but

 // does not change fptr.

 // References both array and pointer using subscripts.

 cout << (fptr+0)[0] << “ “ << (ara+0)[0] << “\n”;

 // 100.0 100.0

 cout << (fptr+1)[0] << “ “ << (ara+1)[0] << “\n”;

 // 200.0 200.0

 cout << (fptr+4)[0] << “ “ << (ara+4)[0] << “\n”;

 // 500.0 500.0

 return;

}

The following is the output from this program:

100.0

200.0

300.0

400.0

Chapter 27 ♦ Pointers and Arrays

574

500.0

300.0

100.0 100.0

200.0 200.0

500.0 500.0

Arrays of Strings
You now are ready for one of the most useful applications of

character pointers: storing arrays of strings. Actually, you cannot

store an array of strings, but you can store an array of character

pointers, and each character pointer can point to a string in memory.

By defining an array of character pointers, you define a ragged-
edge array. A ragged-edge array is similar to a two-dimensional

table, except each row contains a different number of characters

(instead of being the same length).

The word ragged-edge derives from the use of word processors.

A word processor typically can print text fully justified or with a

ragged-right margin. The columns of this paragraph are fully justi-

fied, because both the left and the right columns align evenly. Letters

you write by hand and type on typewriters (remember what a

typewriter is?) generally have ragged-right margins. It is difficult to

type so each line ends in exactly the same right column.

All two-dimensional tables you have seen so far have been fully

justified. For example, if you declared a character table with five

rows and 20 columns, each row would contain the same number of

characters. You could define the table with the following statement:

char names[5][20]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This table is shown in Figure 27.5. Notice that much of the table

is wasted space. Each row takes 20 characters, even though the data

in each row takes far fewer characters. The unfilled elements contain

null zeros because C++ nullifies all elements you do not initialize in

arrays. This type of table uses too much memory.

An array that a
character pointer
defines is a ragged-
edge array.

575

EXAMPLE
C++ By

Figure 27.5. A fully justified table.

To fix the memory-wasting problem of fully justified tables,

you should declare a single-dimensional array of character pointers.

Each pointer points to a string in memory, and the strings do not

have to be the same length.

Here is the definition for such an array:

char *names[5]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This array is single-dimensional. The definition should not

confuse you, although it is something you have not seen. The

asterisk before names makes this an array of pointers. The data type

of the pointers is character. The strings are not being assigned to the

array elements, but they are being pointed to by the array elements.

Figure 27.6 shows this array of pointers. The strings are stored

elsewhere in memory. Their actual locations are not critical because

each pointer points to the starting character. The strings waste

no data. Each string takes only as much memory as needed by the

string and its terminating zero. This gives the data its ragged-right

appearance.

Most of the table is wasted

Rows

Columns

Chapter 27 ♦ Pointers and Arrays

576

Figure 27.6. The array that points to each of the five strings.

To print the first string, you would use this cout:

cout << *names; // Prints George

To print the second string, you would use this cout:

cout << *(names+1); // Prints Michelle

Whenever you dereference any pointer element with the *

dereferencing operator, you access one of the strings in the array.

You can use a dereferenced element any place you use a string

constant or character array (with strcpy(), strcmp(), and so on).

TIP: Working with pointers to strings is much more efficient

than working directly with the strings. For instance, sorting a

list of strings takes much time if they are stored as a fully

justified table. Sorting strings pointed to by a pointer array is

much faster. You swap only pointers during the sort, not entire

strings.

Examples

1. Here is a full program that uses the pointer array with five

names. The for loop controls the cout function, printing each

name in the string data. Now you can see why learning

about pointer notation for arrays pays off!

// Filename: C27PTST1.CPP

// Prints strings pointed to by an array.

#include <iostream.h>

577

EXAMPLE
C++ By

void main()

{

 char *name[5]={ {“George”}, // Defines a ragged-edge

 {“Michelle”}, // array of pointers to

 {“Joe”}, // strings.

 {“Marcus”},

 {“Stephanie”} };

 int ctr;

 for (ctr=0; ctr<5; ctr++)

 { cout << “String #” << (ctr+1) <<

 “ is “ << *(name+ctr) << “\n”; }

 return;

}

The following is the output from this program:

String #1 is George

String #2 is Michelle

String #3 is Joe

String #4 is Marcus

String #5 is Stephanie

2. The following program stores the days of the week in an

array. When the user types a number from 1 to 7, the day of

the week that matches that number (with Sunday being 1)

displays by dereferencing the pointer referencing that string.

// Filename: C27PTST2.CPP

// Prints the day of the week based on an input value.

#include <iostream.h>

void main()

{

 char *days[] = {“Sunday”, // The seven separate sets

 “Monday”, // of braces are optional.

 “Tuesday”,

 “Wednesday”,

 “Thursday”,

 “Friday”,

 “Saturday”};

 int day_num;

Chapter 27 ♦ Pointers and Arrays

578

 do

 { cout << “What is a day number (from 1 to 7)? “;

 cin >> day_num;

 } while ((day_num<1) || (day_num>7)); // Ensures

 // an accurate number.

 day_num--; // Adjusts for subscript.

 cout << “The day is “ << *(days+day_num) << “\n”;

 return;

}

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between an array name and a pointer?

2. If you performed the following statement (assume ipointer

points to integers that take four bytes of memory),

ipointer += 2;

how many bytes are added to ipointer?

3. Which of the following are equivalent, assuming iary is an

integer array and iptr is an integer pointer pointing to the

start of the array?

a. iary and iptr

b. iary[1] and iptr+1

c. iary[3] and *(iptr + 3)

d. *iary and iary[0]

e. iary[4] and *iptr+4

4. Why is it more efficient to sort a ragged-edge character array

than a fully justified string array?

579

EXAMPLE
C++ By

5. Given the following array and pointer definition

int ara[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int *ip1, *ip2;

which of the following is allowed?

a. ip1 = ara;

b. ip2 = ip1 = &ara[3];

c. ara = 15;

d. *(ip2 + 2) = 15; // Assuming ip2 and ara are equal.

Review Exercises
1. Write a program to store your family members’ names in a

character array of pointers. Print the names.

2. Write a program that asks the user for 15 daily stock market

averages and stores those averages in a floating-point array.

Using only pointer notation, print the array forward and

backward. Again using only pointer notation, print the

highest and lowest stock market quotes in the list.

3. Modify the bubble sort shown in Chapter 24, “Array Pro-

cessing,” so that it sorts using pointer notation. Add this

bubble sort to the program in Exercise 2 to print the stock

market averages in ascending order

4. Write a program that requests 10 song titles from the user.

Store the titles in an array of character pointers (a ragged-

edge array). Print the original titles, print the alphabetized

titles, and print the titles in reverse alphabetical order (from

Z to A).

Chapter 27 ♦ Pointers and Arrays

580

Summary
You deserve a break! You now understand the foundation of

C++’s pointers and array notation. When you have mastered this

section, you are on your way to thinking in C++ as you design your

programs. C++ programmers know that C++’s arrays are pointers

in disguise, and they program them accordingly.

Being able to use ragged-edge arrays offers two advantages:

You can hold arrays of string data without wasting extra space, and

you can quickly change the pointers without having to move the

string data around in memory.

As you progress into advanced C++ concepts, you will appre-

ciate the time you spend mastering pointer notation. The next

chapter introduces a new topic called structures. Structures enable

you to store data in a more unified manner than simple variables

have allowed.

Part VII
Structures and File
Input/Output

583

EXAMPLE
C++ By

28

Structures

Using structures, you have the ability to group data and work with

the grouped data as a whole. Business data processing uses the

concept of structures in almost every program. Being able to ma-

nipulate several variables as a single group makes your programs

easier to manage.

This chapter introduces the following concepts:

♦ Structure definitions

♦ Initializing structures

♦ The dot operator (.)

♦ Structure assignment

♦ Nested structures

This chapter is one of the last in the book to present new

concepts. The remainder of the book builds on the structure con-

cepts you learn in this chapter.

Chapter 28 ♦ Structures

584

Introduction to Structures
A structure is a collection of one or more variable types. As you

know, each element in an array must be the same data type, and you

must refer to the entire array by its name. Each element (called a

member) in a structure can be a different data type.

Suppose you wanted to keep track of your CD music collection.

You might want to track the following pieces of information about

each CD:

Title

Artist

Number of songs

Cost

Date purchased

There would be five members in this CD structure.

TIP: If you have programmed in other computer languages, or

if you have ever used a database program, C++ structures are

analogous to file records, and members are analogous to fields

in those records.

After deciding on the members, you must decide what data

type each member is. The title and artist are character arrays, the

number of songs is an integer, the cost is floating-point, and the date

is another character array. This information is represented like this:

Member Name Data Type

Title Character array of 25 characters

Artist Character array of 20 characters

Number of songs Integer

Cost Floating-point

Date purchased Character array of eight characters

Structures can have
members of different
data types.

585

EXAMPLE
C++ By

Each structure you define can have an associated structure

name called a structure tag. Structure tags are not required in most

cases, but it is generally best to define one for each structure in your

program. The structure tag is not a variable name. Unlike array

names, which reference the array as variables, a structure tag is

simply a label for the structure’s format.

You name structure tags yourself, using the same naming rules

for variables. If you give the CD structure a structure tag named

cd_collection, you are informing C++ that the tag called cd_collection

looks like two character arrays, followed by an integer, a floating-

point value, and a final character array.

A structure tag is actually a newly defined data type that you,

the programmer, define. When you want to store an integer, you do

not have to define to C++ what an integer is. C++ already recognizes

an integer. When you want to store a CD collection’s data, however,

C++ is not capable of recognizing what format your CD collection

takes. You have to tell C++ (using the example being described here)

that you need a new data type. That data type will be your structure

tag, called cd_collection in this example, and it looks like the struc-

ture previously described (two character arrays, integer, floating-

point, and character array).

NOTE: No memory is reserved for structure tags. A structure

tag is your own data type. C++ does not reserve memory for the

integer data type until you declare an integer variable. C++

does not reserve memory for a structure until you declare a

structure variable.

Figure 28.1 shows the CD structure, graphically representing

the data types in the structure. Notice that there are five members

and each member is a different data type. The entire structure is

called cd_collection because that is the structure tag.

A structure tag is
a label for the
structure’s format.

Chapter 28 ♦ Structures

586

Figure 28.1. The layout of the cd_collection structure.

NOTE: The mailing-list application in Appendix F uses a

structure to hold people’s names, addresses, cities, states, and

ZIP codes.

Examples

1. Suppose you were asked to write a program for a company’s

inventory system. The company had been using a card-file

inventory system to track the following items:

Item name

Quantity in stock

Quantity on order

Retail price

Wholesale price

This would be a perfect use for a structure containing five

members. Before defining the structure, you have to deter-

mine the data types of each member. After asking questions

about the range of data (you must know the largest item

name, and the highest possible quantity that would appear

on order to ensure your data types can hold the data), you

decide to use the following structure tag and data types:

587

EXAMPLE
C++ By

Member Data Type

Item name Character array of 20 characters

Quantity in stock long int

Quantity on order long int

Retail price double

Wholesale price double

2. Suppose the same company also wanted you to write a

program to keep track of their monthly and annual salaries

and to print a report at the end of the year that showed each

month’s individual salary and the total salary at the end of

the year.

What would the structure look like? Be careful! This type of

data probably does not need a structure. Because all the

monthly salaries must be the same data type, a floating-

point or a double floating-point array holds the monthly

salaries nicely without the complexity of a structure.

Structures are useful for keeping track of data that must be

grouped, such as inventory data, a customer’s name and

address data, or an employee data file.

Defining Structures
To define a structure, you must use the struct statement. The

struct statement defines a new data type, with more than one

member, for your program. The format of the struct statement is

struct [structure tag]

 {

 member definition;

 member definition;

 :

 member definition;

 } [one or more structure variables];

Chapter 28 ♦ Structures

588

As mentioned earlier, structure tag is optional (hence the

brackets in the format). Each member definition is a normal variable

definition, such as int i; or float sales[20]; or any other valid

variable definition, including variable pointers if the structure re-

quires a pointer as a member. At the end of the structure’s definition,

before the final semicolon, you can specify one or more structure

variables.

If you specify a structure variable, you request C++ to reserve

space for that variable. This enables C++ to recognize that the

variable is not integer, character, or any other internal data type.

C++ also recognizes that the variable must be a type that looks like

the structure. It might seem strange that the members do not reserve

storage, but they don’t. The structure variables do. This becomes

clear in the examples that follow.

Here is the way you declare the CD structure:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1, cd2, cd3;

Before going any further, you should be able to answer the

following questions about this structure:

♦ What is the structure tag?

♦ How many members are there?

♦ What are the member data types?

♦ What are the member names?

♦ How many structure variables are there?

♦ What are their names?

The structure tag is called cd_collection. There are five mem-

bers, two character arrays, an integer, a floating-point, and a charac-

ter array. The member names are title, artist, num_songs, price, and

date_purch. There are three structure variables—cd1, cd2, and cd3.

589

EXAMPLE
C++ By

TIP: Often, you can visualize structure variables as a card-file

inventory system. Figure 28.2 shows how you might keep your

CD collection in a 3-by-5 card file. Each CD takes one card

(represented by its structure variable), which contains the

information about that CD (the structure members).

Figure 28.2. Using a card-file CD inventory system.

If you had 1000 CDs, you would have to declare 1000 structure

variables. Obviously, you would not want to list that many structure

variables at the end of a structure definition. To help define struc-

tures for a large number of occurrences, you must define an array of
structures. Chapter 29, “Arrays of Structures,” shows you how to do

that. For now, concentrate on familiarizing yourself with structure

definitions.

Examples

1. Here is a structure definition of the inventory application

described earlier in this chapter.

Chapter 28 ♦ Structures

590

struct inventory

{

 char item_name[20];

 long int in_stock;

 long int order_qty;

 float retail;

 float wholesale;

} item1, item2, item3, item4;

Four inventory structure variables are defined. Each struc-

ture variable—item1, item2, item3, and item4—looks like the

structure.

2. Suppose a company wanted to track its customers and

personnel. The following two structure definitions would

create five structure variables for each structure. This ex-

ample, having five employees and five customers, is very

limited, but it shows how structures can be defined.

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

} emp1, emp2, emp3, emp4, emp5;

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

} cust1, cust2, cust3, cust4, cust5;

Each structure has similar data. Later in this chapter, you

learn how to consolidate similar member definitions by

creating nested structures.

591

EXAMPLE
C++ By

TIP: Put comments to the right of members in order to docu-

ment the purpose of the members.

Initializing Structure Data
There are two ways to initialize members of a structure. You

can initialize members when you declare a structure, and you can

initialize a structure in the body of the program. Most programs lend

themselves to the latter method, because you do not always know

structure data when you write your program.

Here is an example of a structure declared and initialized at the

same time:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1 = {“Red Moon Men”, “Sam and the Sneeds”,

 12, 11.95, “02/13/92”};

When first learning about structures, you might be tempted to

initialize members individually inside the structure, such as

char artist[20]=”Sam and the Sneeds”; // Invalid

You cannot initialize individual members because they are not

variables. You can assign only values to variables. The only struc-

ture variable in this structure is cd1. The braces must enclose the data

you initialize in the structure variables, just as they enclose data

when you initialize arrays.

This method of initializing structure variables becomes tedious

when there are several structure variables (as there usually are).

Putting the data in several variables, each set of data enclosed in

braces, becomes messy and takes too much space in your code.

You can define a
structure’s data when
you declare the
structure.

Chapter 28 ♦ Structures

592

More importantly, you usually do not even know the contents

of the structure variables. Generally, the user enters data to be stored

in structures, or you read them from a disk file.

A better approach to initializing structures is to use the dot
operator (.). The dot operator is one way to initialize individual

members of a structure variable in the body of your program. With

the dot operator, you can treat each structure member almost as if it

were a regular nonstructure variable.

The format of the dot operator is

structure_variable_name.member_name

A structure variable name must always precede the dot opera-

tor, and a member name must always appear after the dot operator.

Using the dot operator is easy, as the following examples show.

Examples

1. Here is a simple program using the CD collection structure

and the dot operator to initialize the structure. Notice the

program treats members as if they were regular variables

when combined with the dot operator.

Identify the program and include the necessary header file. Define
a CD structure variable with five members. Fill the CD structure
variable with data, then print it.

// Filename: C28ST1.CPP

// Structure initialization with the CD collection.

#include <iostream.h>

#include <string.h>

void main()

{

 struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1;

Use the dot operator
to initialize members
of structures.

593

EXAMPLE
C++ By

 // Initialize members here.

 strcpy(cd1.title, “Red Moon Men”);

 strcpy(cd1.artist, “Sam and the Sneeds”);

 cd1.num_songs=12;

 cd1.price=11.95;

 strcpy(cd1.date_purch, “02/13/92”);

 // Print the data to the screen.

 cout << “Here is the CD information:\n\n”;

 cout << “Title: “ << cd1.title << “\n”;

 cout << “Artist: “ << cd1.artist << “\n”;

 cout << “Songs: “ << cd1.num_songs << “\n”;

 cout << “Price: “ << cd1.price << “\n”;

 cout << “Date purchased: “ << cd1.date_purch << “\n”;

 return;

}

Here is the output from this program:

Here is the CD information:

Title: Red Moon Men

Artist: Sam and the Sneeds

Songs: 12

Price: 11.95

Date purchased: 02/13/92

2. By using the dot operator, you can receive structure data

from the keyboard with any of the data-input functions you

know, such as cin, gets(), and get.

The following program asks the user for student informa-

tion. To keep the example reasonably short, only two stu-

dents are defined in the program.

// Filename: C28ST2.CPP

// Structure input with student data.

#include <iostream.h>

#include <string.h>

#include <iomanip.h>

#include <stdio.h>

Chapter 28 ♦ Structures

594

void main()

{

 struct students

 {

 char name[25];

 int age;

 float average;

 } student1, student2;

 // Get data for two students.

 cout << “What is first student’s name? “;

 gets(student1.name);

 cout << “What is the first student’s age? “;

 cin >> student1.age;

 cout << “What is the first student’s average? “;

 cin >> student1.average;

 fflush(stdin); // Clear input buffer for next input.

 cout << “\nWhat is second student’s name? “;

 gets(student2.name);

 cout << “What is the second student’s age? “;

 cin >> student2.age;

 cout << “What is the second student’s average? “;

 cin >> student2.average;

 // Print the data.

 cout << “\n\nHere is the student information you “ <<

 “entered:\n\n”;

 cout << “Student #1:\n”;

 cout << “Name: “ << student1.name << “\n”;

 cout << “Age: “ << student1.age << “\n”;

 cout << “Average: “ << setprecision(2) << student1.average

 << “\n”;

 cout << “\nStudent #2:\n”;

 cout << “Name: “ << student2.name << “\n”;

 cout << “Age: “ << student2.age << “\n”;

 cout << “Average: “ << student2.average << “\n”;

 return;

}

595

EXAMPLE
C++ By

Here is the output from this program:

What is first student’s name? Larry

What is the first student’s age? 14

What is the first student’s average? 87.67

What is second student’s name? Judy

What is the second student’s age? 15

What is the second student’s average? 95.38

Here is the student information you entered:

Student #1:

Name: Larry

Age: 14

Average: 87.67

Student #2:

Name: Judy

Age: 15

Average: 95.38

3. Structure variables are passed by copy, not by address as

arrays are. Therefore, if you fill a structure in a function, you

must return it to the calling function in order for the calling

function to recognize the structure, or use global structure

variables, which is generally not recommended.

TIP: A good solution to the local/global structure problem

is this: Define your structures globally without any structure

variables. Define all your structure variables locally to the

functions that need them. As long as your structure definition

is global, you can declare local structure variables from that

structure. All subsequent examples in this book use this method.

The structure tag plays an important role in the local/global

problem. Use the structure tag to define local structure

variables. The following program is similar to the previous

one. Notice the student structure is defined globally with no

Define structures
globally and
structure variables
locally.

Chapter 28 ♦ Structures

596

structure variables. In each function, local structure variables

are declared by referring to the structure tag. The structure

tag keeps you from having to redefine the structure mem-

bers every time you define a new structure variable.

// Filename: C28ST3.CPP

// Structure input with student data passed to functions.

#include <iostream.h>

#include <string.h>

#include <stdio.h>

#include <iomanip.h>

struct students fill_structs(struct students student_var);

void pr_students(struct students student_var);

struct students // A global structure.

 {

 char name[25];

 int age;

 float average;

 }; // No memory reserved.

void main()

{

 students student1, student2; // Defines two

 // local variables.

 // Call function to fill structure variables.

 student1 = fill_structs(student1); // student1

 // is passed by copy, so it must be

 // returned for main() to recognize it.

 student2 = fill_structs(student2);

 // Print the data.

 cout << “\n\nHere is the student information you”;

 cout << “ entered:\n\n”;

 pr_students(student1); // Prints first student’s data.

 pr_students(student2); // Prints second student’s data.

 return;

}

597

EXAMPLE
C++ By

struct students fill_structs(struct students student_var)

{

 // Get student’s data

 fflush(stdin); // Clears input buffer for next input.

 cout << “What is student’s name? “;

 gets(student_var.name);

 cout << “What is the student’s age? “;

 cin >> student_var.age;

 cout << “What is the student’s average? “;

 cin >> student_var.average;

 return (student_var);

}

void pr_students(struct students student_var)

{

 cout << “Name: “ << student_var.name << “\n”;

 cout << “Age: “ << student_var.age << “\n”;

 cout << “Average: “ << setprecision(2) <<

 student_var.average << “\n”;

 return;

}

The prototype and definition of the fill_structs() function

might seem complicated, but it follows the same pattern you

have seen throughout this book. Before a function name, you

must declare void or put the return data type if the function

returns a value. fill_structs() does return a value, and the

type of value it returns is struct students.

4. Because structure data is nothing more than regular vari-

ables grouped together, feel free to calculate using structure

members. As long as you use the dot operator, you can treat

structure members just as you would other variables.

The following example asks for a customer’s balance and

uses a discount rate, included in the customer’s structure, to

calculate a new balance. To keep the example short, the

structure’s data is initialized at variable declaration time.

This program does not actually require structures because

only one customer is used. Individual variables could have

Chapter 28 ♦ Structures

598

been used, but they don’t illustrate the concept of calculating

with structures.

// Filename: C28CUST.CPP

// Updates a customer balance in a structure.

#include <iostream.h>

#include <iomanip.h>

struct customer_rec

 {

 char cust_name[25];

 double balance;

 float dis_rate;

 } ;

void main()

{

 struct customer_rec customer = {“Steve Thompson”,

 431.23, .25};

 cout << “Before the update, “ << customer.cust_name;

 cout << “ has a balance of $” << setprecision(2) <<

 customer.balance << “\n”;

 // Update the balance

 customer.balance *= (1.0-customer.dis_rate);

 cout << “After the update, “ << customer.cust_name;

 cout << “ has a balance of $” << customer.balance << “\n”;

 return;

}

5. You can copy the members of one structure variable to the

members of another as long as both structures have the same

format. Some older versions of C++ require you to copy each

member individually when you want to copy one structure

variable to another, but AT&T C++ makes duplicating

structure variables easy.

599

EXAMPLE
C++ By

Being able to copy one structure variable to another will

seem more meaningful when you read Chapter 29, “Arrays

of Structures.”

The following program declares three structure variables,

but initializes only the first one with data. The other two are

then initialized by assigning the first structure variable to

them.

// Filename: C28STCPY.CPP

// Demonstrates assigning one structure to another.

#include <iostream.h>

#include <iomanip.h>

struct student

{

 char st_name[25];

 char grade;

 int age;

 float average;

};

void main()

{

 student std1 = {“Joe Brown”, ‘A’, 13, 91.4};

 struct student std2, std3; // Not initialized

 std2 = std1; // Copies each member of std1

 std3 = std1; // to std2 and std3.

 cout << “The contents of std2:\n”;

 cout << std2.st_name << “ “ << std2.grade << “ “;

 cout << std2.age << “ “ << setprecision(1) << std2.average

 << “\n\n”;

 cout << “The contents of std3:\n”;

 cout << std3.st_name << “ “ << std3.grade << “ “;

 cout << std3.age << “ “ << std3.average << “\n”;

 return;

}

Chapter 28 ♦ Structures

600

Here is the output from the program:

The contents of std2

Joe Brown, A, 13, 91.4

The contents of std3

Joe Brown, A, 13, 91.4

Notice each member of std1 was assigned to std2 and std3

with two single assignments.

Nested Structures
C++ gives you the ability to nest one structure definition in

another. This saves time when you are writing programs that use

similar structures. You have to define the common members only

once in their own structure and then use that structure as a member

in another structure.

The following two structure definitions illustrate this point:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

};

601

EXAMPLE
C++ By

These structures hold different data. One structure is for em-

ployee data and the other holds customer data. Even though the data

should be kept separate (you don’t want to send a customer a

paycheck!), the structure definitions have much overlap and can be

consolidated by creating a third structure.

Suppose you created the following structure:

struct address_info

{

 char address[30]; // Common address information.

 char city[10];

 char state[2];

 long int zip;

};

This structure could then be used as a member in the other

structures like this:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 address_info e_address; // Employee’s address.

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 address_info c_address; // Customer’s address.

 double balance; // Balance owed to company.

};

It is important to realize there are a total of three structures, and

that they have the tags address_info, employees, and customers. How

many members does the employees structure have? If you answered

three, you are correct. There are three members in both employees and

customers. The employees structure has the structure of a character

array, followed by the address_info structure, followed by the double

floating-point member, salary.

Figure 28.3 shows how these structures look.

Chapter 28 ♦ Structures

602

Figure 28.3. Defining a nested structure.

When you define a structure, that structure becomes a new data

type in the program and can be used anywhere a data type (such as

int, float, and so on) can appear.

You can assign members values using the dot operator. To

assign the customer balance a number, type something like this:

customer.balance = 5643.24;

The nested structure might seem to pose a problem. How can

you assign a value to one of the nested members? By using the dot

operator, you must nest the dot operator just as you nest the

structure definitions. You would assign a value to the customer’s

ZIP code like this:

customer.c_address.zip = 34312;

603

EXAMPLE
C++ By

To assign a value to the employee’s ZIP code, you would do

this:

employee.e_address.zip = 59823;

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between structures and arrays?

2. What are the individual elements of a structure called?

3. What are the two ways to initialize members of a structure?

4. Do you pass structures by copy or by address?

5. True or false: The following structure definition reserves

storage in memory:

struct crec

 { char name[25];

 int age;

 float sales[5];

 long int num;

 }

6. Should you declare a structure globally or locally?

7. Should you declare a structure variable globally or locally?

8. How many members does the following structure declara-

tion contain?

struct item

 {

 int quantity;

 part_rec item_desc;

 float price;

 char date_purch[8];

 };

Chapter 28 ♦ Structures

604

Review Exercises
1. Write a structure in a program that tracks a video store’s

tape inventory. Be sure the structure includes the tape title,

the length of the tape (in minutes), the initial purchase price

of the tape, the rental price of the tape, and the date of the

movie’s release.

2. Write a program using the structure you declared in Exer-

cise 1. Define three structure variables and initialize them

when you declare the variables with data. Print the data to

the screen.

3. Write a teacher’s program to keep track of 10 students’

names, ages, letter grades, and IQs. Use 10 different struc-

ture variable names and retrieve the data for the students in

a for loop from the keyboard. Print the data on the printer

when the teacher finishes entering the information for all the

students.

Summary
With structures, you have the ability to group data in more

flexible ways than with arrays. Your structures can contain mem-

bers of different data types. You can initialize the structures either

at declaration time or during the program with the dot operator.

Structures become even more powerful when you declare

arrays of structure variables. Chapter 29, “Arrays of Structures,”

shows you how to declare several structure variables without giving

them each a different name. This enables you to step through

structures much quicker with loop constructs.

353

EXAMPLE
C++ By

17

Variable Scope

The concept of variable scope is most important when you write

functions. Variable scope determines which functions recognize

certain variables. If a function recognizes a variable, the variable is

visible to that function. Variable scope protects variables in one

function from other functions that might overwrite them. If a

function doesn’t need access to a variable, that function shouldn’t be

able to see or change the variable. In other words, the variable

should not be “visible” to that particular function.

This chapter introduces you to

♦ Global and local variables

♦ Passing arguments

♦ Automatic and static variables

♦ Passing parameters

The previous chapter introduced the concept of using a differ-

ent function for each task. This concept is much more useful when

you learn about local and global variable scope.

Chapter 17 ♦ Variable Scope

354

Global Versus Local
Variables

If you have programmed only in BASIC, the concept of local

and global variables might be new to you. In many interpreted

versions of BASIC, all variables are global, meaning the entire

program knows each variable and has the capability to change any

of them. If you use a variable called SALES at the top of the program,

even the last line in the program can use SALES. (If you don’t know

BASIC, don’t despair—there will be one less habit you have to

break!)

Global variables can be dangerous. Parts of a program can

inadvertently change a variable that shouldn’t be changed. For

example, suppose you are writing a program that keeps track of a

grocery store’s inventory. You might keep track of sales percent-

ages, discounts, retail prices, wholesale prices, produce prices,

dairy prices, delivered prices, price changes, sales tax percentages,

holiday markups, post-holiday markdowns, and so on.

The huge number of prices in such a system is confusing. When

writing a program to keep track of every price, it would be easy to

mistakenly call both the dairy prices d_prices and the delivered

prices d_prices. Either C++ will not enable you to do this (you can’t

define the same variable twice) or you will overwrite a value used

for something else. Whatever happens, keeping track of all these

different—but similarly named—prices makes this program con-

fusing to write.

Global variables can be dangerous because code can inadvert-

ently overwrite a variable initialized elsewhere in the program. It is

better to make every variable local in your programs. Then, only

functions that should be able to change the variables can do so.

Local variables can be seen (and changed) only from the

function in which they are defined. Therefore, if a function defines

a variable as local, that variable’s scope is protected. The variable

cannot be used, changed, or erased by any other function without

special programming that you learn about shortly.

If you use only one function, main(), the concept of local and

global is academic. You know from Chapter 16, “Writing C++

Functions,” however, that single-function programs are not recom-

mended. It is best to write modular, structured programs made up

Global variables are
visible across many
program functions.

Local variables are
visible only in the
block where they are
defined.

355

EXAMPLE
C++ By

of many smaller functions. Therefore, you should know how to

define variables as local to only those functions that use them.

Defining Variable Scope

When you first learned about variables in Chapter 4, “Variables

and Literals,” you learned you can define variables in two places:

♦ Before they are used inside a function

♦ Before a function name, such as main()

All examples in this book have declared variables with the first

method. You have yet to see an example of the second method.

Because most these programs have consisted entirely of a single

main() function, there has been no reason to differentiate the two

methods. It is only after you start using several functions in one

program that these two variable definition methods become critical.

The following rules, specific to local and global variables, are

important:

♦ A variable is local if and only if you define it after the opening

brace of a block, usually at the top of a function.

♦ A variable is global if and only if you define it outside a

function.

All variables you have seen so far have been local. They have all

been defined immediately after the opening braces of main(). There-

fore, they have been local to main(), and only main() can use them.

Other functions have no idea these variables even exist because they

belong to main() only. When the function (or block) ends, all its local

variables are destroyed.

TIP: All local variables disappear (lose their definition) when

their block ends.

Global variables are visible (“known”) from their point of

definition to the end of the program. If you define a global variable,

any line throughout the rest of the program—no matter how many

functions and code lines follow it—is able to use that global variable.

Global variables are
visible from their
definition through
the remainder of the
program.

Chapter 17 ♦ Variable Scope

356

Examples

1. The following section of code defines two local variables,

i and j.

main()

{

 int i, j; // Local because they’re

 // defined after the brace.

 // Rest of main() goes here.

}

These variables are visible to main() and not to any other

function that might follow or be called by main().

2. The following section of code defines two global variables, g

and h.

#include <iostream.h>

int g, h; // Global because they’re

 // defined before a function.

main()

{

 // main()’s code goes here.

}

It doesn’t matter whether your #include lines go before or

after global variable declarations.

3. Global variables can appear before any function. In the

following program, main() uses no variables. However, both

of the two functions after main() can use sales and profit

because these variables are global.

// Filename: C17GLO.CPP

// Program that contains two global variables.

#include <iostream.h>

do_fun();

third_fun(); // Prototype discussed later.

main()

{

 cout << “No variables defined in main() \n\n”;

 do_fun(); // Call the first function.

357

EXAMPLE
C++ By

 return 0;

}

float sales, profit; // Two global variables.

do_fun()

{

 sales = 20000.00; // This variable is visible

 // from this point down.

 profit = 5000.00; // As is this one. They are

 // both global.

 cout << “The sales in the second function are “ <<

 sales << “\n”;

 cout << “The profit in the second function is “ <<

 profit << “\n\n”;

 third_fun(); // Call the third function to

 // show that globals are visible.

 return 0;

}

third_fun()

{

 cout << “In the third function: \n”;

 cout << “The sales in the third function are “ <<

 sales << “\n”;

 cout << “The profit in the third function is “ <<

 profit << “\n”;

 // If sales and profit were local, they would not be

 // visible by more than one function.

 return 0;

}

Notice that the main() function can never use sales and profit

because they are not visible to main()—even though they are

global. Remember, global variables are visible only from

their point of definition downward in the program. State-

ments that appear before global variable definitions can-

not use those variables. Here is the result of running this

program.

Chapter 17 ♦ Variable Scope

358

No variables defined in main()

The sales in the second function are 20000

The profit in the second function is 5000

In the third function:

The sales in the third function are 20000

The profit in the third function is 5000

TIP: Declare all global variables at the top of your pro-

grams. Even though you can define them later (between any

two functions), you can find them faster if you declare them at

the top.

4. The following program uses both local and global variables.

It should now be obvious to you that j and p are local and i

and z are global.

// Filename: C17GLLO.CPP

// Program with both local and global variables.

// Local Variables Global Variables

// j, p i, z

#include <iostream.h>

pr_again(); // Prototype

int i = 0; // Global variable because it’s

 // defined outside main().

main()

{

 float p ; // Local to main() only.

 p = 9.0; // Puts value in global variable.

 cout << i << “, “ << p << “\n”; // Prints global i

 // and local p.

 pr_again(); // Calls next function.

 return 0; // Returns to DOS.

 }

359

EXAMPLE
C++ By

float z = 9.0; // Global variable because it’s

 // defined before a function.

pr_again()

{

 int j = 5; // Local to only pr_again().

 cout << j << “, “ << z; // This can’t print p!.

 cout << “, “ << i << “\n”;

 return 0; // Return to main().

 }

Even though j is defined in a function that main() calls, main()

cannot use j because j is local to pr_again(). When pr_again()

finishes, j is no longer defined. The variable z is global from

its point of definition down. This is why main() cannot print

z. Also, the function pr_again() cannot print p because p is

local to main() only.

Make sure you can recognize local and global variables

before you continue. A little study here makes the rest of this

chapter easy to understand.

5. Two variables can have the same name, as long as they are

local to two different functions. They are distinct variables,

even though they are named identically.

The following short program uses two variables, both

named age. They have two different values, and they are

considered to be two different variables. The first age is local

to main(), and the second age is local to get_age().

// Filename: C17LOC1.CPP

// Two different local variables with the same name.

#include <iostream.h>

get_age(); // Prototype

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 get_age(); // Call the second function.

 cout << “main()’s age is still “ << age << “\n”;

Chapter 17 ♦ Variable Scope

360

 return 0;

}

get_age()

{

 int age; // A different age. This one

 // is local to get_age().

 cout << “What is your age again? “;

 cin >> age;

 return 0;

}

The output of this program follows. Study this output

carefully. Notice that main()’s last cout does not print the

newly changed age. Rather, it prints the age known to

main()—the age that is local to main(). Even though they are

named the same, main()’s age has nothing to do with

get_age()’s age. They might as well have two different vari-

able names.

What is your age? 28

What is your age again? 56

main()’s age is still 28

You should be careful when naming variables. Having two

variables with the same name is misleading. It would be

easy to become confused while changing this program later.

If these variables truly have to be separate, name them

differently, such as old_age and new_age, or ag1 and ag2. This

helps you remember that they are different.

6. There are a few times when overlapping local variable

names does not add confusion, but be careful about overdo-

ing it. Programmers often use the same variable name as the

counter variable in a for loop. For example, the two local

variables in the following program have the same name.

// Filename: C17LOC2.CPP

// Using two local variables with the same name

Variables local to
main() cannot be
used in another
function that
main() calls.

361

EXAMPLE
C++ By

// as counting variables.

#include <iostream.h>

do_fun(); // Prototype

main()

{

 int ctr; // Loop counter.

 for (ctr=0; ctr<=10; ctr++)

 { cout << “main()’s ctr is “ << ctr << “\n”; }

 do_fun(); // Call second function.

 return 0;

}

do_fun()

{

 int ctr;

 for (ctr=10; ctr>=0; ctr--)

 { cout << “do_fun()’s ctr is “ << ctr << “\n”; }

 return 0; // Return to main().

}

Although this is a nonsense program that simply prints 0

through 10 and then prints 10 through 0, it shows that using

ctr for both function names is not a problem. These variables

do not hold important data that must be processed; rather,

they are for loop-counting variables. Calling them both ctr

leads to little confusion because their use is limited to con-

trolling for loops. Because a for loop initializes and incre-

ments variables, the one function never relies on the other

function’s ctr to do anything.

7. Be careful about creating local variables with the same name

in the same function. If you define a local variable early in a

function and then define another local variable with the

same name inside a new block, C++ uses only the innermost

variable, until its block ends.

The following example helps clarify this confusing problem.

The program contains one function with three local vari-

ables. See if you can find these three variables.

Chapter 17 ♦ Variable Scope

362

// Filename: C17MULI.CPP

// Program with multiple local variables called i.

#include <iostream.h>

main()

{

 int i; // Outer i

 i = 10;

 { int i; // New block’s i

 i = 20; // Outer i still holds a 10.

 cout << i << “ “ << i << “\n”; // Prints 20 20.

 { int i; // Another new block and local variable.

 i = 30; // Innermost i only.

 cout << i << “ “ << i <<

 “ “ << i << “\n”; // Prints 30 30 30.

 } // Innermost i is now gone forever.

 } // Second i is gone forever (its block ended).

 cout << i << “ “ << i << “ “ <<

 i << “\n”; // Prints 10 10 10.

 return 0;

} // main() ends and so do its variables.

All local variables are local to the block in which they are

defined. This program has three blocks, each one nested

within another. Because you can define local variables

immediately after an opening brace of a block, there are

three distinct i variables in this program.

The local i disappears completely when its block ends (when

the closing brace is reached). C++ always prints the variable

that it interprets as the most local—the one that resides

within the innermost block.

Use Global Variables Sparingly

You might be asking yourself, “Why do I have to understand

global and local variables?” At this point, that is an understandable

363

EXAMPLE
C++ By

question, especially if you have been programming mostly in

BASIC. Here is the bottom line: Global variables can be dangerous.
Code can inadvertently overwrite a variable that was initialized in

another place in the program. It is better to have every variable in

your program be local to the function that has to access it.
Read the last sentence again. Even though you now know how

to make variables global, you should avoid doing so! Try to never

use another global variable. It might seem easier to use global

variables when you write programs having more than one function:

If you make every variable used by every function global, you never

have to worry whether one is visible or not to any given function. On

the other hand, a function can accidentally change a global variable

when that was not your intention. If you keep variables local only to

functions that need them, you protect their values, and you also keep

your programs fully modular.

The Need for Passing Variables

You just learned the difference between local and global vari-

ables. You saw that by making your variables local, you protect their

values because the function that sees the variable is the only one that

can modify it.

What do you do, however, if you have a local variable you want

to use in two or more functions? In other words, you might need a

variable to be both added from the keyboard in one function and

printed in another function. If the variable is local only to the first

function, how can the second one access it?

You have two solutions if more than one function has to share

a variable. One, you can declare the variable globally. This is not a

good idea because you want only those two functions to have access

to the variable, but all functions have access to it when it’s global. The

other alternative—and the better one by far—is to pass the local

variable from one function to another. This has a big advantage: The

variable is only known to those two functions. The rest of the

program still has no access to it.

Chapter 17 ♦ Variable Scope

364

CAUTION: Never pass a global variable to a function. There

is no reason to pass global variables anyway because they are

already visible to all functions.

When you pass a local variable from one function to another,

you pass an argument from the first function to the next. You can pass

more than one argument (variable) at a time, if you want several

local variables to be sent from one function to another. The receiving

function receives a parameter (variable) from the function that sends

it. You shouldn’t worry too much about what you call them—either

arguments or parameters. The important thing to remember is that

you are sending local variables from one function to another.

NOTE: You have already passed arguments to parameters

when you passed data to the cout operator. The literals, vari-

ables, and expressions in the cout parentheses are arguments.

The built-in cout function receives these values (called param-

eters on the receiving end) and displays them.

A little more terminology is needed before you see some

examples. When a function passes an argument, it is called the

calling function. The function that receives the argument (called a

parameter when it is received) is called the receiving function. Figure

17.1 explains these terms.

You pass an
argument when you
pass one local
variable to another
function.

Figure 17.1. The calling and receiving functions.

To pass a local variable from one function to another, you must

place the local variable in parentheses in both the calling func-

tion and the receiving function. For example, the local and global

If a function name
has empty
parentheses, nothing
is being passed to it.

365

EXAMPLE
C++ By

examples presented earlier did not pass local variables from main()

to do_fun(). If a function name has empty parentheses, nothing is

being passed to it. Given this, the following line passes two vari-

ables, total and discount, to a function called do_fun().

do_fun(total, discount);

It is sometimes said that a variable or function is defined. This

has nothing to do with the #define preprocessor directive, which

defines literals. You define variables with statements such as the

following:

int i, j;

int m=9;

float x;

char ara[] = “Tulsa”;

These statements tell the program that you need these variables

to be reserved. A function is defined when the C++ compiler reads

the first statement in the function that describes the name and when

it reads any variables that might have been passed to that function

as well. Never follow a function definition with a semicolon, but

always follow the statement that calls a function with a semicolon.

NOTE: To some C++ purists, a variable is only declared when

you write int i; and only truly defined when you assign it a

value, such as i=7;. They say that the variable is both declared

and defined when you declare the variable and assign it a value

at the same time, such as int i=7;.

The following program contains two function definitions,

main() and pr_it().

To practice passing a variable to a function, declare i as an integer variable
and make it equal to five. The passing (or calling) function is main(), and
the receiving function is pr_it(). Pass the i variable to the pr_it()
function, then go back to main().

Chapter 17 ♦ Variable Scope

366

main() // The main() function definition.

{

 int i=5; // Defines an integer variable.

 pr_it(i); // Calls the pr_it().

 // function and passes it i.

 return 0; // Returns to the operating system.

}

pr_it(int i) // The pr_it() function definition.

{

 cout << i << “\n”; // Calls the cout operator.

 return 0; // Returns to main().

}

Because a passed parameter is treated like a local variable in the

receiving function, the cout in pr_it() prints a 5, even though the

main() function initialized this variable.

When you pass arguments to a function, the receiving function

is not aware of the data types of the incoming variables. Therefore,

you must include each parameter’s data type in front of the

parameter’s name. In the previous example, the definition of pr_it()

(the first line of the function) contains the type, int, of the incoming

variable i. Notice that the main() calling function does not have to

indicate the variable type. In this example, main() already knows the

type of variable i (an integer); only pr_it() has to know that i is an

integer.

TIP: Always declare the parameter types in the receiving

function. Precede each parameter in the function’s parentheses

with int, float, or whatever each passed variable’s data type is.

Examples

1. Here is a main() function that contains three local variables.

main() passes one of these variables to the first function and

two of them to the second function.

367

EXAMPLE
C++ By

// Filename: C17LOC3.CPP

// Pass three local variables to functions.

#include <iostream.h>

#include <iomanip.h>

pr_init(char initial); // Prototypes discussed later.

pr_other(int age, float salary);

main()

{

 char initial; // Three variables local to

 // main().

 int age;

 float salary;

 // Fill these variables in main().

 cout << “What is your initial? “;

 cin >> initial;

 cout << “What is your age? “;

 cin >> age;

 cout << “What is your salary? “;

 cin >> salary;

 pr_init(initial); // Call pr_init() and

 // pass it initial.

 pr_other(age, salary); // Call pr_other() and

 // pass it age and salary.

 return 0;

}

pr_init(char initial) // Never put a semicolon in

 // the function definition.

{

 cout << “Your initial is “ << initial << “\n”;

 return 0; // Return to main().

}

pr_other(int age, float salary) // Must type both parameters.

{

 cout << “You look young for “ << age << “\n”;

 cout << “And “ << setprecision(2) << salary <<

Chapter 17 ♦ Variable Scope

368

 “ is a LOT of money!”;

 return 0; // Return to main().

}

2. A receiving function can contain its own local variables.

As long as the names are not the same, these local variables

do not conflict with the passed ones. In the following pro-

gram, the second function receives a passed variable from

main() and defines its own local variable called price_per.

// Filename: C17LOC4.CPP

// Second function has its own local variable.

#include <iostream.h>

#include <iomanip.h>

compute_sale(int gallons); // Prototypes discussed later.

main()

{

 int gallons;

 cout << “Richard’s Paint Service \n”;

 cout << “How many gallons of paint did you buy? “;

 cin >> gallons; // Get gallons in main().

 compute_sale(gallons); // Compute total in function.

 return 0;

}

compute_sale(int gallons)

{

 float price_per = 12.45; // Local to compute_sale().

 cout << “The total is “ << setprecision(2) <<

 (price_per*(float)gallons) << “\n”;

 // Had to type cast gallons because it was integer.

 return 0; // Return to main().

}

3. The following sample code lines test your skill at recog-

nizing calling functions and receiving functions. Being able

to recognize the difference is half the battle of understanding

them.

369

EXAMPLE
C++ By

do_it()

The preceding fragment must be the first line of a new

function because it does not end with a semicolon.

do_it2(sales);

This line calls a function called do_it2(). The calling function

passes the variable called sales to do_it2().

pr_it(float total)

The preceding line is the first line of a function that receives

a floating-point variable from another function that called it.

All receiving functions must specify the type of each variable

being passed.

pr_them(float total, int number)

This is the first line of a function that receives two vari-

ables—one is a floating-point variable and the other is an

integer. This line cannot be calling the function pr_them

because there is no semicolon at the end of the line.

Automatic Versus Static
Variables

The terms automatic and static describe what happens to local

variables when a function returns to the calling procedure. By

default, all local variables are automatic, meaning that they are

erased when their function ends. You can designate a variable as

automatic by prefixing its definition with the term auto. The auto

keyword is optional with local variables because they are automatic

be default.

The two statements after main()’s opening brace declare auto-

matic local variables:

main()

{

 int i;

 auto float x;

 // Rest of main() goes here.

Chapter 17 ♦ Variable Scope

370

Because auto is the default, you did not have to include the term

auto with x.

NOTE: C++ programmers rarely use the auto keyword with

local variables because they are automatic by default.

The opposite of an automatic variable is a static variable. All

global variables are static and, as mentioned, all static variables

retain their values. Therefore, if a local variable is static, it too retains

its value when its function ends—in case the function is called a

second time. To declare a variable as static, place the static keyword

in front of the variable when you define it. The following code

section defines three variables, i, j, and k. The variable i is automatic,

but j and k are static.

my_fun() // Start of new function definition.

{

 int i;

 static j=25; // Both j and k are static variables.

 static k=30;

Always assign an initial value to a static variable when you

declare it, as shown here in the last two lines. This initial value is

placed in the static variable only the first time my_fun() executes. If

you don’t assign a static variable an initial value, C++ initializes it to

zero.

TIP: Static variables are good to use when you write functions

that keep track of a count or add to a total. If the counting or

totaling variables were local and automatic, their values would

disappear when the function finished—destroying the totals.

Automatic variables
are local and
disappear when their
function ends.

If local variables are
static, their values
remain in case the
function is called
again.

371

EXAMPLE
C++ By

Automatic and Static Rules for Local Variables

Local automatic variables disappear when their block ends. All

local variables are automatic by default. You can prefix a

variable (when you define it) with the auto keyword, or you can

omit it; the variable is still automatic and its value is destroyed

when its local block ends.

Local static variables do not lose their values when their

function ends. They remain local to that function. When the

function is called after the first time, the static variable’s value

is still in place. You declare a static variable by placing the

static keyword before the variable’s definition.

Examples

1. Consider this program:

// Filename: C17STA1.CPP

// Tries to use a static variable

// without a static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 int total=0, ans; // Local automatic variables.

Chapter 17 ♦ Variable Scope

372

 // Triples whatever value is passed to it

 // and adds the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This is a nonsense program that doesn’t do much, yet you

might sense something is wrong. The program passes num-

bers from 1 to 25 to the function called triple_it. The function

triples the number and prints it.

The variable called total is initially set to 0. The idea here is to

add each tripled number and print a message when the total

is larger than 300. However, the cout never executes. For each

of the 25 times that this subroutine is called, total is reset to 0.

The total variable is an automatic variable, with its value

erased and initialized every time its procedure is called. The

next example corrects this.

2. If you want total to retain its value after the procedure ends,

you must make it static. Because local variables are automatic

by default, you have to include the static keyword to over-

ride this default. Then the value of the total variable is

retained each time the subroutine is called.

The following corrects the mistake in the previous program.

// Filename: C17STA2.CPP

// Uses a static variable with the static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

373

EXAMPLE
C++ By

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 static int total=0; // Local and static

 int ans; // Local and automatic

 // total is set to 0 only the first time this

 // function is called.

 // Triples whatever value is passed to it and adds

 // the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This program’s output follows. Notice that the function’s

cout is triggered, even though total is a local variable. Be-

cause total is static, its value is not erased when the function

finishes. When main() calls the function a second time, total’s

previous value (at the time you left the routine) is still there.

The number 1 multiplied by 3 is 3

The number 2 multiplied by 3 is 6

The number 3 multiplied by 3 is 9

The number 4 multiplied by 3 is 12

Chapter 17 ♦ Variable Scope

374

The number 5 multiplied by 3 is 15

The number 6 multiplied by 3 is 18

The number 7 multiplied by 3 is 21

The number 8 multiplied by 3 is 24

The number 9 multiplied by 3 is 27

The number 10 multiplied by 3 is 30

The number 11 multiplied by 3 is 33

The number 12 multiplied by 3 is 36

The number 13 multiplied by 3 is 39

The number 14 multiplied by 3 is 42

The number 15 multiplied by 3 is 45

The number 16 multiplied by 3 is 48

The number 17 multiplied by 3 is 51

The number 18 multiplied by 3 is 54

The number 19 multiplied by 3 is 57

The number 20 multiplied by 3 is 60

The number 21 multiplied by 3 is 63

The number 22 multiplied by 3 is 66

The number 23 multiplied by 3 is 69

The number 24 multiplied by 3 is 72

The number 25 multiplied by 3 is 75

This does not mean that local static variables become global.

The main program cannot refer, use, print, or change total

because it is local to the second function. Static simply

means that the local variable’s value is still there if the

program calls the function again.

Three Issues of Parameter
Passing

To have a complete understanding of programs with several

functions, you have to learn three additional concepts:

♦ Passing arguments (variables) by value (also called “by

copy”)

♦ Passing arguments (variables) by address (also called “by

reference”)

♦ Returning values from functions

375

EXAMPLE
C++ By

The first two concepts deal with the way local variables are

passed and received. The third concept describes how receiving

functions send values back to the calling functions. Chapter 18,

“Passing Values,” concludes this discussion by explaining these

three methods for passing parameters and returning values.

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command, even though return is not

required.

2. When a local variable is passed, is it called an argument or a

parameter?

3. True or false: A function that is passed variables from an-

other function cannot also have its own local variables.

4. What must appear inside the receiving function’s parenthe-

ses, other than the variables passed to it?

5. If a function keeps track of a total or count every time it is

called, should the counting or totaling variable be automatic

or static?

6. When would you pass a global variable to a function? (Be

careful—this might be a trick question!)

7. How many arguments are there in the following statement?

printf(“The rain has fallen %d inches.”, rainf);

Review Exercises
1. Write a program that asks, in main(), for the age of the user’s

dog. Write a second function called people() that computes

the dog’s age in human years (by multiplying the dog’s age

by seven).

Chapter 17 ♦ Variable Scope

376

2. Write a function that counts the number of times it is called.

Name the function count_it(). Do not pass it anything. In the

body of count_it(), print the following message:

The number of times this function has been called is: ##

where ## is the number. (Hint: Because the variable must be

local, make it static and initialize it to zero when you first

define it.)

3. The following program contains several problems. Some of

these problems produce errors. One problem is not an error,

but a bad location for a variable declaration. (Hint: Find all

the global variables.) See if you can spot some of the prob-

lems, and rewrite the program so it works better.

// Filename: C17BAD.CPP

// Program with bad uses of variable declarations.

#include <iostream.h>

#define NUM 10

do_var_fun(); // Prototypes discussed later.

char city[] = “Miami”;

int count;

main()

{

 int abc;

 count = NUM;

 abc = 5;

 do_var_fun();

 cout << abc << “ “ << count << “ “ << pgm_var << “ “

 << xyz;

 return 0;

}

int pgm_var = 7;

do_var_fun()

377

EXAMPLE
C++ By

{

 char xyz = ‘A’;

 xyz = ‘b’;

 cout << xyz << “ “ << pgm_var << “ “ abc << “ “ << city;

 return 0;

}

Summary
Parameter passing is necessary because local variables are

better than global. Local variables are protected in their own rou-

tines, but sometimes they must be shared with other routines. If

local data are to remain in those variables (in case the function is

called again in the same program), the variables should be static

because otherwise their automatic values disappear.

Most the information in this chapter becomes more obvious as

you use functions in your own programs. Chapter 18, “Passing

Values,” covers the actual passing of parameters in more detail and

shows you two different ways to pass them.

Chapter 17 ♦ Variable Scope

378

379

EXAMPLE
C++ By

18

Passing Values

C++ passes variables between functions using two different meth-

ods. The one you use depends on how you want the passed variables

to be changed. This chapter explores these two methods. The con-

cepts discussed here are not new to the C++ language. Other

programming languages, such as Pascal, FORTRAN, and QBasic,

pass parameters using similar techniques. A computer language

must have the capability to pass information between functions

before it can be called truly structured.

This chapter introduces you to the following:

♦ Passing variables by value

♦ Passing arrays by address

♦ Passing nonarrays by address

Pay close attention because most of the programs in the remain-

der of the book rely on the methods described in this chapter.

Passing by Value (by Copy)
The two wordings “passing by value” and “passing by copy”

mean the same thing in computer terms. Some textbooks and C++

programmers state that arguments are passed by value, and some

state that they are passed by copy. Both of these phrases describe one

Chapter 18 ♦ Passing Values

380

of the two methods by which arguments are passed to receiving

functions. (The other method is called “by address,” or “by refer-

ence.” This method is covered later in the chapter.)

When an argument (local variable) is passed by value, a copy

of the variable’s value is sent to—and is assigned to—the receiving

function’s parameter. If more than one variable is passed by value,

a copy of each of their values is sent to—and is assigned to—the

receiving function’s parameters.

Figure 18.1 shows the passing by copy in action. The value of i—

not the variable—is passed to the called function, which receives it

as a variable i. There are two variables called i, not one. The first is

local to main(), and the second is local to pr_it(). They both have the

same names, but because they are local to their respective functions,

there is no conflict. The variable does not have to be called i in both

functions, and because the value of i is sent to the receiving function,

it does not matter what the receiving function calls the variable that

receives this value.

When you pass by
value, a copy of the
variable’s value is
passed to the
receiving function.

5

Figure 18.1. Passing the variable i by value.

In this case, when passing and receiving variables between

functions, it is wisest to retain the same names. Even though they are

not the same variables, they hold the same value. In this example, the

value 5 is passed from main()’s i to pr_it()’s i.

Because a copy of i’s value (and not the variable itself) is passed

to the receiving function, if pr_it() changed i, it would be changing

only its copy of i and not main()’ s i. This fact truly separates

functions and variables. You now have the technique for passing a

copy of a variable to a receiving function, with the receiving function

being unable to modify the calling function’s variable.

5

381

EXAMPLE
C++ By

All C++’s nonarray variables you have seen so far are passed by

value. You do not have to do anything special to pass variables by

value, except to pass them in the calling function’s argument list and

receive them in the receiving function’s parameter list.

NOTE: The default method for passing parameters is by value,

as just described, unless you pass arrays. Arrays are always

passed by the other method, by address, described later in the

chapter.

Examples

1. The following program asks users for their weight. It then

passes that weight to a function that calculates the equiva-

lent weight on the moon. Notice the second function uses the

passed value, and calculates with it. After weight is passed to

the second function, that function can treat weight as though

it were a local variable.

Identify the program and include the necessary input/output file.

You want to calculate the user’s weight on the moon. Because you
have to hold the user’s weight somewhere, declare the variable
weight as an integer. You also need a function that does the
calculations, so create a function called moon().

Ask the user how much he or she weighs. Put the user’s answer in
weight. Now pass the user’s weight to the moon() function, which
divides the weight by six to determine the equivalent weight on the
moon. Display the user’s weight on the moon.

You have finished, so leave the moon() function, then leave the
main() function.

// Filename: C18PASS1.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int weight); // Prototypes discussed later.

Chapter 18 ♦ Passing Values

382

main()

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int weight) // Declare the passed parameter.

{

 // Moon weights are 1/6th earth’s weights

 weight /= 6; // Divide the weight by six.

 cout << “You weigh only “ << weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The output of this program follows:

How many pounds do you weigh? 120

You weigh only 20 pounds on the moon!

2. You can rename passed variables in the receiving function.

They are distinct from the passing function’s variable. The

following is the same program as in Example 1, except the

receiving function calls the passed variable earth_weight. A

new variable, called moon_weight, is local to the called func-

tion and is used for the moon’s equivalent weight.

// Filename: C18PASS2.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int earth_weight);

main()

383

EXAMPLE
C++ By

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int earth_weight) // Declare the passed parameter.

{

 int moon_weight; // Local to this function.

 // Moon's weights are 1/6th of earth’s weights.

 moon_weight = earth_weight / 6; // Divide weight by six.

 cout << “You only weigh “ << moon_weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The resulting output is identical to that of the previous

program. Renaming the passed variable changes nothing.

3. The next example passes three variables—of three different

types—to the called function. In the receiving function’s

parameter list, each of these variable types must be declared.

This program prompts users for three values in the main()

function. The main() function then passes these variables to

the receiving function, which calculates and prints values

related to those passed variables. When the called function

modifies a variable passed to the function, notice again that

this does not affect the calling function’s variable. When

variables are passed by value, the value—not the variable—

is passed.

// Filename: C18PASS3.CPP

// Get grade information for a student.

#include <iostream.h>

#include <iomanip.h>

check_grade(char lgrade, float average, int tests);

Chapter 18 ♦ Passing Values

384

main()

{

 char lgrade; // Letter grade.

 int tests; // Number of tests not yet taken.

 float average; // Student’s average based on 4.0 scale.

 cout << “What letter grade do you want? “;

 cin >> lgrade;

 cout << “What is your current test average? “;

 cin >> average;

 cout << “How many tests do you have left? “;

 cin >> tests;

 check_grade(lgrade, average, tests); // Calls function

 // and passes three variables by value.

 return 0;

}

check_grade(char lgrade, float average, int tests)

{

 switch (tests)

 {

 case (0): { cout << “You will get your current grade “

 << “of “ << lgrade;

 break; }

 case (1): { cout << “You still have time to bring “ <<

 “up your average”;

 cout << “of “ << setprecision(1) <<

 average << “up. Study hard!”;

 break; }

 default: { cout << “Relax. You still have plenty of “

 << “time.”;

 break; }

 }

 return 0;

}

385

EXAMPLE
C++ By

Passing by Address
(by Reference)

The two phrases “by address” and “by reference” mean the

same thing. The previous section described passing arguments by

value (or by copy). This section teaches you how to pass arguments

by address.

When you pass an argument (local variable) by address, the

variable’s address is sent to—and is assigned to—the receiving

function’s parameter. (If you pass more than one variable by ad-

dress, each of their addresses is sent to—and is assigned to—the

receiving function’s parameters.)

Variable Addresses

All variables in memory (RAM) are stored at memory ad-

dresses—see Figure 18.2. If you want more information on the

internal representation of memory, refer to Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review.”

Figure 18.2. Memory addresses.

When you tell C++ to define a variable (such as int i;), you are

requesting C++ to find an unused place in memory and assign that

place (or memory address) to i. When your program uses the

variable called i, C++ goes to i’s address and uses whatever is there.

When you pass by
address, the address
of the variable is
passed to the
receiving function.

Chapter 18 ♦ Passing Values

386

If you define five variables as follows,

int i;

float x=9.8;

char ara[2] = {‘A’, ‘B’};

int j=8, k=3;

C++ might arbitrarily place them in memory at the addresses

shown in Figure 18.3.

All C++ arrays are
passed by address.

Figure 18.3. Storing variables in memory.

You don’t know what is contained in the variable called i

because you haven’t put anything in it yet. Before you use i, you

should initialize it with a value. (All variables—except character

variables—usually use more than 1 byte of memory.)

Sample Program

The address of the variable, not its value, is copied to the

receiving function when you pass a variable by address. In C++, all
arrays are automatically passed by address. (Actually, a copy of their

address is passed, but you will understand this better when you

learn more about arrays and pointers.) The following important rule

holds true for programs that pass by address:

387

EXAMPLE
C++ By

Every time you pass a variable by address, if the receiving

function changes the variable, it is changed also in the

calling function.

Therefore, if you pass an array to a function and the function

changes the array, those changes are still with the array when it

returns to the calling function. Unlike passing by value, passing by

address gives you the ability to change a variable in the called
function and to keep those changes in effect in the calling function.

The following sample program helps to illustrate this concept.

// Filename: C18ADD1.CPP

// Passing by address example.

#include <iostream.h>

#include <string.h>

change_it(char c[4]); // Prototype discussed later.

main()

{

 char name[4]=”ABC”;

 change_it(name); // Passes by address because

 // it is an array.

 cout << name << “\n”; // Called function can

 // change array.

 return 0;

}

change_it(char c[4]) // You must tell the function

 // that c is an array.

{

 cout << c << “\n”; // Print as it is passed.

 strcpy(c, “USA”); // Change the array, both

 // here and in main().

 return 0;

}

Here is the output from this program:

ABC

USA

Chapter 18 ♦ Passing Values

388

At this point, you should have no trouble understanding that

the array is passed from main() to the function called change_it().

Even though change_it() calls the array c, it refers to the same array

passed by the main() function (name).

Figure 18.4 shows how the array is passed. Although the

address of the array—and not its value—is passed from name to c,

both arrays are the same.

ara

Figure 18.4. Passing an array by address.

Before going any further, a few additional comments are in

order. Because the address of name is passed to the function—even

though the array is called c in the receiving function—it is still the

same array as name. Figure 18.5 shows how C++ accomplishes this

task at the memory-address level.

Figure 18.5. The array being passed is the same array in both functions.

The variable array is referred to as name in main() and as c in

change_it(). Because the address of name is copied to the receiving

function, the variable is changed no matter what it is called in either

389

EXAMPLE
C++ By

function. Because change_it() changes the array, the array is changed

also in main().

Examples

1. You can now use a function to fill an array with user input.

The following function asks users for their first name in the

function called get_name(). As users type the name in the

array, it is also entered in main()’s array. The main() function

then passes the array to pr_name(), where it is printed. (If

arrays were passed by value, this program would not work.

Only the array value would be passed to the called func-

tions.)

// Filename: C18ADD2.CPP

// Get a name in an array, then print it using

// separate functions.

#include <iostream.h>

get_name(char name[25]); // Prototypes discussed later.

print_name(char name[25]);

main()

{

 char name[25];

 get_name(name); // Get the user’s name.

 print_name(name); // Print the user’s name.

 return 0;

}

get_name(char name[25]) // Pass the array by address.

{

 cout << “What is your first name? “;

 cin >> name;

 return 0;

}

print_name(char name[25])

{

 cout << “\n\n Here you are, “ << name;

 return 0;

}

Chapter 18 ♦ Passing Values

390

When you pass an array, be sure to specify the array’s type

in the receiving function’s parameter list. If the previous

program declared the passed array with

get_name(char name)

the function get_name() would interpret this as a single

character variable, not a character array. You never have to

put the array size in brackets. The following statement also

works as the first line of get_name().

get_name(char name[])

Most C++ programmers put the array size in the brackets to

clarify the array size, even though the size is not needed.

2. Many programmers pass character arrays to functions to

erase them. Here is a function called clear_it(). It expects

two parameters: a character array and the total number of

elements declared for that array. The array is passed by

address (as are all arrays) and the number of elements,

num_els, is passed by value (as are all nonarrays). When the

function finishes, the array is cleared (all its elements are

reset to null zero). Subsequent functions that use it can then

have an empty array.

clear_it(char ara[10], int num_els)

{

 int ctr;

 for (ctr=0; ctr<num_els; ctr++)

 { ara[ctr] = ‘\0’; }

 return 0;

}

The brackets after ara do not have to contain a number, as

described in the previous example. The 10 in this example is

simply a placeholder for the brackets. Any value (or no

value) would work as well.

391

EXAMPLE
C++ By

Passing Nonarrays by Address

You now should see the difference between passing variables

by address and by value. Arrays can be passed by address, and

nonarrays can be passed by value. You can override the by value
default for nonarrays. This is helpful sometimes, but it is not always

recommended because the called function can damage values in the

called function.

If you want a nonarray variable changed in a receiving function

and also want the changes kept in the calling function, you must

override the default and pass the variable by address. (You should

understand this section better after you learn how arrays and

pointers relate.) To pass a nonarray by address, you must precede

the argument in the receiving function with an ampersand (&).

This might sound strange to you (and it is, at this point). Few

C++ programmers override the default of passing by address. When

you learn about pointers later, you should have little need to do so.

Most C++ programmers don’t like to clutter their code with these

extra ampersands, but it’s nice to know you can override the default

if necessary.

The following examples demonstrate how to pass nonarray

variables by address.

Examples

1. The following program passes a variable by address from

main() to a function. The function changes it and returns to

main(). Because the variable is passed by address, main()

recognizes the new value.

// Filename: C18ADD3.CPP

// Demonstrate passing nonarrays by address.

#include <iostream.h>

do_fun(int &amt); // Prototypes discussed later.

main()

{

 int amt;

You can pass
nonarrays by
address as well.

Chapter 18 ♦ Passing Values

392

 amt = 100; // Assign a value in main().

 cout << “In main(), amt is “ << amt << “\n”;

 do_fun(amt); // Pass amt by address

 cout << “After return, amt is “ << amt << “ in main()\n”;

 return 0;

}

do_fun(int &amt) // Inform function of

 // passing by address.

{

 amt = 85; // Assign new value to amt.

 cout << “In do_fun(), amt is “ << amt << “\n”;

 return 0;

}

The output from this program follows:

In main(), amt is 100

In do_fun(), amt is 85

After return, amt is 85 in main()

Notice that amt changed in the called function. Because it was

passed by address, it is changed also in the calling function.

2. You can use a function to get the user’s keyboard values.

The main() function recognizes those values as long as you

pass them by address. The following program calculates the

cubic feet in a swimming pool. In one function, it requests

the width, length, and depth. In another function, it calcu-

lates the cubic feet of water. Finally, in a third function, it

prints the answer. The main() function is clearly a controlling

function, passing variables between these functions by

address.

// Filename: C18POOL.CPP

// Calculates the cubic feet in a swimming pool.

#include <iostream.h>

get_values(int &length, int &width, int &depth);

calc_cubic(int &length, int &width, int &depth, int &cubic);

print_cubic(int &cubic);

393

EXAMPLE
C++ By

main()

{

 int length, width, depth, cubic;

 get_values(length, width, depth);

 calc_cubic(length, width, depth, cubic);

 print_cubic(cubic);

 return 0;

}

get_values(int &length, int &width, int &depth)

{

 cout << “What is the pool’s length? “;

 cin >> length;

 cout << “What is the pool’s width? “;

 cin >> width;

 cout << “What is the pool’s average depth? “;

 cin >> depth;

 return 0;

}

calc_cubic(int &length, int &width, int &depth, int &cubic)

{

 cubic = (length) * (width) * (depth);

 return 0;

}

print_cubic(int &cubic)

{

 cout << “\nThe pool has “ << cubic << “ cubic feet\n”;

 return 0;

}

The output follows:

What is the pool’s length? 16

What is the pool’s width? 32

What is the pool’s average depth? 6

The pool has 3072 cubic feet

Chapter 18 ♦ Passing Values

394

All variables in a function must be preceded with an amper-

sand if they are to be passed by address.

Review Questions
The answers to the review questions are in Appendix B.

1. What type of variable is automatically passed by address?

2. What type of variable is automatically passed by value?

3. True or false: If a variable is passed by value, it is passed also

by copy.

4. If a variable is passed to a function by value and the function

changes the variable, is it changed in the calling function?

5. If a variable is passed to a function by address and the

function changes the variable, is it changed in the calling

function?

6. What is wrong with the following function?

do_fun(x, y, z)

{

 cout << “The variables are “ << x << y << z;

 return 0;

}

7. Suppose you pass a nonarray variable and an array to a

function at the same time. What is the default?

a. Both are passed by address.

b. Both are passed by value.

c. One is passed by address and the other is passed by

value.

395

EXAMPLE
C++ By

Review Exercises
1. Write a main() function and a second function that main()

calls. Ask users for their annual income in main(). Pass the

income to the second function and print a congratulatory

message if the user makes more than $50,000 or an encour-

agement message if the user makes less.

2. Write a three-function program, consisting of the following

functions:

main()

fun1()

fun2()

Declare a 10-element character array in main(), fill it with the

letters A through J in fun1(), then print that array backwards

in fun2().

3. Write a program whose main() function passes a number to a

function called print_aster(). The print_aster() function

prints that many asterisks on a line, across the screen. If

print_aster() is passed a number greater than 80, display an

error because most screens cannot print more than 80 char-

acters on the same line. When execution is finished, return

control to main() and then return to the operating system.

4. Write a function that is passed two integer values by ad-

dress. The function should declare a third local variable. Use

the third variable as an intermediate variable and swap the

values of both passed integers. For example, suppose the

calling function passes your function old_pay and new_pay

as in

swap_it(old_pay, new_pay);

The swap_it() function reverses the two values so, when

control returns to the calling function, the values of old_pay

and new_pay are swapped.

Chapter 18 ♦ Passing Values

396

Summary
You now have a complete understanding of the various meth-

ods for passing data to functions. Because you will be using local

variables as much as possible, you have to know how to pass local

variables between functions but also keep the variables away from

functions that don’t need them.

You can pass data in two ways: by value and by address. When

you pass data by value, which is the default method for nonarrays,

only a copy of the variable’s contents are passed. If the called

function modifies its parameters, those variables are not modified in

the calling function. When you pass data by address, as is done with

arrays and nonarray variables preceded by an ampersand, the

receiving function can change the data in both functions.

Whenever you pass values, you must ensure that they match in

number and type. If you don’t match them, you could have prob-

lems. For example, suppose you pass an array and a floating-point

variable, but in the receiving function, you receive a floating-point

variable followed by an array. The data does not reach the receiving

function properly because the parameter data types do not match

the variables being passed. Chapter 19, “Function Return Values

and Prototypes,” shows you how to protect against such disasters

by prototyping all your functions.

397

EXAMPLE
C++ By

19

Function Return
Values and
Prototypes

So far, you have passed variables to functions in only one direc-

tion—a calling function passed data to a receiving function. You

have yet to see how data are passed back from the receiving function

to the calling function. When you pass variables by address, the data

are changed in both functions—but this is different from passing

data back. This chapter focuses on writing function return values

that improve your programming power.

After you learn to pass and return values, you have to prototype
your own functions as well as C++’s built-in functions, such as cout

and cin. By prototyping your functions, you ensure the accuracy of

passed and returned values.

This chapter introduces you to the following:

♦ Returning values from functions

♦ Prototyping functions

♦ Understanding header files

By returning values from functions, you make your functions

fully modular. They can now stand apart from the other functions.

Chapter 19 ♦ Function Return Values and Prototypes

398

They can receive and return values and act as building blocks that

compose your complete application.

Function Return Values
Until now, all functions in this book have been subroutines or

subfunctions. A C++ subroutine is a function that is called from

another function, but it does not return any values. The difference

between subroutines and functions is not as critical in C++ as it is

in other languages. All functions, whether they are subroutines or

functions that return values, are defined in the same way. You can

pass variables to each of them, as you have seen throughout this

section of the book.

Functions that return values offer you a new approach to

programming. In addition to passing data one-way, from calling to

receiving function, you can pass data back from a receiving function

to its calling function. When you want to return a value from a

function to its calling function, put the return value after the return

statement. To clarify the return value even more, many program-

mers put parentheses around the return value, as shown in the

following syntax:

return (return value);

CAUTION: Do not return global variables. There is no need

to do so because their values are already known throughout

the code.

The calling function must have a use for the return value. For

example, suppose you wrote a function that calculated the average

of any three integer variables passed to it. If you return the average,

the calling function has to receive that return value. The following

sample program helps to illustrate this principle.

// Filename: C19AVG.CPP

// Calculates the average of three input values.

#include <iostream.h>

int calc_av(int num1, int num2, int num3); //Prototype

Put the return value
at the end of the
return statement.

399

EXAMPLE
C++ By

main()

{

 int num1, num2, num3;

 int avg; // Holds the return value.

 cout << “Please type three numbers (such as 23 54 85) “;

 cin >> num1 >> num2 >> num3;

 // Call the function, pass the numbers,

 // and accept the return value amount.

 avg = calc_av(num1, num2, num3);

 cout << “\n\nThe average is “ << avg; // Print the

 // return value.

 return 0;

}

int calc_av(int num1, int num2, int num3)

{

 int local_avg; // Holds the average for these numbers.

 local_avg = (num1+num2+num3) / 3;

 return (local_avg);

}

Here is a sample output from the program:

Please type three numbers (such as 23 54 85) 30 40 50

The average is 40

Study this program carefully. It is similar to many you have

seen, but a few additional points have to be considered now that the

function returns a value. It might help to walk through this program

a few lines at a time.

The first part of main() is similar to other programs you have

seen. It declares its local variables: three for user input and one for

the calculated average. The cout and cin are familiar to you. The

function call to calc_av() is also familiar; it passes three variables

Chapter 19 ♦ Function Return Values and Prototypes

400

(num1, num2, and num3) by value to calc_av(). (If it passed them by

address, an ampersand (&) would have to precede each argument, as

discussed in Chapter 18.)

The receiving function, calc_av(), seems similar to others you

have seen. The only difference is that the first line, the function’s

definition line, has one addition—the int before its name. This is the

type of the return value. You must always precede a function name

with its return data type. If you do not specify a type, C++ assumes

a type of int. Therefore, if this example had no return type, it would

work just as well because an int return type would be assumed.

Because the variable being returned from calc_av() is an inte-

ger, the int return type is placed before calc_av()’s name.

You can see also that the return statement of calc_av() includes

the return value, local_avg. This is the variable being sent back to the

calling function, main(). You can return only a single variable to a

calling function.

Even though a function can receive more than one parameter,

it can return only a single value to the calling function. If a receiving

function is modifying more than one value from the calling function,

you must pass the parameters by address; you cannot return mul-

tiple values using a return statement.

After the receiving function, calc_av(), returns the value, main()

must do something with that returned value. So far, you have seen

function calls on lines by themselves. Notice in main() that the

function call appears on the right side of the following assignment

statement:

avg = calc_av(num1, num2, num3);

When the calc_av() function returns its value—the average of

the three numbers—that value replaces the function call. If the

average computed in calc_av() is 40, the C++ compiler interprets the

following statement in place of the function call:

avg = 40;

You typed a function call to the right of the equal sign, but the

program replaces a function call with its return value when the

return takes place. In other words, a function that returns a value

Put the function’s
return type before its
name. If you don’t
specify a return type,
int is the default.

401

EXAMPLE
C++ By

becomes that value. You must put such a function anywhere you put

any variable or literal (usually to the right of an equal sign, in an

expression, or in cout). The following is an incorrect way of calling

calc_av():

calc_av(num1, num2, num3);

If you did this, C++ would have nowhere to put the return

value.

CAUTION: Function calls that return values usually don’t

appear on lines by themselves. Because the function call is

replaced by the return value, you should do something with

that return value (such as assign it to a variable or use it in an

expression). Return values can be ignored, but doing so usually

defeats the purpose of creating them.

Examples

1. The following program passes a number to a function called

doub(). The function doubles the number and returns the

result.

// Filename: C19DOUB.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub (int num);

main()

{

 int number; // Holds user’s input.

 int d_number; // Holds double the user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

 d_number = doub(number); // Assigns return value.

 cout << number << “ doubled is “ << d_number;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

402

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Doubles the number.

 return (d_num); // Returns the result.

}

The program produces output such as this:

What number do you want doubled? 5

5 doubled is 10

2. Function return values can be used anywhere literals, vari-

ables, and expressions are used. The following program is

similar to the previous one. The difference is in main().

The function call is performed not on a line by itself, but

from a cout. This is a nested function call. You call the built-

in function cout using the return value from one of the

program’s functions named doub(). Because the call to doub()

is replaced by its return value, the cout has enough informa-

tion to proceed as soon as doub() returns. This gives main()

less overhead because it no longer needs a variable called

d_number, although you must use your own judgment as to

whether this program is easier to maintain. Sometimes it is

wise to include function calls in other expressions; other

times it is clearer to call the function and assign its return

value to a variable before using it.

// Filename: C19DOUB2.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub(int num); // Prototype

main()

{

 int number; // Holds user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

403

EXAMPLE
C++ By

 // The third cout parameter is

 // replaced with a return value.

 cout << number << “ doubled is “ << doub(number);

 return 0;

}

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Double the number.

 return (d_num); // Return the result.

}

3. The following program asks the user for a number. That

number is then passed to a function called sum(), which adds

the numbers from 1 to that number. In other words, if the

user types a 6, the function returns the result of the following

calculation:

1 + 2 + 3 + 4 + 5 + 6

This is known as the sum of the digits calculation, and it is

sometimes used for depreciation in accounting.

// Filename: C19SUMD.CPP

// Compute the sum of the digits.

#include <iostream.h>

int sum(int num); // Prototype

main()

{

 int num, sumd;

 cout << “Please type a number: “;

 cin >> num;

 sumd = sum(num);

 cout << “The sum of the digits is “ << sumd;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

404

int sum(int num)

{

 int ctr; // Local loop counter.

 int sumd=0; // Local to this function.

 if (num <= 0) // Check whether parameter is too small.

 { sumd = num; } // Returns parameter if too small.

 else

 { for (ctr=1; ctr<=num; ctr++)

 { sumd += ctr; }

 }

 return(sumd);

}

The following is a sample output from this program:

Please type a number: 6

The sum of the digits is 21

4. The following program contains two functions that return

values. The first function, maximum(), returns the larger of two

numbers entered by the user. The second one, minimum(),

returns the smaller.

// Filename: C19MINMX.CPP

// Finds minimum and maximum values in functions.

#include <iostream.h>

int maximum(int num1, int num2); // Prototypes

int minimum(int num1, int num2);

main()

{

 int num1, num2; // User’s two numbers.

 int min, max;

 cout << “Please type two numbers (such as 46 75) “;

 cin >> num1 >> num2;

 max = maximum(num1, num2); // Assign the return

 min = minimum(num1, num2); // value of each

 // function to variables.

405

EXAMPLE
C++ By

 cout << “The minimum number is “ << min << “\n”;

 cout << “The maximum number is “ << max << “\n”;

 return 0;

}

int maximum(int num1, int num2)

{

 int max; // Local to this function only.

 max = (num1 > num2) ? (num1) : (num2);

 return (max);

}

int minimum(int num1, int num2)

{

 int min; // Local to this function only.

 min = (num1 < num2) ? (num1) : (num2);

 return (min);

}

Here is a sample output from this program:

Please type two numbers (such as 46 75) 72 55

The minimum number is 55

The maximum number is 72

If the user types the same number, minimum and maximum are

the same.

These two functions can be passed any two integer values. In

such a simple example as this one, the user certainly already

knows which number is lower or higher. The point of such

an example is to show how to code return values. You might

want to use similar functions in a more useful application,

such as finding the highest paid employee from a payroll

disk file.

Function Prototypes
The word prototype is sometimes defined as a model. In C++, a

function prototype models the actual function. Before completing

Chapter 19 ♦ Function Return Values and Prototypes

406

your study of functions, parameters, and return values, you must

understand how to prototype each function in your program.

C++ requires that you prototype all functions in your program.

When prototyping, you inform C++ of the function’s parameter

types and its return value, if any.

To prototype a function, copy the function’s definition line to

the top of your program (immediately before or after the #include

<iostream.h> line). Place a semicolon at the end of the function

definition line, and you have the prototype. The definition line (the

function’s first line) contains the return type, the function name, and

the type of each argument, so the function prototype serves as a

model of the function that follows.

If a function does not return a value, or if that function has no

arguments passed to it, you should still prototype it. Place the

keyword void in place of the return type or the parameters. main() is

the only function that you do not have to prototype because it is self-
prototyping; meaning main() is not called by another function. The

first time main() appears in your program (assuming you follow the

standard approach and make main() your program’s first function),

it is executed.

If a function returns nothing, void must be its return type. Put

void in the argument parentheses of function prototypes with no

arguments. All functions must match their prototypes.

All main() functions in this book have returned a 0. Why? You

now know enough to answer that question. Because main() is self-

prototyping, and because the void keyword never appeared before

main() in these programs, C++ assumed an int return type. All C++

functions prototyped as returning int or those without any return

data type prototype assume int. If you wanted to not put return 0;

at the end of main()’s functions, you must insert void before main()

as in:

void main() // main() self-prototypes to return nothing.

You can look at a statement and tell whether it is a prototype or

a function definition (the function’s first line) by the semicolon on

the end. All prototypes, unless you make main() self-prototype, end

with a semicolon.

C++ assumes
functions return int
unless you put a
different data return
type, or use the
void keyword.

407

EXAMPLE
C++ By

Prototype for Safety

Prototyping protects you from programming mistakes. Sup-

pose you write a function that expects two arguments: an integer

followed by a floating-point value. Here is the first line of such a

function:

my_fun(int num, float amount)

What if you passed incorrect data types to my_fun()? If you were

to call this function by passing it two literals, a floating-point

followed by an integer, as in

my_fun(23.43, 5); // Call the my_fun() function.

the function would not receive correct parameters. It is expecting an

integer followed by a floating-point, but you did the opposite and

sent it a floating-point followed by an integer.

In regular C programs, mismatched arguments such as these

generate no error message even though the data are not passed

correctly. C++ requires prototypes so you cannot send the wrong

data types to a function (or expect the wrong data type to be

returned). Prototyping the previous function results in this:

void my_fun(int num, float amount); // Prototype

In doing so, you tell the compiler to check this function for

accuracy. You inform the compiler to expect nothing after the return

statement, not even 0, (due to the void keyword) and to expect an

integer followed by a floating-point in the parentheses.

If you break any of the prototype’s rules, the compiler informs

you of the problem and you can correct it.

Prototype All Functions

You should prototype every function in your program. As just

described, the prototype defines (for the rest of the program) which

functions follow, their return types, and their parameter types. You

should prototype C++’s built-in functions also, such as printf() and

scanf() if you use them.

Prototyping protects
your programs from
function program-
ming errors.

Chapter 19 ♦ Function Return Values and Prototypes

408

Think about how you prototype printf(). You don’t always

pass it the same types of parameters because you print different data

with each printf(). Prototyping functions you write is easy: The

prototype is basically the first line in the function. Prototyping

functions you do not write might seem difficult, but it isn’t—you

have already done it with every program in this book!

The designers of C++ realized that all functions have to be

prototyped. They realized also that you cannot prototype built-in

functions, so they did it for you and placed the prototypes in header

files on your disk. You have been including the printf() and scanf()

prototypes in each program that used them in this book with the

following statement:

#include <stdio.h>

Inside the stdio.h file is a prototype of many of C++’s input and

output functions. By having prototypes of these functions, you

ensure that they cannot be passed bad values. If someone attempts

to pass incorrect values, C++ catches the problem.

Because printf() and scanf() are not used very often in C++, the

cout and cin operators have their own header file called iostream.h

that you have seen included in this book’s programs as well. The

iostream.h file does not actually include prototypes for cout and cin

because they are operators and not functions, but iostream.h does

include some needed definitions to make cout and cin work.

Remember too that iomanip.h has to be included if you use a

setw or setprecision modifier in cout. Any time you use a new built-

in C++ function or a manipulating operator, check your compiler’s

manual to find the name of the prototype file to include.

Prototyping is the primary reason why you should always

include the matching header file when you use C++’s built-in

functions. The strcpy() function you saw in previous chapters

requires the following line:

#include <string.h>

This is the header file for the strcpy() function. Without it, the

program does not work.

Header files contain
built-in function
prototypes.

409

EXAMPLE
C++ By

Examples

1. Prototype all functions in all programs except main(). Even

main() must be prototyped if it returns nothing (not even 0).

The following program includes two prototypes: one for

main() because it returns nothing, and one for the built-in

printf() and scanf() functions.

// Filename: C19PRO1.CPP

// Calculates sales tax on a sale

#include <stdio.h> // Prototype built-in functions.

void main(void);

void main(void)

{

 float total_sale;

 float tax_rate = .07; // Assume seven percent

 // tax rate.

 printf(“What is the sale amount? “);

 scanf(“ %f”, &total_sale);

 total_sale += (tax_rate * total_sale);

 printf(“The total sale is %.2f”, total_sale);

 return; // No 0 required!

}

Notice that main()’s return statement needed only a semi-

colon after it. As long as you prototype main() with a void

return type, the last line in main() can be return; instead of

having to type return 0; each time.

2. The following program asks the user for a number in main(),

and passes that number to ascii(). The ascii() function

returns the ASCII character that matches the user’s number.

This example illustrates a character return type. Functions

can return any data type.

Chapter 19 ♦ Function Return Values and Prototypes

410

// Filename: C19ASC.CPP

// Prints the ASCII character of the user’s number.

// Prototypes follow.

#include <iostream.h>

char ascii(int num);

void main()

{

 int num;

 char asc_char;

 cout << “Enter an ASCII number? “;

 cin >> num;

 asc_char = ascii(num);

 cout << “The ASCII character for “ << num

 << “ is “ << asc_char;

 return;

}

char ascii(int num)

{

 char asc_char;

 asc_char = char(num); // Type cast to a character.

 return (asc_char);

}

The output from this program follows:

Enter an ASCII number? 67

The ASCII character for 67 is C

3. Suppose you have to calculate net pay for a company. You

find yourself multiplying the hours worked by the hourly

pay, then deducting taxes to compute the net pay. The

following program includes a function that does this for you.

It requires three arguments: the hours worked, the hourly

pay, and the tax rate (as a floating-point decimal, such as .30

for 30 percent). The function returns the net pay. The main()

calling program tests the function by sending three different

payroll values to the function and printing the three return

values.

411

EXAMPLE
C++ By

// Filename: C19NPAY.CPP

// Defines a function that computes net pay.

#include <iostream.h> // Needed for cout and cin.

void main(void);

float netpayfun(float hours, float rate, float taxrate);

void main(void)

{

 float net_pay;

 net_pay = netpayfun(40.0, 3.50, .20);

 cout << “The pay for 40 hours at $3.50/hr., and a 20% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(50.0, 10.00, .30);

 cout << “The pay for 50 hours at $10.00/hr., and a 30% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(10.0, 5.00, .10);

 cout << “The pay for 10 hours at $5.00/hr., and a 10% “

 << “ tax rate is $”;

 cout << net_pay << “\n”;

 return;

}

float netpayfun(float hours, float rate, float taxrate)

{

 float gross_pay, taxes, net_pay;

 gross_pay = (hours * rate);

 taxes = (taxrate * gross_pay);

 net_pay = (gross_pay - taxes);

 return (net_pay);

}

Chapter 19 ♦ Function Return Values and Prototypes

412

Review Questions
The answers to the review questions are in Appendix B.

1. How do you declare function return types?

2. What is the maximum number of return values a function

can return?

3. What are header files for?

4. What is the default function return type?

5. True or false: a function that returns a value can be passed

only a single parameter.

6. How do prototypes protect the programmer from bugs?

7. Why don’t you have to return global variables?

8. What is the return type, given the following function

prototype?

float my_fun(char a, int b, float c);

How many parameters are passed to my_fun()? What are

their types?

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the cube. Prototype main() so

you do not have to return a value.

2. Write a function that returns the double-precision area of a

circle, given that a double-precision radius is passed to it.

The formula for calculating the area of a circle is

area = 3.14159 * (radius * radius)

3. Write a function that returns the value of a polynomial given

this formula:

9x4 + 15x2 + x1

413

EXAMPLE
C++ By

Assume x is passed from main() and it is supplied by the

user.

Summary
You learned how to build your own collection of functions.

When you write a function, you might want to use it in more than

one program—there is no need to reinvent the wheel. Many pro-

grammers write useful functions and use them in more than one

program.

You now understand the importance of prototyping functions.

You should prototype all your own functions, and include the

appropriate header file when you use one of C++’s built-in func-

tions. Furthermore, when a function returns a value other than an

integer, you must prototype so C++ recognizes the noninteger

return value.

Chapter 19 ♦ Function Return Values and Prototypes

414

415

EXAMPLE
C++ By

20

Default Arguments
and Function
Overloading

All functions that receive arguments do not have to be sent values.

C++ enables you to specify default argument lists. You can write

functions that assume argument values even if you do not pass them

any arguments.

C++ also enables you to write more than one function with the

same function name. This is called overloading functions. As long as

their argument lists differ, the functions are differentiated by C++.

This chapter introduces you to the following:

♦ Default argument lists

♦ Overloaded functions

♦ Name-mangling

Default argument lists and overloaded functions are not avail-

able in regular C. C++ extends the power of your programs by

providing these time-saving procedures.

Chapter 20 ♦ Default Arguments and Function Overloading

416

Default Argument Lists
Suppose you were writing a program that has to print a

message on-screen for a short period of time. For instance, you pass

a function an error message stored in a character array and the

function prints the error message for a certain period of time.

The prototype for such a function can be this:

void pr_msg(char note[]);

Therefore, to request that pr_msg() print the line “Turn printer

on”, you call it this way:

pr_msg(“Turn printer on”); // Passes a message to be printed.

This command prints the message “Turn printer on” for a period

of five seconds or so. To request that pr_msg() print the line “Press

any key to continue...”, you call it this way:

pr_msg(“Press a key to continue...”); // Passes a message.

As you write more of the program, you begin to realize that you

are printing one message, for instance the “Turn printer on” message,

more often than any other message. It seems as if the pr_msg()

function is receiving that message much more often than any

other. This might be the case if you were writing a program that

printed many reports to the printer. You still will use pr_msg() for

other delayed messages, but the “Turn printer on” message is most

frequently used.

Instead of calling the function over and over, typing the same

message each time, you can set up the prototype for pr_msg() so it

defaults to the “Turn printer on” in this way:

void pr_msg(char note[]=”Turn printer on”);// Prototype

After prototyping pr_msg() with the default argument list, C++

assumes you want to pass “Turn printer on” to the function unless

you override the default by passing something else to it. For in-

stance, in main(), you call pr_msg() this way:

pr_msg(); // C++ assumes you mean “Turn printer on”.

This makes your programming job easier. Because most of the

time you want pr_msg() to print “Turn printer on” the default

List default argument
values in the
prototype.

417

EXAMPLE
C++ By

argument list takes care of the message and you do not have to pass

the message when you call the function. However, those few times

when you want to pass something else, simply pass a different

message. For example, to make pr_msg() print “Incorrect value” you

type:

pr_msg(“Incorrect value”); // Pass a new message.

TIP: Any time you call a function several times and find

yourself passing that function the same parameters most of the

time, consider using a default argument list.

Multiple Default Arguments
You can specify more than one default argument in the proto-

type list. Here is a prototype for a function with three default

arguments:

float funct1(int i=10, float x=7.5, char c=’A’);

There are several ways you can call this function. Here are some

samples:

funct1();

All default values are assumed.

funct1(25);

A 25 is sent to the integer argument, and the default values are

assumed for the rest.

funct1(25, 31.25);

A 25 is sent to the integer argument, 31.25 to the floating-point

argument, and the default value of ‘A’ is assumed for the character

argument.

Chapter 20 ♦ Default Arguments and Function Overloading

418

NOTE: If only some of a function’s arguments are default

arguments, those default arguments must appear on the far left
of the argument list. No default arguments can appear to the

left of those not specified as default. This is an invalid default

argument prototype:

float func2(int i=10, float x, char c, long n=10.232);

This is invalid because a default argument appears on the left

of a nondefault argument. To fix this, you have to move the two

default arguments to the far left (the start) of the argument list.

Therefore, by rearranging the prototype (and the resulting

function calls) as follows, C++ enables you to accomplish the

same objective as you attempted with the previous line:

float func2(float x, char c, int i=10, long n=10.232);

Examples

1. Here is a complete program that illustrates the message-

printing function described earlier in this chapter. The main()

function simply calls the delayed message-printing function

three times, each time passing it a different set of argument

lists.

// Filename: C20DEF1.CPP

// Illustrates default argument list.

#include <iostream.h>

void pr_msg(char note[]=”Turn printer on”); // Prototype.

void main()

{

 pr_msg(); // Prints default message.

 pr_msg(“A new message”); // Prints another message.

 pr_msg(); // Prints default message again.

 return;

}

void pr_msg(char note[]) // Only prototype contains defaults.

419

EXAMPLE
C++ By

{

 long int delay;

 cout << note << “\n”;

 for (delay=0; delay<500000; delay++)

 { ; /* Do nothing while waiting */ }

 return;

}

The program produces the following output:

Turn printer on

A new message

Turn printer on

The delay loop causes each line to display for a couple of

seconds or more, depending on the speed of your computer,

until all three lines print.

2. The following program illustrates the use of defaulting

several arguments. main() calls the function de_fun() five

times, sending de_fun() five sets of arguments. The de_fun()

function prints five different things depending on main()’s

argument list.

// Filename: C20DEF2.CPP

// Demonstrates default argument list with several parameters.

#include <iostream.h>

#include <iomanip.h>

void de_fun(int i=5, long j=40034, float x=10.25,

 char ch=’Z’, double d=4.3234); // Prototype

void main()

{

 de_fun(); // All defaults used.

 de_fun(2); // First default overridden.

 de_fun(2, 75037); // First and second default overridden.

 de_fun(2, 75037, 35.88); // First, second, and third

 de_fun(2, 75037, 35.88, ‘G’); // First, second, third,

 // and fourth

 de_fun(2, 75037, 35.88, ‘G’, .0023); // No defaulting.

Chapter 20 ♦ Default Arguments and Function Overloading

420

 return;

}

void de_fun(int i, long j, float x, char ch, double d)

{

 cout << setprecision(4) << “i: “ << i << “ “ << “j: “ << j;

 cout << “ x: “ << x << “ “ << “ch: “ << ch;

 cout << “ d: “ << d << “\n”;

 return;

}

Here is the output from this program:

i: 5 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 0.0023

Notice that each call to de_fun() produces a different output

because main() sends a different set of parameters each time

main() calls de_fun().

Overloaded Functions
Unlike regular C, C++ enables you to have more than one

function with the same name. In other words, you can have three

functions called abs() in the same program. Functions with the same

names are called overloaded functions. C++ requires that each

overloaded function differ in its argument list. Overloaded func-

tions enable you to have similar functions that work on different

types of data.

For example, suppose you wrote a function that returned the

absolute value of whatever number you passed to it. The absolute

value of a number is its positive equivalent. For instance, the

absolute value of 10.25 is 10.25 and the absolute value of –10.25

is 10.25.

Absolute values are used in distance, temperature, and weight

calculations. The difference in the weights of two children is always

421

EXAMPLE
C++ By

positive. If Joe weighs 65 pounds and Mary weighs 55 pounds, their

difference is a positive 10 pounds. You can subtract the 65 from 55

(–10) or 55 from 65 (+10) and the weight difference is always the

absolute value of the result.

Suppose you had to write an absolute-value function for inte-

gers, and an absolute-value function for floating-point numbers.

Without function overloading, you need these two functions:

int iabs(int i) // Returns absolute value of an integer.

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

float fabs(float x) // Returns absolute value of a float.

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

Without overloading, if you had a floating-point variable for

which you needed the absolute value, you pass it to the fabs()

function as in:

ans = fabs(weight);

If you needed the absolute value of an integer variable, you

pass it to the iabs() function as in:

ians = iabs(age);

Because the code for these two functions differ only in their

parameter lists, they are perfect candidates for overloaded func-

tions. Call both functions abs(), prototype both of them, and code

each of them separately in your program. After overloading the two

functions (each of which works on two different types of parameters

with the same name), you pass your floating-point or integer value

to abs(). The C++ compiler determines which function you wanted

to call.

Chapter 20 ♦ Default Arguments and Function Overloading

422

CAUTION: If two or more functions differ only in their return

types, C++ cannot overload them. Two or more functions that

differ only in their return types must have different names and

cannot be overloaded.

This process simplifies your programming considerably. In-

stead of having to remember several different function names, you

only have to remember one function name. C++ passes the argu-

ments to the proper function.

NOTE: C++ uses name-mangling to accomplish overloaded

functions. Understanding name-mangling helps you as you

become an advanced C++ programmer.

When C++ realizes that you are overloading two or more

functions with the same name, each function differing only in

its parameter list, C++ changes the name of the function and

adds letters to the end of the function name that match the

parameters. Different C++ compilers do this differently.

To understand what the compiler does, take the absolute value

function described earlier. C++ might change the integer abso-

lute value function to absi() and the floating-point absolute

value function to absf(). When you call the function with this

function call:

ians = abs(age);

C++ determines that you want the absi() function called. As far

as you know, C++ is not mangling the names; you never see the

name differences in your program’s source code. However, the

compiler performs the name-mangling so it can keep track of

different functions that have the same name.

423

EXAMPLE
C++ By

Examples

1. Here is the complete absolute value program described in

the previous text. Notice that both functions are prototyped.

(The two prototypes signal C++ that it must perform name-

mangling to determine the correct function names to call.)

// Filename: C20OVF1.CPP

// Overloads two absolute value functions.

#include <iostream.h> // Prototype cout and cin.

#include <iomanip.h> // Prototype setprecision(2).

int abs(int i); // abs() is overloaded twice

float abs(float x); // as shown by these prototypes.

void main()

{

 int ians; // To hold return values.

 float fans;

 int i = -15; // To pass to the two overloaded functions.

 float x = -64.53;

 ians = abs(i); // C++ calls the integer abs().

 cout << “Integer absolute value of -15 is “ << ians << “\n”;

 fans = abs(x); // C++ calls the floating-point abs().

 cout << “Float absolute value of -64.53 is “ <<

 setprecision(2) << fans << “\n”;

 // Notice that you no longer have to keep track of two

 // different names. C++ calls the appropriate

 // function that matches the parameters.

 return;

}

int abs(int i) // Integer absolute value function

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

Chapter 20 ♦ Default Arguments and Function Overloading

424

float abs(float x) // Floating-point absolute value function

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

The output from this program follows:

Integer absolute value of -15 is 15

Float absolute value of -64.53 is 64.53

2. As you write more and more C++ programs, you will see

many uses for overloaded functions. The following program

is a demonstration program showing how you can build

your own output functions to suit your needs. main() calls

three functions named output(). Each time it’s called, main()

passes a different value to the function.

When main() passes output() a string, output() prints the

string, formatted to a width (using the setw() manipulator

described in Chapter 7, “Simple Input/Output”) of 30

characters. When main() passes output() an integer, output()

prints the integer with a width of five. When main() passes

output() a floating-point value, output() prints the value to

two decimal places and generalizes the output of different

types of data. You do not have to format your own data.

output() properly formats the data and you only have to

remember one function name that outputs all three types of

data.

// Filename: C20OVF2.CPP

// Outputs three different types of

// data with same function name.

#include <iostream.h>

#include <iomanip.h>

void output(char []); // Prototypes for overloaded functions.

void output(int i);

void output(float x);

425

EXAMPLE
C++ By

void main()

{

 char name[] = “C++ By Example makes C++ easy!”;

 int ivalue = 2543;

 float fvalue = 39.4321;

 output(name); // C++ chooses the appropriate function.

 output(ivalue);

 output(fvalue);

return;

}

void output(char name[])

{

 cout << setw(30) << name << “\n”;

 // The width truncates string if it is longer than 30.

 return;

}

void output(int ivalue)

{

 cout << setw(5) << ivalue << “\n”;

 // Just printed integer within a width of five spaces.

 return;

}

void output(float fvalue)

{

 cout << setprecision(2) << fvalue << “\n”;

 // Limited the floating-point value to two decimal places.

 return;

}

Here is the output from this program:

C++ By Example makes C++ easy!

2543

39.43

Each of the three lines, containing three different lines of

information, was printed with the same function call.

Chapter 20 ♦ Default Arguments and Function Overloading

426

Review Questions
The answers to the review questions are in Appendix B.

1. Where in the program do you specify the defaults for default

argument lists?

2. What is the term for C++ functions that have the same

name?

3. Does name-mangling help support default argument lists or

overloaded functions?

4. True or false: You can specify only a single default

argument.

5. Fix the following prototype for a default argument list.

void my_fun(int i=7, float x, char ch=’A’);

6. True or false: The following prototypes specify overloaded

functions:

int sq_rt(int n);

float sq_rt(int n);

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the square of the float passed

to it.

2. Write a program that computes net pay based on the values

the user types. Ask the user for the hours worked, the rate

per hour, and the tax rate. Because the majority of employees

work 40 hours per week and earn $5.00 per hour, use these

values as default values in the function that computes the

net pay. If the user presses Enter in response to your ques-

tions, use the default values.

427

EXAMPLE
C++ By

Summary
Default argument lists and overloaded functions speed up

your programming time. You no longer have to specify values for

common arguments. You do not have to remember several different

names for those functions that perform similar routines and differ

only in their data types.

The remainder of this book elaborates on earlier concepts so

you can take advantage of separate, modular functions and local

data. You are ready to learn more about how C++ performs input

and output. Chapter 21, “Device and Character Input/Output,”

teaches you the theory behind I/O in C++, and introduces more

built-in functions.

Chapter 20 ♦ Default Arguments and Function Overloading

428

Part V
Character Input/Output and
String Functions

431

EXAMPLE
C++ By

21

Device and
Character
Input/Output

Unlike many programming languages, C++ contains no input or

output commands. C++ is an extremely portable language; a C++

program that compiles and runs on one computer is able also to

compile and run on another type of computer. Most incompatibili-

ties between computers reside in their input/output mechanics.

Each different device requires a different method of performing

I/O (Input/Output).

By putting all I/O capabilities in common functions supplied

with each computer’s compiler, not in C++ statements, the design-

ers of C++ ensured that programs were not tied to specific hardware

for input and output. A compiler has to be modified for every

computer for which it is written. This ensures the compiler works

with the specific computer and its devices. The compiler writers

write I/O functions for each machine; when your C++ program

writes a character to the screen, it works the same whether you have

a color PC screen or a UNIX X/Windows terminal.

This chapter shows you additional ways to perform input and

output of data besides the cin and cout functions you have seen

Chapter 21 ♦ Device and Character Input/Output

432

C++ views input and
output from all
devices as streams
of characters.

throughout the book. By providing character-based I/O functions,

C++ gives you the basic I/O functions you need to write powerful

data entry and printing routines.

This chapter introduces you to

♦ Stream input and output

♦ Redirecting I/O

♦ Printing to the printer

♦ Character I/O functions

♦ Buffered and nonbuffered I/O

By the time you finish this chapter, you will understand the

fundamental built-in I/O functions available in C++. Performing

character input and output, one character at a time, might sound like

a slow method of I/O. You will soon realize that character I/O

actually enables you to create more powerful I/O functions than cin

and cout.

Stream and Character I/O
C++ views all input and output as streams of characters.

Whether your program receives input from the keyboard, a disk file,

a modem, or a mouse, C++ only views a stream of characters. C++

does not have to know what type of device is supplying the input;

the operating system handles the device specifics. The designers of

C++ want your programs to operate on characters of data without

regard to the physical method taking place.

This stream I/O means you can use the same functions to

receive input from the keyboard as from the modem. You can use the

same functions to write to a disk file, printer, or screen. Of course,

you have to have some way of routing that stream input or output

to the proper device, but each program’s I/O functions works in a

similar manner. Figure 21.1 illustrates this concept.

433

EXAMPLE
C++ By

Figure 21.1. All I/O consists of streams of characters.

The Newline Special Character: /n

Portability is the key to C++’s success. Few companies have the

resources to rewrite every program they use when they change

computer equipment. They need a programming language

that works on many platforms (hardware combinations). C++

achieves true portability better than almost any other program-

ming language.

It is because of portability that C++ uses the generic newline

character, \n, rather than the specific carriage return and line

feed sequences other languages use. This is why C++ uses the

\t for tab, as well as the other control characters used in I/O

functions.

If C++ used ASCII code to represent these special characters,

your programs would not be portable. You would write a C++

program on one computer and use a carriage return value such

as 12, but 12 might not be the carriage return value on another

type of computer.

By using newline and the other control characters available in

C++, you ensure your program is compatible with any com-

puter on which it is compiled. The specific compilers substitute

their computer’s actual codes for the control codes in your

programs.

Chapter 21 ♦ Device and Character Input/Output

434

Standard Devices

Table 21.1 shows a listing of standard I/O devices. C++ always

assumes input comes from stdin, meaning the standard input device.
This is usually the keyboard, although you can reroute this default.

C++ assumes all output goes to stdout, or the standard output device.
There is nothing magic in the words stdin and stdout; however,

many people learn their meanings for the first time in C++.

Table 21.1. Standard Devices in C++.

Description C++ Name MS-DOS Name

Screen stdout CON:

Keyboard stdin CON:

Printer stdprn PRN: or LPT1:

Serial Port stdaux AUX: or COM1:

Error Messages stderr CON:

Disk Files none Filename

Take a moment to study Table 21.1. You might think it is

confusing that three devices are named CON:. MS-DOS differenti-

ates between the screen device called CON: (which stands for

console), and the keyboard device called CON: from the context of

the data stream. If you send an output stream (a stream of characters)

to CON:, MS-DOS routes it to the screen automatically. If you

request input from CON:, MS-DOS retrieves the input from the

keyboard. (These defaults hold true as long as you have not redi-

rected these devices, as shown below.) MS-DOS sends all error

messages to the screen (CON:) as well.

NOTE: If you want to route I/O to a second printer or serial

port, see how to do so in Chapter 30, “Sequential Files.”

435

EXAMPLE
C++ By

Redirecting Devices from MS-DOS

The reason cout goes to the screen is simply because stdout is

routed to the screen, by default, on most computers. The reason cin

inputs from the keyboard is because most computers consider the

keyboard to be the standard input device, stdin. After compiling

your program, C++ does not send data to the screen or retrieve it

from the keyboard. Instead, the program sends output to stdout and

receives input from stdin. The operating system routes the data to

the appropriate device.

MS-DOS enables you to reroute I/O from their default loca-

tions to other devices through the use of the output redirection symbol,
>, and the input redirection symbol, <. The goal of this book is not to

delve deeply in operating-system redirection. To learn more about

the handling of I/O, read a good book on MS-DOS, such as Using
MS-DOS 5.

Basically, the output redirection symbol informs the operating

system that you want standard output to go to a device other than

the default (the screen). The input redirection symbol routes input

away from the keyboard to another input device. The following

example illustrates how this is done in MS-DOS.

Examples

1. Suppose you write a program that uses only cin and cout for

input and output. Instead of receiving input from the key-

board, you want the program to get the input from a file

called MYDATA. Because cin receives input from stdin, you

must redirect stdin. After compiling the program in a file

called MYPGM.EXE, you can redirect its input away from

the keyboard with the following DOS command:

C:>MYPGM < MYDATA

Of course, you can include a full pathname either before the

program name or filename. There is a danger in redirecting

all output such as this, however. All output, including screen

prompts for keyboard input, goes to MYDATA. This is

probably not acceptable to you in most cases; you still want

The operating
system gives you
control over devices.

Chapter 21 ♦ Device and Character Input/Output

436

prompts and some messages to go to the screen. In the next

section, you learn how to separate I/O, and send some

output to one device such as the screen and the rest to

another device, such as a file or printer.

2. You can also route the program’s output to the printer by

typing this:

C:>MYPGM > PRN:

Route MYPGM output to the printer.

3. If the program required much input, and that input were

stored in a file called ANSWERS, you could override the

keyboard default device that cin uses, as in:

C:>MYPGM < ANSWERS

The program reads from the file called ANSWERS every time cin
required input.

4. You can combine redirection symbols. If you want input

from the ANSWERS disk file, and want to send the output to

the printer, do the following:

C:>MYPGM < ANSWERS > PRN:

TIP: You can route the output to a serial printer or a second

parallel printer port by substituting COM1: or LPT2: for PRN:.

Printing Formatted Output to
the Printer

It’s easy to send program output to the printer using the

ofstream function. The format of ofstream is

ofstream device(device_name);

ofstream allows
your program to
write to the printer.

437

EXAMPLE
C++ By

The following examples show how you can combine cout and

ofstream to write to both the screen and printer.

Example

The following program asks the user for his or her first and last

name. It then prints the name, last name first, to the printer.

// Filename: C21FPR1.CPP

// Prints a name on the printer.

#include <fstream.h>

void main()

{

 char first[20];

 char last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 // Send names to the printer.

 ofstream prn(“PRN”);

 prn << “In a phone book, your name looks like this: \n”;

 prn << last << “, “ << first << “\n”;

 return;

}

Character I/O Functions
Because all I/O is actually character I/O, C++ provides many

functions you can use that perform character input and output. The

cout and cin functions are called formatted I/O functions because they

give you formatting control over your input and output. The cout

and cin functions are not character I/O functions.

ofstream uses
the fstream.h header
file.

Chapter 21 ♦ Device and Character Input/Output

438

There’s nothing wrong with using cout for formatted output,

but cin has many problems, as you have seen. You will now see how

to write your own character input routines to replace cin, as well as

use character output functions to prepare you for the upcoming

section in this book on disk files.

The get() and put() Functions

The most fundamental character I/O functions are get() and

put(). The put() function writes a single character to the standard

output device (the screen if you don’t redirect it from your operating

system). The get() function inputs a single character from the

standard input device (the keyboard by default).

The format for get() is

device.get(char_var);

The get() device can be any standard input device. If you were

receiving character input from the keyboard, you use cin as the

device. If you initialize your modem and want to receive characters

from it, use ofstream to open the modem device and read from the

device.

The format of put() is

device.put(char_val);

The char_val can be a character variable, expression, or con-

stant. You output character data with put(). The device can be any

standard output device. To write a character to your printer, you

open PRN with ofstream.

Examples

1. The following program asks the user for her or his initials a

character at a time. Notice the program uses both cout and

put(). The cout is still useful for formatted output such as

messages to the user. Writing individual characters is best

achieved with put().

The program has to call two get() functions for each char-

acter typed. When you answer a get() prompt by typing a

get() and put()
input and output
characters from and
to any standard
devices.

439

EXAMPLE
C++ By

character followed by an Enter keypress, C++ interprets the

input as a stream of two characters. The get() first receives

the letter you typed, then it has to receive the \n (newline,

supplied to C++ when you press Enter). There are examples

that follow that fix this double get() problem.

// Filename: C21CH1.CPP

// Introduces get() and put().

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(last);

return;

}

Here is the output from this program:

What is your first name initial? G

What is your last name initial? P

Here they are:

GP

2. You can add carriage returns to space the output better. To

print the two initials on two separate lines, use put() to put a

newline character to cout, as the following program does:

Chapter 21 ♦ Device and Character Input/Output

440

// Filename: C21CH2.CPP

// Introduces get() and put() and uses put() to output

newline.

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last

 // initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(‘\n’);

 cout.put(last);

return;

}

3. It might have been clearer to define the newline character as

a constant. At the top of the program, you have:

const char NEWLINE=’\n’

The put() then reads:

cout.put(NEWLINE);

Some programmers prefer to define their character formatting

constants and refer to them by name. It’s up to you to decide whether

you want to use this method, or whether you want to continue using

the \n character constant in put().

The get() function is a buffered input function. As you type

characters, the data does not immediately go to your program,

441

EXAMPLE
C++ By

rather, it goes to a buffer. The buffer is a section of memory (and has

nothing to do with your PC’s type-ahead buffers) managed by C++.

Figure 21.2 shows how this buffered function works. When

your program approaches a get(), the program temporarily waits as

you type the input. The program doesn’t view the characters, as

they’re going to the buffer of memory. There is practically no limit

to the size of the buffer; it fills with input until you press Enter. Your

Enter keypress signals the computer to release the buffer to your

program.

Figure 21.2. get() input goes to a buffer. The buffer is released when
you press Enter.

Most PCs accept either buffered or nonbuffered input. The

getch() function shown later in this chapter is nonbuffered. With

get(), all input is buffered. Buffered text affects the timing of your

program’s input. Your program receives no characters from a get()

until you press Enter. Therefore, if you ask a question such as

Do you want to see the report again (Y/N)?

and use get() for input, the user can press a Y, but the program does

not receive the input until the user also presses Enter. The Y and

Enter then are sent, one character at a time, to the program where it

processes the input. If you want immediate response to a user’s

typing (such as the INKEY$ in BASIC allows), you have to use getch().

Buffer

Chapter 21 ♦ Device and Character Input/Output

442

TIP: By using buffered input, the user can type a string of

characters in response to a loop with get(), receive characters,

and correct the input with Backspace before pressing Enter. If

the input were nonbuffered, the Backspace would be another

character of data.

Example

C21CH2.CPP must discard the newline character. It did so by

assigning the input character—from get()—to an extra variable.

Obviously, the get() returns a value (the character typed). In this

case, it’s acceptable to ignore the return value by not using the

character returned by get(). You know the user has to press Enter (to

end the input) so it’s acceptable to discard it with an unused get()

function call.

When inputting strings such as names and sentences, cin only

allows one word to be entered at a time. The following string asks the

user for his or her full name with these two lines:

cout << “What are your first and last names? “;

cin >> names; // Receive name in character array names.

The array names only receives the first name; cin ignores all data

to the right of the first space.

You can build your own input function using get() that doesn’t

have a single-word limitation. When you want to receive a string of

characters from the user, such as his or her first and last name, you

can call the get_in_str() function shown in the next program.

The main() function defines an array and prompts the user for

a name. After the prompt, the program calls the get_in_str() func-

tion and builds the input array a character at a time using get(). The

function keeps looping, using the while loop, until the user presses

Enter (signaled by the newline character, \n, to C++) or until the

maximum number of characters are typed. You might want to use

When receiving
characters, you
might have to
discard the newline
keypress.

443

EXAMPLE
C++ By

this function in your own programs. Be sure to pass it a character

array and an integer that holds the maximum array size (you don’t

want the input string to be longer than the character array that holds

it). When control returns to main() (or whatever function called

get_in_str()), the array has the user’s full input, including the

spaces.

// Filename: C21IN.CPP

// Program that builds an input string array using get().

#include <fstream.h>

void get_in_str(char str[], int len);

const int MAX=25; // Size of character array to be typed.

void main()

{

 char input_str[MAX]; // Keyboard input fills this.

 cout << “What is your full name? “;

 get_in_str(input_str, MAX); // String from keyboard

 cout << “After return, your name is “ << input_str << “\n”;

 return;

}

//**

// The following function requires a string and the maximum

// length of the string be passed to it. It accepts input

// from the keyboard, and sends keyboard input in the string.

// On return, the calling routine has access to the string.

//**

void get_in_str(char str[], int len)

{

 int i = 0; // index

 char input_char; // character typed

 cin.get(input_char); // Get next character in string.

 while (i < (len - 1) && (input_char != ‘\n’))

 {

 str[i] = input_char; // Build string a character

Chapter 21 ♦ Device and Character Input/Output

444

 i++; // at a time.

 cin.get(input_char); // Receive next character in string.

 }

 str[i] = ‘\0’; // Make the char array a string.

 return;

}

NOTE: The loop checks for len - 1 to save room for the null-

terminating zero at the end of the input string.

The getch() and putch() Functions

The functions getch() and putch() are slightly different from the

previous character I/O functions. Their format is similar to get()

and put(); they read from the keyboard and write to the screen and

cannot be redirected, even from the operating system. The formats

of getch() and putch() are

int_var = getch();

and

putch(int_var);

getch() and putch() are not AT&T C++ standard functions, but

they are usually available with most C++ compilers. getch() and

putch() are nonbuffered functions. The putch() character output

function is a mirror-image function to getch(); it is a nonbuffered

output function. Because almost every output device made, except

for the screen and modem, are inherently buffered, putch() effec-

tively does the same thing as put().

Another difference in getch() from the other character input

functions is that getch() does not echo the input characters on the

screen as it receives them. When you type characters in response to

get(), you see the characters as you type them (as they are sent to the

buffer). If you want to see characters received by getch(), you must

follow getch() with a putch(). It is handy to echo the characters on the

screen so the user can verify that she or he has typed correctly.

getch() and
putch() offer
nonbuffered input
and output that grab
the user’s characters
immediately after the
user types them.

445

EXAMPLE
C++ By

Some programmers want to make the user press Enter after

answering a prompt or selecting from a menu. They feel the extra

time given with buffered input gives the user more time to decide if

she or he wants to give that answer; the user can press Backspace and

correct the input before pressing Enter.

Other programmers like to grab the user’s response to a single-

character answer, such as a menu response, and act on it immedi-

ately. They feel that pressing Enter is an added and unneeded

burden for the user so they use getch(). The choice is yours. You

should understand both buffered and nonbuffered input so you can

use both.

TIP: You can also use getche(). getche() is a nonbuffered input

identical to getch(), except the input characters are echoed

(displayed) to the screen as the user types them. Using getche()

rather than getch() keeps you from having to call a putch() to

echo the user’s input to the screen.

Example

The following program shows the getch() and putch() func-

tions. The user is asked to enter five letters. These five letters are

added (by way of a for loop) to the character array named letters.

As you run this program, notice that the characters are not echoed

to the screen as you type them. Because getch() is unbuffered, the

program actually receives each character, adds it to the array, and

loops again, as you type them. (If this were buffered input, the

program would not loop through the five iterations until you

pressed Enter.)

A second loop prints the five letters using putch(). A third loop

prints the five letters to the printer using put().

// Filename: C21GCH1.CPP

// Uses getch() and putch() for input and output.

#include <fstream.h>

Characters input
with getch() are
not echoed to the
screen as the user
types them.

getch() and
putch() use the
conio.h header file.

Chapter 21 ♦ Device and Character Input/Output

446

#include <conio.h>

void main()

{

 int ctr; // for loop counter

 char letters[5]; // Holds five input characters. No

 // room is needed for the null zero

 // because this array never will be

 // treated as a string.

 cout << “Please type five letters... \n”;

 for (ctr = 0; ctr < 5; ctr++)

 {

 letters[ctr] = getch(); // Add input to array.

 }

 for (ctr = 0; ctr < 5; ctr++) // Print them to screen.

 {

 putch(letters[ctr]);

 }

 ofstream prn(“PRN”);

 for (ctr = 0; ctr < 5; ctr++) // Print them to printer.

 {

 prn.put(letters[ctr]);

 }

return;

}

When you run this program, do not press Enter after the five

letters. The getch() function does not use the Enter. The loop auto-

matically ends after the fifth letter because of the unbuffered input

and the for loop.

Review Questions
The answers to the review questions are found in Appendix B.

1. Why are there no input or output commands in C++?

2. True or false: If you use the character I/O functions to send

output to stdout, it always goes to the screen.

447

EXAMPLE
C++ By

3. What is the difference between getch() and get()?

4. What function sends formatted output to devices other than

the screen?

5. What are the MS-DOS redirection symbols?

6. What nonstandard function, most similar to getch(), echoes

the input character to the screen as the user types it?

7. True or false: When using get(), the program receives your

input as you type it.

8. Which keypress releases the buffered input to the program?

9. True or false: Using devices and functions described in this

chapter, it is possible to write one program that sends some

output to the screen, some to the printer, and some to the

modem.

Review Exercises
1. Write a program that asks the user for five letters and prints

them in reverse order to the screen, and then to the printer.

2. Write a miniature typewriter program, using get() and put().

In a loop, get characters until the user presses Enter while he

or she is getting a line of user input. Write the line of user

input to the printer. Because get() is buffered, nothing goes

to the printer until the user presses Enter at the end of each

line of text. (Use the string-building input function shown in

C21IN.CPP.)

3. Add a putch() inside the first loop of C21CH1.CPP (this

chapter’s first get() example program) so the characters are

echoed to the screen as the user types them.

4. A palindrome is a word or phrase spelled the same forwards

and backwards. Two example palindromes are

Madam, I’m Adam

Golf? No sir, prefer prison flog!

Chapter 21 ♦ Device and Character Input/Output

448

Write a C++ program that asks the user for a phrase. Build

the input, a character at a time, using a character input

function such as get(). Once you have the full string (store it

in a character array), determine whether the phrase is a

palindrome. You have to filter special characters (nonalpha-

betic), storing only alphabetic characters to a second charac-

ter array. You also must convert the characters to uppercase

as you store them. The first palindrome becomes:

MADAMIMADAM

Using one or more for or while loops, you can now test the

phrase to determine whether it is a palindrome. Print the

result of the test on the printer. Sample output should look

like:

“Madam, I’m Adam” is a palindrome.

Summary
You now should understand the generic methods C++ pro-

grams use for input and output. By writing to standard I/O devices,

C++ achieves portability. If you write a program for one computer,

it works on another. If C++ were to write directly to specific

hardware, programs would not work on every computer.

If you still want to use the formatted I/O functions, such as cout,

you can do so. The ofstream() function enables you to write format-

ted output to any device, including the printer.

The methods of character I/O might seem primitive, and they

are, but they give you the flexibility to build and create your own

input functions. One of the most often-used C++ functions, a string-

building character I/O function, was demonstrated in this chapter

(the C21IN.CPP program).

The next two chapters (Chapter 22, “Character, String, and

Numeric Functions,” and Chapter 23, “Introducing Arrays”) intro-

duce many character and string functions, including string I/O

functions. The string I/O functions build on the principles pre-

sented here. You will be surprised at the extensive character and

string manipulation functions available in the language as well.

449

EXAMPLE
C++ By

22

Character, String,
and Numeric
Functions

C++ provides many built-in functions in addition to the cout, getch(),

and strcpy() functions you have seen so far. These built-in functions

increase your productivity and save you programming time. You

don’t have to write as much code because the built-in functions

perform many useful tasks for you.

This chapter introduces you to

♦ Character conversion functions

♦ Character and string testing functions

♦ String manipulation functions

♦ String I/O functions

♦ Mathematical, trigonometric, and logarithmic functions

♦ Random-number processing

Chapter 22 ♦ Character, String, and Numeric Functions

450

Character Functions
This section explores many of the character functions available

in AT&T C++. Generally, you pass character arguments to the

functions, and the functions return values that you can store or print.

By using these functions, you off-load much of your work to C++

and allow it to perform the more tedious manipulations of character

and string data.

Character Testing Functions

Several functions test for certain characteristics of your charac-

ter data. You can determine whether your character data is alpha-

betic, digital, uppercase, lowercase, and much more. You must pass

a character variable or literal argument to the function (by placing

the argument in the function parentheses) when you call it. These

functions return a True or False result, so you can test their return

values inside an if statement or a while loop.

NOTE: All character functions presented in this section are

prototyped in the ctype.h header file. Be sure to include ctype.h

at the beginning of any programs that use them.

Alphabetic and Digital Testing

The following functions test for alphabetic conditions:

♦ isalpha(c): Returns True (nonzero) if c is an uppercase or

lowercase letter. Returns False (zero) if c is not a letter.

♦ islower(c): Returns True (nonzero) if c is a lowercase letter.

Returns False (zero) if c is not a lowercase letter.

♦ isupper(c): Returns True (nonzero) if c is an uppercase letter.

Returns False (zero) if c is not an uppercase letter.

The character
functions return True
or False results
based on the
characters you pass
to them.

451

EXAMPLE
C++ By

Remember that any nonzero value is True in C++, and zero is

always False. If you use the return values of these functions in a

relational test, the True return value is not always 1 (it can be any

nonzero value), but it is always considered True for the test.

The following functions test for digits:

♦ isdigit(c): Returns True (nonzero) if c is a digit 0 through 9.

Returns False (zero) if c is not a digit.

♦ isxdigit(c): Returns True (nonzero) if c is any of the hexa-

decimal digits 0 through 9 or A, B, C, D, E, F, a, b, c, d, e, or f.

Returns False (zero) if c is anything else. (See Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,”

for more information on the hexadecimal numbering

system.)

NOTE: Although some character functions test for digits, the

arguments are still character data and cannot be used in math-

ematical calculations, unless you calculate using the ASCII

values of characters.

The following function tests for numeric or alphabetical argu-

ments:

isalnum(c): Returns True (nonzero) if c is a digit 0 through 9

or an alphabetic character (either uppercase or lowercase).

Returns False (zero) if c is not a digit or a letter.

CAUTION: You can pass to these functions only a character

value or an integer value holding the ASCII value of a charac-

ter. You cannot pass an entire character array to character

functions. If you want to test the elements of a character array,

you must pass the array one element at a time.

Chapter 22 ♦ Character, String, and Numeric Functions

452

Example

The following program asks users for their initials. If a user

types anything but alphabetic characters, the program displays an

error and asks again.

Identify the program and include the input/output header files. The
program asks the user for his or her first initial, so declare the character
variable initial to hold the user’s answer.

1. Ask the user for her or his first initial, and retrieve the user’s answer.

2. If the answer was not an alphabetic character, tell the user this and
repeat step one.

Print a thank-you message on-screen.

// Filename: C22INI.CPP

// Asks for first initial and tests

// to ensure that response is correct.

#include <iostream.h>

#include <ctype.h>

void main()

{

 char initial;

 cout << “What is your first initial? “;

 cin >> initial;

 while (!isalpha(initial))

 {

 cout << “\nThat was not a valid initial! \n”;

 cout << “\nWhat is your first initial? “;

 cin >> initial;

 }

 cout << “\nThanks!”;

 return;

}

This use of the not operator (!) is quite clear. The program

continues to loop as long as the entered character is not alphabetic.

453

EXAMPLE
C++ By

Special Character-Testing
Functions

A few character functions become useful when you have to

read from a disk file, a modem, or another operating system device

that you route input from. These functions are not used as much as

the character functions you saw in the previous section, but they are

useful for testing specific characters for readability.

The remaining character-testing functions follow:

♦ iscntrl(c): Returns True (nonzero) if c is a control character
(any character from the ASCII table numbered 0 through 31).

Returns False (zero) if c is not a control character.

♦ isgraph(c): Returns True (nonzero) if c is any printable

character (a noncontrol character) except a space. Returns

False (zero) if c is a space or anything other than a printable

character.

♦ isprint(c): Returns True (nonzero) if c is a printable charac-

ter (a noncontrol character) from ASCII 32 to ASCII 127,

including a space. Returns False (zero) if c is not a printable

character.

♦ ispunct(c): Returns True (nonzero) if c is any punctuation

character (any printable character other than a space, a letter,

or a digit). Returns False (zero) if c is not a punctuation

character.

♦ isspace(c): Returns True (nonzero) if c is a space, newline

(\n), carriage return (\r), tab (\t), or vertical tab (\v) charac-

ter. Returns False (zero) if c is anything else.

Character Conversion Functions

The two remaining character functions are handy. Rather than

test characters, these functions change characters to their lower- or

uppercase equivalents.

The character-testing
functions do not
change characters.

Both tolower()
and toupper()
return lowercase
or uppercase
arguments.

Chapter 22 ♦ Character, String, and Numeric Functions

454

♦ tolower(c): Converts c to lowercase. Nothing changes if you

pass tolower() a lowercase letter or a nonalphabetic character.

♦ toupper(c): Converts c to uppercase. Nothing changes if you

pass toupper() an uppercase letter or a nonalphabetic character.

These functions return their changed character values. These

functions are useful for user input. Suppose you are asking users a

yes or no question, such as the following:

Do you want to print the checks (Y/N)?

Before toupper() and tolower() were developed, you had to

check for both a Y and a y to print the checks. Instead of testing for

both conditions, you can convert the character to uppercase, and test

for a Y.

Example

Here is a program that prints an appropriate message if the user

is a girl or a boy. The program tests for G and B after converting the

user’s input to uppercase. No check for lowercase has to be done.

Identify the program and include the input/output header files. The
program asks the user a question requiring an alphabetic answer, so declare
the character variable ans to hold the user’s response.

Ask whether the user is a girl or a boy, and store the user’s answer in ans.
The user must press Enter, so incorporate and then discard the Enter
keypress. Change the value of ans to uppercase. If the answer is G, print a
message. If the answer is B, print a different message. If the answer is
something else, print another message.

// Filename: C22GB.CPP

// Determines whether the user typed a G or a B.

#include <iostream.h>

#include <conio.h>

#include <ctype.h>

void main()

{

455

EXAMPLE
C++ By

 char ans; // Holds user’s response.

 cout << “Are you a girl or a boy (G/B)? “;

 ans=getch(); // Get answer.

 getch(); // Discard newline.

cout <<ans<<“\n”;

 ans = toupper(ans); // Convert answer to uppercase.

 switch (ans)

 { case (‘G’): { cout << “You look pretty today!\n”;

 break; }

 case (‘B’): { cout << “You look handsome today!\n”;

 break; }

 default : { cout << “Your answer makes no sense!\n”;

 break; }

 }

 return;

}

Here is the output from the program:

Are you a girl or a boy (G/B)? B

You look handsome today!

String Functions
Some of the most powerful built-in C++ functions are the string

functions. They perform much of the tedious work for which you

have been writing code so far, such as inputting strings from the

keyboard and comparing strings.

As with the character functions, there is no need to “reinvent

the wheel” by writing code when built-in functions do the same task.

Use these functions as much as possible.

Now that you have a good grasp of the foundations of C++, you

can master the string functions. They enable you to concentrate on

your program’s primary purpose, rather than spend time coding

your own string functions.

Chapter 22 ♦ Character, String, and Numeric Functions

456

Useful String Functions

You can use a handful of useful string functions for string

testing and conversion. You have already seen (in earlier chapters)

the strcpy() string function, which copies a string of characters to a

character array.

NOTE: All string functions in this section are prototyped in

the string.h header file. Be sure to include string.h at the

beginning of any program that uses the string functions.

String functions that test or manipulate strings follow:

♦ strcat(s1, s2): Concatenates (merges) the s2 string to the end

of the s1 character array. The s1 array must have enough

reserved elements to hold both strings.

♦ strcmp(s1, s2): Compares the s1 string with the s2 string on

an alphabetical, element-by-element basis. If s1 alphabetizes

before s2, strcmp() returns a negative value. If s1 and s2 are

the same strings, strcmp() returns 0. If s1 alphabetizes after

s2, strcmp() returns a positive value.

♦ strlen(s1): Returns the length of s1. Remember, the length of

a string is the number of characters, not including the null

zero. The number of characters defined for the character

array has nothing to do with the length of the string.

TIP: Before using strcat() to concatenate strings, use strlen()

to ensure that the target string (the string being concatenated

to) is large enough to hold both strings.

String I/O Functions

In the previous few chapters, you have used a character input

function, cin.get(), to build input strings. Now you can begin to use

the string input and output functions. Although the goal of the

The string functions
work on string
literals or on
character arrays that
contain strings.

457

EXAMPLE
C++ By

string-building functions has been to teach you the specifics of the

language, these string I/O functions are much easier to use than

writing a character input function.

The string input and output functions are listed as follows:

♦ gets(s): Stores input from stdin (usually directed to the

keyboard) to the string named s.

♦ puts(s): Outputs the s string to stdout (usually directed to the

screen by the operating system).

♦ fgets(s, len, dev): Stores input from the standard device

specified by dev (such as stdin or stdaux) in the s string. If

more than len characters are input, fgets() discards them.

♦ fputs(s, dev): Outputs the s string to the standard device

specified by dev.

These four functions make the input and output of strings easy.

They work in pairs. That is, strings input with gets() are usually

output with puts(). Strings input with fgets() are usually output

with fputs().

TIP: gets() replaces the string-building input function you

saw in earlier chapters.

Terminate gets() or fgets() input by pressing Enter. Each of

these functions handles string-terminating characters in a slightly

different manner, as follows:

gets() A newline input becomes a null zero (\0).

puts() A null at the end of the string becomes a newline

character (\n).

fgets() A newline input stays, and a null zero is added

after it.

fputs() The null zero is dropped, and a newline character

is not added.

Therefore, when you enter strings with gets(), C++ places a

string-terminating character in the string at the point where you

press Enter. This creates the input string. (Without the null zero, the

Both gets() and
puts() input and
output strings.

Chapter 22 ♦ Character, String, and Numeric Functions

458

input would not be a string.) When you output a string, the null

zero at the end of the string becomes a newline character. This is

preferred because a newline is at the end of a line of output and the

cursor begins automatically on the next line.

Because fgets() and fputs() can input and output strings from

devices such as disk files and telephone modems, it can be critical

that the incoming newline characters are retained for the data’s

integrity. When outputting strings to these devices, you do not want

C++ inserting extra newline characters.

CAUTION: Neither gets() nor fgets() ensures that its input

strings are large enough to hold the incoming data. It is up to

you to make sure enough space is reserved in the character

array to hold the complete input.

One final function is worth noting, although it is not a string

function. It is the fflush() function, which flushes (empties) what-

ever standard device is listed in its parentheses. To flush the key-

board of all its input, you would code as follows:

fflush(stdin);

When you are doing string input and output, sometimes an

extra newline character appears in the keyboard buffer. A previous

answer to gets() or getc() might have an extra newline you forgot to

discard. When a program seems to ignore gets(), you might have to

insert fflush(stdin) before gets().

Flushing the standard input device causes no harm, and using

it can clear the input stream so your next gets() works properly. You

can also flush standard output devices with fflush() to clear the

output stream of any characters you sent to it.

NOTE: The header file for fflush() is in stdio.h.

459

EXAMPLE
C++ By

Example

The following program shows you how easy it is to use gets()

and puts(). The program requests the name of a book from the user

using a single gets() function call, then prints the book title with

puts().

Identify the program and include the input/output header files. The
program asks the user for the name of a book. Declare the character array
book with 30 elements to hold the user’s answer.

Ask the user for the book’s title, and store the user’s response in the book
array. Display the string stored in book to an output device, probably your
screen. Print a thank-you message.

// C22GPS1.CPP

// Inputs and outputs strings.

#include <iostream.h>

#include <stdio.h>

#include <string.h>

void main()

{

 char book[30];

 cout << “What is the book title? “;

 gets(book); // Get an input string.

 puts(book); // Display the string.

 cout << “Thanks for the book!\n”;

 return;

}

The output of the program follows:

What is the book title? Mary and Her Lambs

Mary and Her Lambs

Thanks for the book!

Chapter 22 ♦ Character, String, and Numeric Functions

460

Converting Strings to Numbers

Sometimes you have to convert numbers stored in character

strings to a numeric data type. AT&T C++ provides three functions

that enable you to do this:

♦ atoi(s): Converts s to an integer. The name stands for alpha-

betic to integer.

♦ atol(s): Converts s to a long integer. The name stands for

alphabetic to long integer.

♦ atof(s): Converts s to a floating-point number. The name

stands for alphabetic to floating-point.

NOTE: These three ato() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning of

any program that uses the ato() functions.

The string must contain a valid number. Here is a string that can

be converted to an integer:

“1232”

The string must hold a string of digits short enough to fit in the

target numeric data type. The following string could not be con-

verted to an integer with the atoi() function:

“-1232495.654”

However, it could be converted to a floating-point number with the

atof() function.

C++ cannot perform any mathematical calculation with such

strings, even if the strings contain digits that represent numbers.

Therefore, you must convert any string to its numeric equivalent

before performing arithmetic with it.

NOTE: If you pass a string to an ato() function and the string

does not contain a valid representation of a number, the ato()

function returns 0.

461

EXAMPLE
C++ By

These functions become more useful to you after you learn

about disk files and pointers.

Numeric Functions
This section presents many of the built-in C++ numeric func-

tions. As with the string functions, these functions save you time by

converting and calculating numbers instead of your having to write

functions that do the same thing. Many of these are trigonometric

and advanced mathematical functions. You might use some of these

numeric functions only rarely, but they are there if you need them.

This section concludes the discussion of C++’s standard built-

in functions. After mastering the concepts in this chapter, you are

ready to learn more about arrays and pointers. As you develop more

skills in C++, you might find yourself relying on these numeric,

string, and character functions when you write more powerful

programs.

Useful Mathematical Functions

Several built-in numeric functions return results based on

numeric variables and literals passed to them. Even if you write only

a few science and engineering programs, some of these functions are

useful.

NOTE: All mathematical and trigonometric functions are

prototyped in the math.h header file. Be sure to include math.h

at the beginning of any program that uses the numeric func-

tions.

Here are the functions listed with their descriptions:

♦ ceil(x): The ceil(), or ceiling, function rounds numbers up to

the nearest integer.

♦ fabs(x): Returns the absolute value of x. The absolute value

of a number is its positive equivalent.

These numeric
functions return
double-precision
values.

Chapter 22 ♦ Character, String, and Numeric Functions

462

TIP: Absolute value is used for distances (which are always

positive), accuracy measurements, age differences, and other

calculations that require a positive result.

♦ floor(x): The floor() function rounds numbers down to the

nearest integer.

♦ fmod(x, y): The fmod() function returns the floating-point

remainder of (x/y) with the same sign as x, and y cannot be

zero. Because the modulus operator (%) works only with

integers, this function is used to find the remainder of

floating-point number divisions.

♦ pow(x, y): Returns x raised to the y power, or xy. If x is less

than or equal to zero, y must be an integer. If x equals zero,

y cannot be negative.

♦ sqrt(x): Returns the square root of x; x must be greater than

or equal to zero.

The nth Root

No function returns the nth root of a number, only the square

root. In other words, you cannot call a function that gives you

the 4th root of 65,536. (By the way, 16 is the 4th root of 65,536,

because 16 times 16 times 16 times 16 = 65,536.)

You can use a mathematical trick to simulate the nth root,

however. Because C++ enables you to raise a number to a

fractional power—with the pow() function—you can raise a

number to the nth root by raising it to the (1/n) power. For

example, to find the 4th root of 65,536, you could type this:

root = pow(65536.0, (1.0/4.0));

Note that the decimal point keeps the numbers in floating-

point format. If you leave them as integers, such as

root = pow(65536, (1/4));

463

EXAMPLE
C++ By

C++ produces incorrect results. The pow() function and most

other mathematical functions require floating-point values as

arguments.

To store the 7th root of 78,125 in a variable called root, for

example, you would type

root = pow(78125.0, (1.0/7.0));

This stores 5.0 in root because 5 7 equals 78,125.

Knowing how to compute the nth root is handy in scientific

programs and also in financial applications, such as time-

value-of-money problems.

Example

The following program uses the fabs() function to compute the

difference between two ages.

// Filename: C22ABS.CPP

// Computes the difference between two ages.

#include <iostream.h>

#include <math.h>

void main()

{

 float age1, age2, diff;

 cout << “\nWhat is the first child’s age? “;

 cin >> age1;

 cout << “What is the second child’s age? “;

 cin >> age2;

 // Calculates the positive difference.

 diff = age1 - age2;

 diff = fabs(diff); // Determines the absolute value.

 cout << “\nThey are “ << diff << “ years apart.”;

 return;

}

Chapter 22 ♦ Character, String, and Numeric Functions

464

The output from this program follows. Due to fabs(), the order

of the ages doesn’t matter. Without absolute value, this program

would produce a negative age difference if the first age was less than

the second. Because the ages are relatively small, floating-point

variables are used in this example. C++ automatically converts

floating-point arguments to double precision when passing them to

fabs().

What is the first child’s age? 10

What is the second child’s age? 12

They are 2 years apart.

Trigonometric Functions

The following functions are available for trigonometric appli-

cations:

♦ cos(x): Returns the cosine of the angle x, expressed in radians.

♦ sin(x): Returns the sine of the angle x, expressed in radians.

♦ tan(x): Returns the tangent of the angle x, expressed in radians.

These are probably the least-used functions. This is not to

belittle the work of scientific and mathematical programmers who

need them, however. Certainly, they are grateful that C++ supplies

these functions! Otherwise, programmers would have to write their

own functions to perform these three basic trigonometric calcula-

tions.

Most C++ compilers supply additional trigonometric func-

tions, including hyperbolic equivalents of these three functions.

TIP: If you have to pass an angle that is expressed in degrees

to these functions, convert the angle’s degrees to radians by

multiplying the degrees by π/180.0 (π equals approximately

3.14159).

465

EXAMPLE
C++ By

Logarithmic Functions

Three highly mathematical functions are sometimes used in

business and mathematics. They are listed as follows:

♦ exp(x): Returns the base of natural logarithm (e) raised to a

power specified by x (ex); e is the mathematical expression

for the approximate value of 2.718282.

♦ log(x): Returns the natural logarithm of the argument x,

mathematically written as ln(x). x must be positive.

♦ log10(x): Returns the base-10 logarithm of argument x,

mathematically written as log10(x). x must be positive.

Random-Number Processing

Random events happen every day. You wake up and it is sunny

or rainy. You have a good day or a bad day. You get a phone call from

an old friend or you don’t. Your stock portfolio might go up or down

in value.

Random events are especially important in games. Part of the

fun in games is your luck with rolling dice or drawing cards,

combined with your playing skills.

Simulating random events is an important task for computers.

Computers, however, are finite machines; given the same input,

they always produce the same output. This fact can create some

boring games!

The designers of C++ knew this computer setback and found a

way to overcome it. They wrote a random-number generating

function called rand(). You can use rand() to compute a dice roll or

draw a card, for example.

To call the rand() function and assign the returned random

number to test, use the following syntax:

test = rand();

The rand() function returns an integer from 0 to 32,767. Never

use an argument in the rand() parentheses.

Every time you call rand() in the same program, you receive a

different number. If you run the same program over and over,

The rand()
function produces
random integer
numbers.

Chapter 22 ♦ Character, String, and Numeric Functions

466

however, rand() returns the same set of random numbers. One way

to receive a different set of random numbers is to call the srand()

function. The format of srand() follows:

srand(seed);

where seed is an integer variable or literal. If you don’t call srand(),

C++ assumes a seed value of 1.

NOTE: The rand() and srand() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning

of any program that uses rand() or srand().

The seed value reseeds, or resets, the random-number genera-

tor, so the next random number is based on the new seed value. If you

call srand() with a different seed value at the top of a program, rand()

returns a different random number each time you run the program.

Why Do You Have To Do This?

There is considerable debate among C++ programmers con-

cerning the random-number generator. Many think that the

random numbers should be truly random, and that they should

not have to seed the generator themselves. They think that C++

should do its own internal seeding when you ask for a random

number.

However, many applications would no longer work if the

random-number generator were randomized for you. Com-

puters are used in business, engineering, and research to

simulate the pattern of real-world events. Researchers have to

be able to duplicate these simulations, over and over. Even

though the events inside the simulations might be random

from each other, the running of the simulations cannot be

random if researchers are to study several different effects.

Mathematicians and statisticians also have to repeat random-

number patterns for their analyses, especially when they work

with risk, probability, and gaming theories.

467

EXAMPLE
C++ By

Because so many computer users have to repeat their random-

number patterns, the designers of C++ have wisely chosen to

give you, the programmer, the option of keeping the same

random patterns or changing them. The advantages far out-

weigh the disadvantage of including an extra srand() function

call.

If you want to produce a different set of random numbers every

time your program runs, you must determine how your C++

compiler reads the computer’s system clock. You can use the

seconds count from the clock to seed the random-number

generator so it seems truly random.

Review Questions
The answers to the review questions are in Appendix B.

1. How do the character testing functions differ from the

character conversion functions?

2. What are the two string input functions?

3. What is the difference between floor() and ceil()?

4. What does the following nested function return?

isalpha(islower(‘s’));

5. If the character array str1 contains the string Peter and the

character array str2 contains Parker, what does str2 contain

after the following line of code executes?

strcat(str1, str2);

6. What is the output of the following cout?

cout << floor(8.5) << “ “ << ceil(8.5);

7. True or false: The isxdigit() and isgraph() functions could

return the same value, depending on the character passed to

them.

Chapter 22 ♦ Character, String, and Numeric Functions

468

8. Assume you declare a character array with the following

statement:

char ara[5];

Now suppose the user types Programming in response to the

following statement:

fgets(ara, 5, stdin);

Would ara contain Prog, Progr, or Programming?

9. True or false: The following statements print the same

results.

cout << pow(64.0, (1.0/2.0)) ;

cout << sqrt(64.0);

Review Exercises
1. Write a program that asks users for their ages. If a user types

anything other than two digits, display an error message.

2. Write a program that stores a password in a character array

called pass. Ask users for the password. Use strcmp() to

inform users whether they typed the proper password. Use

the string I/O functions for all the program’s input and

output.

3. Write a program that rounds up and rounds down the

numbers –10.5, –5.75, and 2.75.

4. Ask users for their names. Print every name in reverse case;

print the first letter of each name in lowercase and the rest of

the name in uppercase.

5. Write a program that asks users for five movie titles. Print

the longest title. Use only the string I/O and manipulation

functions presented in this chapter.

6. Write a program that computes the square root, cube root,

and fourth root of the numbers from 10 to 25, inclusive.

469

EXAMPLE
C++ By

7. Ask users for the titles of their favorite songs. Discard all the

special characters in each title. Print the words in the title,

one per line. For example, if they enter My True Love Is Mine,

Oh, Mine!, you should output the following:

My

True

Love

Is

Mine

Oh

Mine

8. Ask users for the first names of 10 children. Using strcmp()

on each name, write a program to print the name that comes

first in the alphabet.

Summary
You have learned the character, string, and numeric functions

that C++ provides. By including the ctype.h header file, you can test

and convert characters that a user types. These functions have many

useful purposes, such as converting a user’s response to uppercase.

This makes it easier for you to test user input.

The string I/O functions give you more control over both string

and numeric input. You can receive a string of digits from the

keyboard and convert them to a number with the ato() functions.

The string comparison and concatenation functions enable you to

test and change the contents of more than one string.

Functions save you programming time because they take over

some of your computing tasks, leaving you free to concentrate on

your programs. C++’s numeric functions round and manipulate

numbers, produce trigonometric and logarithmic results, and pro-

duce random numbers.

Now that you have learned most of C++’s built-in functions,

you are ready to improve your ability to work with arrays. Chap-

ter 23, “Introducing Arrays,” extends your knowledge of character

arrays and shows you how to produce arrays of any data type.

Chapter 22 ♦ Character, String, and Numeric Functions

470

Part VI
Arrays and Pointers

473

EXAMPLE
C++ By

23

Introducing Arrays

This chapter discusses different types of arrays. You are already

familiar with character arrays, which are the only method for storing

character strings in the C++ language. A character array isn’t the

only kind of array you can use, however. There is an array for every

data type in C++. By learning how to process arrays, you greatly

improve the power and efficiency of your programs.

This chapter introduces

♦ Array basics of names, data types, and subscripts

♦ Initializing an array at declaration time

♦ Initializing an array during program execution

♦ Selecting elements from arrays

The sample programs in these next few chapters are the most

advanced that you have seen in this book. Arrays are not difficult to

use, but their power makes them well-suited to more advanced

programming.

Chapter 23 ♦ Introducing Arrays

474

Array Basics
Although you have seen arrays used as character strings, you

still must have a review of arrays in general. An array is a list of more

than one variable having the same name. Not all lists of variables are

arrays. The following list of four variables, for example, does not

qualify as an array.

sales bonus_92 first_initial ctr

This is a list of variables (four of them), but it isn’t an array

because each variable has a different name. You might wonder how

more than one variable can have the same name; this seems to violate

the rules for variables. If two variables have the same name, how can

C++ determine which you are referring to when you use that name?

Array variables, or array elements, are differentiated by a

subscript, which is a number inside brackets. Suppose you want to

store a person’s name in a character array called name. You can do

this with

char name[] = “Ray Krebbs”;

or

char name[11] = “Ray Krebbs”;

Because C++ reserves an extra element for the null zero at the

end of every string, you don’t have to specify the 11 as long as you

initialize the array with a value. The variable name is an array because

brackets follow its name. The array has a single name, name, and it

contains 11 elements. The array is stored in memory, as shown in

Figure 23.1. Each element is a character.

NOTE: All array subscripts begin with 0.

You can manipulate individual elements in the array by refer-

encing their subscripts. For instance, the following cout prints Ray’s

initials.

Print the first and fifth elements of the array called name.

cout << name[0] << “ “ << name[4];

An array is a list of
more than one
variable having the
same name.

475

EXAMPLE
C++ By

Figure 23.1. Storing the name character array in memory.

You can define an array as any data type in C++. You can have

integer arrays, long integer arrays, double floating-point arrays,

short integer arrays, and so on. C++ recognizes that the brackets []

following the array name signify that you are defining an array, and

not a single nonarray variable.

The following line defines an array called ages, consisting of

five integers:

int ages[5];

The first element in the ages array is ages[0]. The second element

is ages[1], and the last one is ages[4]. This declaration of ages does not

assign values to the elements, so you don’t know what is in ages and

your program does not automatically zero ages for you.

Here are some more array definitions:

int weights[25], sizes[100]; // Declare two integer arrays.

float salaries[8]; // Declare a floating-point array.

double temps[50]; // Declare a double floating-point

 // array.

char letters[15]; // Declare an array of characters.

When you declare an array, you instruct C++ to reserve a

specific number of memory locations for that array. C++ protects

Chapter 23 ♦ Introducing Arrays

476

those elements. In the previous lines of code, if you assign a value to

letters[2] you don’t overwrite any data in weights, sizes, salaries, or

temps. Also, if you assign a value to sizes[94], you don’t overwrite

data stored in weights, salaries, temps, or letters.

Each element in an array occupies the same amount of storage

as a nonarray variable of the same data type. In other words, each

element in a character array occupies one byte. Each element in an

integer array occupies two or more bytes of memory—depending

on the computer’s internal architecture. The same is true for every

other data type.

Your program can reference elements by using formulas for

subscripts. As long as the subscript can evaluate to an integer, you

can use a literal, a variable, or an expression for the subscript. All the

following are references to individual array elements:

ara[4]

sales[ctr+1]

bonus[month]

salary[month[i]*2]

All array elements are stored in a contiguous, back-to-back

fashion. This is important to remember, especially as you write more

advanced programs. You can always count on an array’s first

element preceding the second. The second element is always placed

immediately before the third, and so on. Memory is not “padded”;

meaning that C++ guarantees there is no extra space between array

elements. This is true for character arrays, integer arrays, floating-

point arrays, and every other type of array. If a floating-point value

occupies four bytes of memory on your computer, the next element

in a floating-point array always begins exactly four bytes after the

previous element.

The Size of Arrays

The sizeof() function returns the number of bytes needed to

hold its argument. If you request the size of an array name,

sizeof() returns the number of bytes reserved for the entire

array.

Array elements
follow each other in
memory, with
nothing between
them.

477

EXAMPLE
C++ By

For example, suppose you declare an integer array of 100

elements called scores. If you were to find the size of the array,

as in the following,

n = sizeof(scores);

n holds either 200 or 400 bytes, depending on the integer size of

your computer. The sizeof() function always returns the re-

served amount of storage, no matter what data are in the array.

Therefore, a character array’s contents—even if it holds a very

short string—do not affect the size of the array that was

originally reserved in memory. If you request the size of an

individual array element, however, as in the following,

n = sizeof(scores[6]);

n holds either 2 or 4 bytes, depending on the integer size of your

computer.

You must never go out-of-bounds of any array. For example,

suppose you want to keep track of the exemptions and salary codes

of five employees. You can reserve two arrays to hold such data, like

this:

int exemptions[5]; // Holds up to five employee exemptions.

char sal_codes[5]; // Holds up to five employee codes.

Figure 23.2 shows how C++ reserves memory for these arrays.

The figure assumes a two-byte integer size, although this might

differ on some computers. Notice that C++ reserves five elements

for exemptions from the array declaration. C++ starts reserving

memory for sal_codes after it reserves all five elements for exemptions.

If you declare several more variables—either locally or globally—

after these two lines, C++ always protects these reserved five

elements for exemptions and sal_codes.

Because C++ does its part to protect data in the array, so must

you. If you reserve five elements for exemptions, you have five inte-

ger array elements referred to as exemptions[0], exemptions[1],

exemptions[2], exemptions[3], and exemptions[4]. C++ does not protect

C++ protects only as
many array elements
as you specify.

Chapter 23 ♦ Introducing Arrays

478

more than five elements for exemptions! Suppose you put a value in

an exemptions element you did not reserve:

exemptions[6] = 4; // Assign a value to an

 // out-of-range element.

Figure 23.2. Locating two arrays in memory.

C++ enables you to do this—but the results are damaging! C++

overwrites other data (in this case, sal_codes[2] and sal_codes[3]

because they are reserved in the location of the seventh element of

exemptions). Figure 23.3 shows the damaging results of assigning a

value to an out-of-range element.

Figure 23.3. The arrays in memory after overwriting part of sal_codes.

Although you can define an array of any data type, you cannot

declare an array of strings. A string is not a C++ variable data type.

You learn how to hold multiple strings in an array-like structure in

Chapter 27, “Pointers and Arrays.”

479

EXAMPLE
C++ By

CAUTION: Unlike most programming languages, AT&T

C++ enables you to assign values to out-of-range (nonreserved)

subscripts. You must be careful not to do this; otherwise, you

start overwriting your other data or code.

Initializing Arrays
You must assign values to array elements before using them.

Here are the two ways to initialize elements in an array:

♦ Initialize the elements at declaration time

♦ Initialize the elements in the program

NOTE: C++ automatically initializes global arrays to null

zeros. Therefore, global character array elements are null, and

all numeric array elements contain zero. You should limit your

use of global arrays. If you use global arrays, explicitly initialize

them to zero, even though C++ does this for you, to clarify your

intentions.

Initializing Elements
at Declaration Time

You already know how to initialize character arrays that hold

strings when you define the arrays: You simply assign them a string.

For example, the following declaration reserves six elements in a

character array called city:

char city[6]; // Reserve space for city.

If you want also to initialize city with a value, you can do it like

this:

char city[6] = “Tulsa”; // Reserve space and

 // initialize city.

Chapter 23 ♦ Introducing Arrays

480

The 6 is optional because C++ counts the elements needed to

hold Tulsa, plus an extra element for the null zero at the end of the

quoted string.

You also can reserve a character array and initialize it —a single

character at a time—by placing braces around the character data.

The following line of code declares an array called initials and

initializes it with eight characters:

char initials[8] = {‘Q’, ‘K’, ‘P’, ‘G’, ‘V’, ‘M’, ‘U’, ‘S’};

The array initials is not a string! Its data does not end in a null

zero. There is nothing wrong with defining an array of characters

such as this one, but you must remember that you cannot treat the

array as if it were a string. Do not use string functions with it, or

attempt to print the array with cout.

By using brackets, you can initialize any type of array. For

example, if you want to initialize an integer array that holds your

five children’s ages, you can do it with the following declaration:

int child_ages[5] = {2, 5, 6, 8, 12}; // Declare and

 // initialize array.

In another example, if you want to keep track of the previous

three years’ total sales, you can declare an array and initialize it at

the same time with the following:

double sales[] = {454323.43, 122355.32, 343324.96};

As with character arrays, you do not have to state explicitly the

array size when you declare and initialize an array of any type. C++

determines, in this case, to reserve three double floating-point array

elements for sales. Figure 23.4 shows the representation of child_ages

and sales in memory.

NOTE: You cannot initialize an array, using the assignment

operator and braces, after you declare it. You can initialize

arrays in this manner only when you declare them. If you want

to fill an array with data after you declare the array, you must

do so element-by-element or by using functions as described in

the next section.

481

EXAMPLE
C++ By

Figure 23.4. In-memory representation of two different types of arrays.

Although C++ does not automatically initialize the array ele-

ments, if you initialize some but not all the elements when you

declare the array, C++ finishes the job for you by assigning the

remainder to zero.

TIP: To initialize every element of a large array to zero at the

same time, declare the entire array and initialize only its first

value to zero. C++ fills the rest of the array to zero.

For instance, suppose you have to reserve array storage for

profit figures of the three previous months as well as the three

months to follow. You must reserve six elements of storage, but you

know values for only the first three. You can initialize the array as

follows:

double profit[6] = {67654.43, 46472.34, 63451.93};

Because you explicitly initialized three of the elements, C++

initializes the rest to zero. If you use cout to print the entire array,

one element per line, you receive:

67654.43

46472.34

63451.93

00000.00

00000.00

00000.00

C++ assigns zero
nulls to all array
values that you do
not define explicitly
at declaration time.

child–ages

sales

Floating-points

Integers

Chapter 23 ♦ Introducing Arrays

482

CAUTION: Always declare an array with the maximum

number of subscripts, unless you initialize the array at the same

time. The following array declaration is illegal:

int count[]; // Bad array declaration!

C++ does not know how many elements to reserve for count, so

it reserves none. If you then assign values to count’s nonreserved

elements, you can (and probably will) overwrite other data.

The only time you can leave the brackets empty is if you also

assign values to the array, such as the following:

int count[] = {15, 9, 22, -8, 12}; // Good definition.

C++ can determine, from the list of values, how many elements

to reserve. In this case, C++ reserves five elements for count.

Examples

1. Suppose you want to track the stock market averages for the

previous 90 days. Instead of storing them in 90 different

variables, it is much easier to store them in an array. You can

declare the array like this:

float stock[90];

The remainder of the program can assign values to the

averages.

2. Suppose you just finished taking classes at a local university

and want to average your six class scores. The following

program initializes one array for the school name and an-

other for the six classes. The body of the program averages

the six scores.

// Filename: C23ARA1.CPP

// Averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void main()

483

EXAMPLE
C++ By

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average << “\n”;

 return;

}

The output follows:

At Tri Star University, your class average is 89.8.

Notice that using arrays makes processing lists of informa-

tion much easier. Instead of averaging six differently named

variables, you can use a for loop to step through each array

element. If you had to average 1000 numbers, you can still

do so with a simple for loop, as in this example. If the 1000

variables were not in an array, but were individually named,

you would have to write a considerable amount of code just

to add them.

3. The following program is an expanded version of the previ-

ous one. It prints the six scores before computing the aver-

age. Notice that you must print array elements individually;

you cannot print an entire array in a single cout. (You can

print an entire character array with cout, but only if it holds a

null-terminated string of characters.)

// Filename: C23ARA2.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]); // Prototype

Chapter 23 ♦ Introducing Arrays

484

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Call function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[6])

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<6; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

To pass an array to a function, you must specify its name

only. In the receiving function’s parameter list, you must

state the array type and include its brackets, which tell the

function that it is an array. (You do not explicitly have to

state the array size in the receiving parameter list, as shown

in the prototype.)

485

EXAMPLE
C++ By

4. To improve the maintainability of your programs, define all

array sizes with the const instruction. What if you took four

classes next semester but still wanted to use the same pro-

gram? You can modify it by changing all the 6s to 4s, but if

you had defined the array size with a constant, you have to

change only one line to change the program’s subscript

limits. Notice how the following program uses a constant for

the number of classes.

// Filename: C23ARA3.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]);

const int CLASS_NUM = 6; // Constant holds array size.

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[CLASS_NUM] = {88.7, 90.4, 76.0, 97.0,

 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Calls function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(CLASS_NUM);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[CLASS_NUM])

Chapter 23 ♦ Introducing Arrays

486

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

For such a simple example, using a constant for the maxi-

mum subscript might not seem like a big advantage. If you

were writing a larger program that processed several arrays,

however, changing the constant at the top of the program

would be much easier than searching the program for each

occurrence of that array reference.

Using constants for array sizes has the added advantage

of protecting you from going out of the subscript bounds.

You do not have to remember the subscript when looping

through arrays; you can use the constant instead.

Initializing Elements in the
Program

Rarely do you know the contents of arrays when you declare

them. Usually, you fill an array with user input or a disk file’s data.

The for loop is a perfect tool for looping through arrays when you fill

them with values.

CAUTION: An array name cannot appear on the left side of

 an assignment statement.

You cannot assign one array to another. Suppose you want to

copy an array called total_sales to a second array called saved_sales.

You cannot do so with the following assignment statement:

saved_sales = total_sales; // Invalid!

487

EXAMPLE
C++ By

Rather, you have to copy the arrays one element at a time, using

a loop, such as the following section of code does:

You want to copy one array to another. You have to do so one element at a
time, so you need a counter. Initialize a variable called ctr to 0; the value of
ctr represents a position in the array.

1. Assign the element that occupies the position in the first array
represented by the value of ctr to the same position in the second
array.

2. If the counter is less than the size of the array, add one to the
counter. Repeat step one.

for (ctr=0; ctr<ARRAY_SIZE; ctr++)

 { saved_sales[ctr] = total_sales[ctr]; }

The following examples illustrate methods for initializing ar-

rays in a program. After learning about disk processing later in the

book, you learn to read array values from a disk file.

Examples

1. The following program uses the assignment operator to

assign 10 temperatures to an array.

// Filename: C23ARA4.CPP

// Fills an array with 10 temperature values.

#include <iostream.h>

#include <iomanip.h>

const int NUM_TEMPS = 10;

void main()

{

 float temps[NUM_TEMPS];

 int ctr;

 temps[0] = 78.6; // Subscripts always begin at 0.

 temps[1] = 82.1;

 temps[2] = 79.5;

 temps[3] = 75.0;

 temps[4] = 75.4;

Chapter 23 ♦ Introducing Arrays

488

 temps[5] = 71.8;

 temps[6] = 73.3;

 temps[7] = 69.5;

 temps[8] = 74.1;

 temps[9] = 75.7;

 // Print the temps.

 cout << “Daily temperatures for the last “ <<

 NUM_TEMPS << “ days:\n”;

 for (ctr=0; ctr<NUM_TEMPS; ctr++)

 { cout << setprecision(1) << temps[ctr] << “\n”; }

 return;

}

2. The following program uses a for loop and cin to assign

eight integers entered individually by the user. The program

then prints a total of the numbers.

// Filename: C23TOT.CPP

// Totals eight input values from the user.

#include <iostream.h>

const int NUM = 8;

void main()

{

 int nums[NUM];

 int total = 0; // Holds total of user’s eight numbers.

 int ctr;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “Please enter the next number...”;

 cin >> nums[ctr];

 total += nums[ctr]; }

 cout << “The total of the numbers is “ << total << “\n”;

 return;

}

3. You don’t have to access an array in the same order as you

initialized it. Chapter 24, “Array Processing,” shows you

how to change the order of an array. You also can use the

subscript to select items from an array of values.

489

EXAMPLE
C++ By

The following program requests sales data for the preceding

12 months. Users can then type a month they want to see.

That month’s sales figure is then printed, without figures

from other months getting in the way. This is how you begin

to build a search program to find requested data: You store

the data in an array (or in a disk file that can be read into an

array, as you learn later), then wait for a user’s request to see

specific pieces of the data.

// Filename: C23SAL.CPP

// Stores twelve months of sales and

// prints selected ones.

#include <iostream.h>

#include <ctype.h>

#include <conio.h>

#include <iomanip.h>

const int NUM = 12;

void main()

{

 float sales[NUM];

 int ctr, ans;

 int req_month; // Holds user’s request.

 // Fill the array.

 cout << “Please enter the twelve monthly sales values\n”;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “What are sales for month number “

 << ctr+1 << “? \n”;

 cin >> sales[ctr]; }

 // Wait for a requested month.

 for (ctr=0; ctr<25; ctr++)

 { cout << “\n”; } // Clears the screen.

 cout << “*** Sales Printing Program ***\n”;

 cout << “Prints any sales from the last “ << NUM

 << “ months\n\n”;

 do

 { cout << “For what month (1-” << NUM << “) do you want “

 << “to see a sales value? “;

 cin >> req_month;

Chapter 23 ♦ Introducing Arrays

490

 // Adjust for zero-based subscript.

 cout << “\nMonth “ << req_month <<

 “‘s sales are “ << setprecision(2) <<

 sales[req_month-1];

 cout << “\nDo you want to see another (Y/N)? “;

 ans=getch();

 ans=toupper(ans);

 } while (ans == ‘Y’);

 return;

}

Notice the helpful screen-clearing routine that prints 23

newline characters. This routine scrolls the screen until it is

blank. (Most compilers come with a better built-in screen-

clearing function, but the AT&T C++ standard does not offer

one because the compiler is too closely linked with specific

hardware.)

The following is the second screen from this program. After

the 12 sales values are entered in the array, any or all can be

requested, one at a time, simply by supplying the month’s

number (the number of the subscript).

*** Sales Printing Program ***

Prints any sales from the last 12 months

For what month (1-12) do you want to see a sales value? 2

Month 2’s sales are 433.22

Do you want to see another (Y/N)?

For what month (1-12) do you want to see a sales value? 5

Month 5’s sales are 123.45

Do you want to see another (Y/N)?

491

EXAMPLE
C++ By

Review Questions
Answers to the review questions are in Appendix B.

1. True or false: A single array can hold several values of

different data types.

2. How do C++ programs tell one array element from another

if all elements have identical names?

3. Why must you initialize an array before using it?

4. Given the following definition of an array, called weights,

what is the value of weights[5]?

int weights[10] = {5, 2, 4};

5. If you pass an integer array to a function and change it, does

the array change also in the calling function? (Hint: Remem-

ber how character arrays are passed to functions.)

6. How does C++ initialize global array elements?

Review Exercises
1. Write a program to store the ages of six of your friends in a

single array. Store each of the six ages using the assignment

operator. Print the ages on-screen.

2. Modify the program in Exercise 1 to print the ages in reverse

order.

3. Write a simple data program to track a radio station’s ratings

(1, 2, 3, 4, or 5) for the previous 18 months. Use cin to initial-

ize the array with the ratings. Print the ratings on-screen

with an appropriate title.

4. Write a program to store the numbers from 1 to 100 in an

array of 100 integer elements. (Hint: The subscripts should

begin at 0 and end at 99.)

Chapter 23 ♦ Introducing Arrays

492

5. Write a program a small business owner can use to track

customers. Assign each customer a number (starting at 0).

Whenever a customer purchases something, record the sale

in the element that matches the customer’s number (that is,

the next unused array element). When the store owner

signals the end of the day, print a report consisting of each

customer number with its matching sales, a total sales figure,

and an average sales figure per customer.

Summary
You now know how to declare and initialize arrays consisting

of various data types. You can initialize an array either when you

declare it or in the body of your program. Array elements are much

easier to process than other variables because each has a different

name.

C++ has powerful sorting and searching techniques that make

your programs even more serviceable. The next chapter introduces

these techniques and shows you still other ways to access array

elements.

207

EXAMPLE
C++ By

10

Logical Operators

C++’s logical operators enable you to combine relational operators

into more powerful data-testing statements. The logical operators

are sometimes called compound relational operators. As C++’s prece-

dence table shows, relational operators take precedence over logical

operators when you combine them. The precedence table plays an

important role in these types of operators, as this chapter empha-

sizes.

This chapter introduces you to

♦ The logical operators

♦ How logical operators are used

♦ How logical operators take precedence

This chapter concludes your study of the conditional testing

that C++ enables you to perform, and it illustrates many examples

of if statements in programs that work on compound conditional

tests.

Defining Logical Operators
There may be times when you have to test more than one set of

variables. You can combine more than one relational test into a

compound relational test by using C++’s logical operators, as shown in

Table 10.1.

Chapter 10 ♦ Logical Operators

208

Table 10.1. Logical operators.

Operator Meaning

&& AND

|| OR

! NOT

The first two logical operators, && and ||, never appear by

themselves. They typically go between two or more relational tests.

Table 10.2 shows you how each logical operator works. These

tables are called truth tables because they show you how to achieve

True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table

(Both sides must be True)

True AND True = True

True AND False = False

False AND True = False

False AND False = False

The OR (||) truth table

(One or the other side must be True)

True OR True = True

True OR False = True

False OR True = True

False OR False = False

The NOT (!) truth table

(Causes an opposite relation)

NOT True = False

NOT False = True

Logical operators
enable the user to
compute compound
relational tests.

209

EXAMPLE
C++ By

Logical Operators and
Their Uses

The True and False on each side of the operators represent a

relational if test. The following statements, for example, are valid if

tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((a < b) && (c > d))

 { cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, c must

be greater than d for the printf() to execute. The if statement still

requires parentheses around its complete conditional test. Consider

this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))

 { bonus=500; }

The sales must be more than 5000, or the hrs_worked must be

more than 81, before the assignment executes.

if (!(sales < 2500))

 { bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This

illustrates an important programming tip: Use ! sparingly. Or, as

some professionals so wisely put it: “Do not use ! or your programs

will not be !(unclear).” It is much clearer to rewrite the previous

example by turning it into a positive relational test:

if (sales >= 2500)

 { bonus 500; }

But the ! operator is sometimes helpful, especially when testing

for end-of-file conditions for disk files, as you learn in Chapter 30,

“Sequential Files.” Most the time, however, you can avoid using ! by

using the reverse logic shown in the following:

The || is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(!) operator:

Chapter 10 ♦ Logical Operators

210

!(var1 == var2) is the same as (var1 != var2)

!(var1 <= var2) is the same as (var1 > var2)

!(var1 >= var2) is the same as (var1 < var2)

!(var1 != var2) is the same as (var1 == var2)

!(var1 > var2) is the same as (var1 <= var2)

!(var1 < var2) is the same as (var1 >= var2)

Notice that the overall format of the if statement is retained

when you use logical operators, but the relational test expands to

include more than one relation. You even can have three or more, as

in the following statement:

if ((a == B) && (d == f) || (l = m) || !(k <> 2)) ...

This is a little too much, however, and good programming

practice dictates using at most two relational tests inside a single if

statement. If you have to combine more than two, use more than one

if statement to do so.

As with other relational operators, you also use the following

logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go

to Italy this summer.”

“If you take the trash out or clean your room, you can watch

TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at

the bit level. For example, take the if test:

if (a == 6) ...

to determine the truth of the relation, (a==6). The computer

takes a binary 6, or 00000110, and compares it, bit-by-bit, to

the variable a. If a contains 7, a binary 00000111, the result of

this equal test is False, because the right bit (called the least-
significant bit) is different.

211

EXAMPLE
C++ By

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you

combine multiple relational tests with one of the logical operators,

C++ does not always interpret the full expression. This ultimately

makes your programs run faster, but there are dangers! For ex-

ample, if your program is given the conditional test:

if ((5 > 4) || (sales < 15) && (15 != 15))...

C++ only evaluates the first condition, (5 > 4), and realizes it does

not have to look further. Because (5 > 4) is True and because || (OR)

anything that follows it is still True, C++ does not bother with the

rest of the expression. The same holds true for the following state-

ment:

if ((7 < 3) && (age > 15) && (initial == ‘D’))...

Here, C++ evaluates only the first condition, which is False.

Because the && (AND) anything else that follows it is also False, C++

does not interpret the expression to the right of (7 < 3). Most of the

time, this doesn’t pose a problem, but be aware that the following

expression might not fulfill your expectations:

if ((5 > 4) || (num = 0))...

The (num = 0) assignment never executes, because C++ has to

interpret only (5 > 4) to determine whether the entire expression is

True or False. Due to this danger, do not include assignment

expressions in the same condition as a logical test. The following

single if condition:

if ((sales > old_sales) || (inventory_flag = ‘Y’))...

should be broken into two statements, such as:

inventory_flag) = ‘Y’;

if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the ‘Y’ value, no matter how

the (sales > old_sales) expression tests.

Chapter 10 ♦ Logical Operators

212

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken

every 10 years, in each year that is evenly divisible by 10.

The following short program asks for a year, and then tells

the user if it is a year of the summer Olympics, a year of the

census, or both. It uses relational operators, logical opera-

tors, and the modulus operator to determine this output.

// Filename: C10YEAR.CPP

// Determines if it is Summer Olympics year,

// U.S. Census year, or both.

#include <iostream.h>

main()

{

 int year;

 // Ask for a year

 cout << “What is a year for the test? “;

 cin >> year;

 // Test the year

 if (((year % 4)==0) && ((year % 10)==0))

 { cout << “Both Olympics and U.S. Census!”;

 return 0; } // Quit program, return to operating

 // system.

 if ((year % 4)==0)

 { cout << “Summer Olympics only”; }

 else

 { if ((year % 10)==0)

 { cout << “U.S. Census only”; }

 }

 return 0;

}

2. Now that you know about compound relations, you can

write an age-checking program like the one called

C9AGE.CPP presented in Chapter 9, “Relational Operators.”

That program ensured the age would be above 10. This is

another way you can validate input for reasonableness.

213

EXAMPLE
C++ By

The following program includes a logical operator in its if to

determine whether the age is greater than 10 and less than

100. If either of these is the case, the program concludes that

the user did not enter a valid age.

// Filename: C10AGE.CPP

// Program that helps ensure age values are reasonable.

#include <iostream.h>

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 if ((age < 10) || (age > 100))

 { cout << “ \x07 \x07 \n”; // Beep twice

 cout << “*** The age must be between 10 and”

 “100 ***\n”; }

 else

 { cout << “You entered a valid age.”; }

 return 0;

}

3. The following program could be used by a video store to

calculate a discount, based on the number of rentals people

transact as well as their customer status. Customers are

classified either R for Regular or S for Special. Special custom-

ers have been members of the rental club for more than one

year. They automatically receive a 50-cent discount on all

rentals. The store also holds “value days” several times a

year. On value days, all customers receive the 50-cent dis-

count. Special customers do not receive an additional 50

cents off during value days, because every day is a discount

for them.

The program asks for each customer’s status and whether or

not it is a value day. It then uses the || relation to test for the

discount. Even before you started learning C++, you would

probably have looked at this problem with the following

idea in mind.

Chapter 10 ♦ Logical Operators

214

“If a customer is Special or if it is a value day, deduct 50

cents from the rental.”

That’s basically the idea of the if decision in the following

program. Even though Special customers do not receive an

additional discount on value days, there is one final if test

for them that prints an extra message at the bottom of the

screen’s indicated billing.

// Filename: C10VIDEO.CPP

// Program that computes video rental amounts and gives

// appropriate discounts based on the day or customer status.

#include <iostream.h>

#include <stdio.h>

main()

{

 float tape_charge, discount, rental_amt;

 char first_name[15];

 char last_name[15];

 int num_tapes;

 char val_day, sp_stat;

 cout << “\n\n *** Video Rental Computation ***\n”;

 cout << “ ------------------------\n”;

 // Underline title

 tape_charge = 2.00;

 // Before-discount tape fee-per tape.

 // Receive input data.

 cout << “\nWhat is customer’s first name? “;

 cin >> first_name;

 cout << “What is customer’s last name? “;

 cin >> last_name;

 cout << “\nHow many tapes are being rented? “;

 cin >> num_tapes;

 cout << “Is this a Value day (Y/N)? “;

 cin >> val_day;

 cout << “Is this a Special Status customer (Y/N)? “;

 cin >> sp_stat;

 // Calculate rental amount.

215

EXAMPLE
C++ By

 discount = 0.0; // Increase discount if they are eligible.

 if ((val_day == ‘Y’) || (sp_stat == ‘Y’))

 { discount = 0.5;

 rental_amt=(num_tapes*tape_charge)

 (discount*num_tapes); }

 // Print the bill.

 cout << “\n\n** Rental Club **\n\n”;

 cout << first_name << “ “ << last_name << “ rented “

 << num_tapes << “ tapes\n”;

 printf(“The total was %.2f\n”, rental_amt);

 printf(“The discount was %.2f per tape\n”, discount);

 // Print extra message for Special Status customers.

 if (sp_stat == ‘Y’)

 { cout << “\nThank them for being a Special “

 << “Status customer\n”;}

 return 0;

}

The output of this program appears below. Notice that

Special customers have the extra message at the bottom of

the screen. This program, due to its if statements, performs

differently depending on the data entered. No discount is

applied for Regular customers on nonvalue days.

*** Video Rental Computation ***

What is customer’s first name? Jerry

What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y

** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 ♦ Logical Operators

216

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,

“Using C++ Math Operators and Precedence,” did not include the

logical operators. To be complete, you should be familiar with the

entire order of precedence, as presented in Appendix D, “C++

Precedence Table.”

You might wonder why the relational and logical operators are

included in a precedence table. The following statement helps show

you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impossible to

determine how such a statement would execute. According to the

precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-

cations are performed first, followed by the relations < and >. The &&

is performed last because it is lowest in the precedence order of

operators.

To avoid such ambiguous problems, be sure to use ample

parentheses—even if the default precedence order is your intention.

It is also wise to resist combining too many expressions inside a

single if relational test.

Notice that || (OR) has lower precedence than && (AND).

Therefore, the following if tests are equivalent:

if ((first_initial==’A’) && (last_initial==’G’) || (id==321)) ...

if (((first_initial==’A’) && (last_initial==’G’)) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence

table makes them identical.

217

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. What are the three logical operators?

2. The following compound relational tests produce True or

False comparisons. Determine which are True and which are

False.

a. ! (True || False)

b. (True && False) && (False || True)

c. ! (True && False)

d. True || (False && False) || False

3. Given the statement:

int i=12, j=10, k=5;

What are the results (True or False) of the following state-

ments? (Hint: Remember that C++ interprets any nonzero

statement as True.)

a. i && j

b. 12 - i || k

c. j != k && i != k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of

the ||.)

// Filename: C10LOGO.CPP

// Logical operator test

#include <iostream.h>

main()

{

 int f, g;

 g = 5;

 f = 8;

 if ((g = 25) || (f = 35))

Chapter 10 ♦ Logical Operators

218

 { cout << “g is “ << g << “ and f got changed to “ << f; }

 return 0;

}

5. Using the precedence table, determine whether the follow-

ing statements produce a True or False result. After this, you

should appreciate the abundant use of parentheses!

a. 5 == 4 + 1 || 7 * 2 != 12 - 1 && 5 == 8 / 2

b. 8 + 9 != 6 - 1 || 10 % 2 != 5 + 0

c. 17 - 1 > 15 + 1 && 0 + 2 != 1 == 1 || 4 != 1

d. 409 * 0 != 1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (!0)

 { cout << “C++ By Example \n”; }

Review Exercises
1. Write a program (by using a single compound if state-

ment) to determine whether the user enters an odd positive

number.

2. Write a program that asks the user for two initials. Print a

message telling the user if the first initial falls alphabetically

before the second.

3. Write a number-guessing game. Assign a value to a variable

called number at the top of the program. Give a prompt that

asks for five guesses. Receive the user’s five guesses with a

single scanf() for practice with scanf(). Determine whether

any of the guesses match the number and print an appropriate

message if one does.

4. Write a tax-calculation routine, as follows: A family pays no

tax if its income is less than $5,000. It pays a 10 percent tax if

its income is $5,000 to $9,999, inclusive. It pays a 20 percent

tax if the income is $10,000 to $19,999, inclusive. Otherwise,

it pays a 30 percent tax.

219

EXAMPLE
C++ By

Summary
This chapter extended the if statement to include the &&, ||, and

! logical operators. These operators enable you to combine several

relational tests into a single test. C++ does not always have to

look at every relational operator when you combine them in an ex-

pression.

This chapter concludes the explanation of the if statement. The

next chapter explains the remaining regular C++ operators. As you

saw in this chapter, the precedence table is still important to the C++

language. Whenever you are evaluating expressions, keep the pre-

cedence table in the back of your mind (or at your fingertips) at all

times!

Chapter 10 ♦ Logical Operators

220

221

EXAMPLE
C++ By

11

Additional C++
Operators

C++ has several other operators you should learn besides those you

learned in Chapters 9 and 10. In fact, C++ has more operators than

most programming languages. Unless you become familiar with

them, you might think C++ programs are cryptic and difficult to

follow. C++’s heavy reliance on its operators and operator prece-

dence produces the efficiency that enables your programs to run

more smoothly and quickly.

This chapter teaches you the following:

♦ The ?: conditional operator

♦ The ++ increment operator

♦ The –– decrement operator

♦ The sizeof operator

♦ The (,) comma operator

♦ The Bitwise Operators (&, |, and ^)

Chapter 11 ♦ Additional C++ Operators

222

Most the operators described in this chapter are unlike those

found in any other programming language. Even if you have

programmed in other languages for many years, you still will be

surprised by the power of these C++ operators.

The Conditional Operator
The conditional operator is C++’s only ternary operator, requir-

ing three operands (as opposed to the unary’s single-and the binary’s

double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is

a two-part symbol, ?:, with a format as follows:

conditional_expression ? expression1 : expression2;

The conditional_expression is any expression in C++ that results

in a True (nonzero) or False (zero) answer. If the result of

conditional_expression is True, expression1 executes. Otherwise, if

the result of conditional_expression is False, expression2 executes.

Only one of the expressions following the question mark ever

executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-

lon. Figure 11.1 illustrates the conditional operator more clearly.

The conditional
operator is a ternary
operator.

Figure 11.1. Format of the conditional operator.

223

EXAMPLE
C++ By

If you require simple if-else logic, the conditional operator

usually provides a more direct and succinct method, although you

should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the

section of code that follows.

if (a > b)

 { ans = 10; }

else

 { ans = 25; }

You can easily rewrite this kind of if-else code by using a single

conditional operator.

If the variable a is greater than the variable b, make the variable ans
equal to 10; otherwise, make ans equal to 25.

a > b ? (ans = 10) : (ans = 25);

A l t h o u g h p a r e n t h e s e s a r e n o t r e q u i r e d a r o u n d

conditional_expression to make it work, they usually improve read-

ability. This statement’s readability is improved by using parenthe-

ses, as follows:

(a > b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the

value being assigned—this statement could be even more succinct,

without loss of readability, by assigning ans the answer to the left of

the conditional:

ans = (a > b) ? (10) : (25);

This expression says: If a is greater than b, assign 10 to ans;

otherwise, assign 25 to ans. Almost any if-else statement can be

rewritten as a conditional, and vice versa. You should practice

converting one to the other to familiarize yourself with the condi-

tional operator’s purpose.

NOTE: A n y v a l i d if C + + s t a t e m e n t a l s o c a n b e a

conditional_expression, including all relational and logical op-

erators as well as any of their possible combinations.

Chapter 11 ♦ Additional C++ Operators

224

Examples

1. Suppose you are looking over your early C++ programs, and

you notice the following section of code.

if (production > target)

 { target *= 1.10; }

else

 { target *= .90; }

You should realize that such a simple if-else statement can

be rewritten using a conditional operator, and that more

efficient code results. You can therefore change it to the

following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find

the minimum value between two variables. This is some-

times called a minimum routine. The statement to do this is

minimum = (var1 < var2) ? var1 : var2;

If var1 is less than var2, the value of var1 is assigned to mini-

mum. If var2 is less, the value of var2 is assigned to minimum. If

the variables are equal, the value of var2 is assigned to

minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:

maximum = (var1 > var2) ? var1 : var2;

4. Taking the previous examples a step further, you can also

test for the sign of a variable. The following conditional

expression assigns –1 to the variable called sign if testvar is

less than 0; 0 to sign if testvar is zero; and +1 to sign if testvar

is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a –1,

but the second part of the expression can be confusing. This

works well due to C++’s 1 and 0 (for True and False, respec-

tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

225

EXAMPLE
C++ By

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)

or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional

operator. It might also help you understand if you write the

statement using typical if-else logic. Here is the same

problem written with a typical if-else statement:

if (testvar < 0)

 { sign = -1; }

else

 { sign = (testvar > 0); } // testvar can only be

 // 0 or more here.

The Increment and
Decrement Operators

C++ offers two unique operators that add or subtract 1 to or

from variables. These are the increment and decrement operators: ++

and ––. Table 11.1 shows how these operators relate to other types of

expressions you have seen. Notice that the ++ and –– can appear on

either side of the modified variable. If the ++ or –– appears on the left,

it is known as a prefix operator. If the operator appears on the right,

it is a postfix operator.

Table 11.1. The ++ and –– operators.

Operator Example Description Equivalent Statements

++ i++; postfix i = i + 1; i += 1;

++ ++i; prefix i = i + 1; i += 1;

–– i––; postfix i = i - 1; i -= 1;

–– ––i; prefix i = i - 1; i -= 1;

Any time you have to add 1 or subtract 1 from a variable, you

can use these two operators. As Table 11.1 shows, if you have to

increment or decrement only a single variable, these operators

enable you to do so.

The ++ operator
adds 1 to a variable.
The –– operator
subtracts 1 from a
variable.

Chapter 11 ♦ Additional C++ Operators

226

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,

efficient methods for adding 1 to a variable and subtracting 1

from a variable. You often have to do this during counting or

processing loops, as discussed in Chapter 12, “The while Loop”

and beyond.

These two operators compile directly into their assembly lan-

guage equivalents. Almost all computers include, at their

lowest binary machine-language commands, increment and

decrement instructions. If you use C++’s increment and decre-

ment operators, you ensure that they compile to these low-level

equivalents.

If, however, you code expressions to add or subtract 1 (as you

do in other programming languages), such as the expression

i = i - 1, you do not actually ensure that C++ compiles

this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are

incrementing or decrementing single variables on lines by them-

selves. However, when you combine these two operators with other

operators in a single expression, you must be aware of their differ-

ences. Consider the following program section. Here, all variables

are integers because the increment and decrement operators work

only on integer variables.

Make a equal to 6. Increment a, subtract 1 from it, then assign the result
to b.

a = 6;

b = ++a - 1;

What are the values of a and b after these two statements finish?

The value of a is easy to determine: it is incremented in the second

statement, so it is 7. However, b is either 5 or 6 depending on when

the variable a increments. To determine when a increments, consider

the following rule:

227

EXAMPLE
C++ By

♦ If a variable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the

variable’s value is used in the remainder of the expression.

♦ If a variable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the

variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,

its value is first incremented to 7, then 1 is subtracted from 7, and the

result (6) is assigned to b. If a postfix increment is used, as in

a = 6;

b = a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment

to 7 until after its value is used in the expression. The precedence

table in Appendix D, “C++ Precedence Table,” shows that prefix

operators contain much higher precedence than almost every other

operator, especially low-precedence postfix increments and decre-

ments.

TIP: If the order of prefix and postfix confuses you, break

your expressions into two lines of code and type the increment

or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the

previous example as follows:

a = 6;

b = a - 1;

a++;

There is now no doubt as to when a is incremented: a incre-

ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider

the following statement.

x = p + (((amt++)));

Chapter 11 ♦ Additional C++ Operators

228

There are too many unneeded parentheses here, but even the

redundant parentheses are not enough to increment amt before

adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

CAUTION: Do not attempt to increment or decrement an

expression. You can apply these operators only to variables.

The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. As you should with all other C++ operators, keep the prece-

dence table in mind when you evaluate expressions that

increment and decrement. Figures 11.2 and 11.3 show you

some examples that illustrate these operators.

2. The precedence table takes on even more meaning when you

see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,

what you know about C++’s relational efficiencies—what is

the value of the ans in the following section of code?

int i=1, j=20, k=-1, l=0, m=1, n=0, o=2, p=1;

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

This, at first, seems to be extremely complicated. Neverthe-

less, you can simply glance at it and determine the value of

ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores

the right side of the || if the left value is True (any nonzero

value is True). Because any nonzero value is True, C++ does

229

EXAMPLE
C++ By

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

int i=1;

int j=2;

int k=3;

ans = i++ * j - ––k;

 |
 i++ * j - 2

 2 - 2

 0

ans = 0, then i increments by 1 to its final value of 2.

int i=1;

int j=2;

int k=3;

ans = ++i * j - k––;

 |
 2 * j - k––

 4 - k––

 1

ans = 1, then k decrements by 1 to its final value of 2.

not evaluate the values on the right. Therefore, C++ per-

forms this expression as shown:

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

 |
 1 (TRUE)

Chapter 11 ♦ Additional C++ Operators

230

int i=0;

int j=-1;

int k=0;

int m=1

ans = i++ && ++j || k || m++;

 |
 i++ && 0 || k || m++

 0 || k || m++

 0 || m++

 1

ans = 1, then i increments by 1 to its final value of 1,

and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression

as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++

ignores the other expressions, only ans is changed by this

expression. The other variables, j through p, are never

incremented or decremented, even though several of them

contain increment and decrement operators. If you use rela-

tional operators, be aware of this problem and break out all

increment and decrement operators into statements by them-

selves, placing them on lines before the relational statements

that use their values.

The sizeof Operator
There is another operator in C++ that does not look like an

operator at all. It looks like a built-in function, but it is called the

231

EXAMPLE
C++ By

sizeof operator. In fact, if you think of sizeof as a function call, you

might not become confused because it works in a similar way. The

format of sizeof follows:

sizeof data

or

sizeof(data type)

The sizeof operator is unary, because it operates on a single

value. This operator produces a result that represents the size, in

bytes, of the data or data type specified. Because most data types and

variables require different amounts of internal storage on different

computers, the sizeof operator enables programs to maintain con-

sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the

sizeof argument, whether that argument is data or data type .
Because you must use parentheses around data type arguments

and you can use them around data arguments, it doesn’t hurt to

always use them.

The sizeof operator is sometimes called a compile-time operator.
At compile time, rather than runtime, the compiler replaces each

occurrence of sizeof in your program with an unsigned integer

value. Because sizeof is used more in advanced C++ programming,

this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the

number of bytes you originally reserved for that array. Data inside

the array have nothing to do with its returned sizeof value—even if

it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-

point variables for your computer. You can determine

this by entering the keyword float in parentheses—after

sizeof—as shown in the following program.

The sizeof
operator returns its
argument’s size in
bytes.

Chapter 11 ♦ Additional C++ Operators

232

// Filename: C11SIZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main()

{

 cout << “The size of floating-point variables on \n”;

 cout << “this computer is “ << sizeof(float) << “\n”;

 return 0;

}

This program might produce different results on different

computers. You can use any valid data type as the sizeof

argument. On most PCs, this program probably produces

this output:

The size of floating-point variables on

this computer is: 4

The Comma Operator
Another C++ operator, sometimes called a sequence point, works

a little differently. This is the comma operator (,), which does not

directly operate on data, but produces a left-to-right evaluation of

expressions. This operator enables you to put more than one expres-

sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when

you learned how to declare and initialize variables. In the following

section of code, the comma separates statements. Because the comma

associates from the left, the first variable, i, is declared and initial-

ized before the second variable.

main()

{

 int i=10, j=25;

 // Remainder of the program follows.

233

EXAMPLE
C++ By

However, the comma is not a sequence point when it is used

inside function parentheses. Then it is said to separate arguments,

but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, i, i++, ++i);

Many results are possible from such a statement. The commas

serve only to separate arguments of the printf(), and do not generate

the left-to-right sequence that they otherwise do when they aren’t

used in functions. With the statement shown here, you are not

ensured of any order! The postfix i++ might possibly be performed

before the prefix ++i, even though the precedence table does not

require this. Here, the order of evaluation depends on how your

compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators

in function calls because you cannot predict the order in which

they execute.

Examples

1. You can put more than one expression on a line, using the

comma as a sequence point. The following program does

this.

// Filename: C11COM1.CPP

// Illustrates the sequence point.

#include <iostream.h>

main()

{

 int num, sq, cube;

 num = 5;

 // Calculate the square and cube of the number.

 sq = (num * num), cube = (num * num * num);

 cout << “The square of “ << num << “ is “ << sq <<

 “ and the cube is “ << cube;

 return 0;

}

Chapter 11 ♦ Additional C++ Operators

234

This is not necessarily recommended, however, because it

doesn’t add anything to the program and actually decreases

its readability. In this example, the square and cube are

probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider

the following section of code.

i = 10

j = (i = 12, i + 8);

When this code finishes executing, j has the value of 20—

even though this is not necessarily clear. In the first state-

ment, i is assigned 10. In the second statement, the comma

causes i to be assigned a value of 12, then j is assigned the

value of i + 8, or 20.

3. In the following section of code, ans is assigned the value

of 12, because the assignment before the comma is per-

formed first. Despite this right-to-left associativity of the

assignment operator, the comma’s sequence point forces

the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and

ans also contains 12.

Bitwise Operators
The bitwise operators manipulate internal representations of

data and not just “values in variables” as the other operators do.

These bitwise operators require an understanding of Appendix A’s

binary numbering system, as well as a computer’s memory. This

section introduces the bitwise operators. The bitwise operators are

used for advanced programming techniques and are generally used

in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the

bitwise operators. Nevertheless, understanding them can help you

improve a program’s efficiency and enable you to operate at a more

advanced level than many other programming languages allow.

235

EXAMPLE
C++ By

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in

Table 11.2. These operators work on the binary representations of

integer data. This enables systems programmers to manipulate

internal bits in memory and in variables. The bitwise operators are

not just for systems programmers, however. Application program-

mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

~ Bitwise 1’s complement

Each of the bitwise operators makes a bit-by-bit comparison of

internal data. Bitwise operators apply only to character and integer

variables and constants, and not to floating-point data. Because

binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are

compared to each other to produce the desired result for each

bitwise operator.

Before you study the examples, you should understand Table

11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.

Bitwise AND (&)

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Bitwise operators
make bit-by-bit
comparisons of
internal data.

continues

Chapter 11 ♦ Additional C++ Operators

236

Table 11.3. Continued.

Bitwise inclusive OR (|)

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

Bitwise exclusive OR (^)

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Bitwise 1’s complement (~)

~0 = 1

~1 = 0

In bitwise truth tables, you can replace the 1 and 0 with True

and False, respectively, if it helps you to understand the result better.

For the bitwise AND (&) truth table, both bits being compared by the

& operator must be True for the result to be True. In other words,

“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might

be able to relate the bitwise operators to the regular logical

operators, && and ||, that you use for if comparisons.

The | bitwise operator is sometimes called the bitwise inclusive
OR operator. If one side of the | operator is 1 (True)—or if both sides

are 1—the result is 1 (True).

The ̂ operator is called bitwise exclusive OR. It means that either

side of the ^ operator must be 1 (True) for the result to be 1 (True), but

both sides cannot be 1 (True) at the same time.

For bitwise ^, one
side or the other—
but not both—must
be 1.

237

EXAMPLE
C++ By

The ~ operator, called bitwise 1’s complement, reverses each bit to

its opposite value.

NOTE: Bitwise 1’s complement does not negate a number. As

Appendix A, “Memory Addressing, Binary, and Hexadecimal

Review,” shows, most computers use a 2’s complement to

negate numbers. The bitwise 1’s complement reverses the bit

pattern of numbers, but it doesn’t add the additional 1 as the 2’s

complement requires.

You can test and change individual bits inside variables to

check for patterns of data. The following examples help to illustrate

each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you

receive a result of 8. Figure 11.4 shows you why this is so.

When the binary values of 9 (1001) and 14 (1110) are com-

pared on a bitwise & basis, the resulting bit pattern is 8

(1000).

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as

follows.

Make result equal to the binary value of 9 (1001) ANDed to the
binary value of 14 (1110).

result = 9 & 14;

Chapter 11 ♦ Additional C++ Operators

238

The result variable holds 8, which is the result of the bitwise

&. The 9 (binary 1001) or 14 (binary 1110)—or both—also can

be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and

14, you get 15. When the binary values of 9 (1001) and 14

(1110) are compared on a bitwise | basis, the resulting bit

pattern is 15 (1111). result’s bits are 1 (True) in every posi-

tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 | 14;

The result variable holds 15, which is the result of the

bitwise |. The 9 or 14 (or both) also can be stored in

variables.

3. The bitwise ^ applied to 9 and 14 produces 7. Bitwise ^ sets

the resulting bits to 1 if one number or the other’s bit is 1, but

not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 ^ 14;

The result variable holds 7 (binary 0111), which is the result

of the bitwise ^. The 9 or 14 (or both) also can be stored in

variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise

operator because you can apply it to only a single value at

any one time. The bitwise ~ applied to 9 results in 6, as

shown in Figure 11.5.

Figure 11.5. Performing bitwise ~ on the number 9.

239

EXAMPLE
C++ By

In a C++ program, you can code this bitwise operation like

this:

result = ~9;

The result variable holds 6, which is the result of the bit-

wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform

tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an

odd or even number (assuming integers are being input).

You can use the modulus operator (%) to determine whether

the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-

der is 1, the number is odd.

The bitwise operators are more efficient than other operators

because they directly compare bit patterns without using

any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and

odd if its bit pattern ends in 1, you also can test for odd or

even numbers by applying the bitwise & to the data and to a

binary 1. This is more efficient than using the modulus

operator. The following program informs users if their input

value is odd or even using this technique.

Identify the file and include the input/output header file. This
program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is 0, tell the user that the
number is even.

// Filename: C11ODEV.CPP

// Uses a bitwise & to determine whether a

// number is odd or even.

#include <iostream.h>

main()

{

Chapter 11 ♦ Additional C++ Operators

240

Only bit 6
is different

 int input; // Will hold user’s number

 cout << “What number do you want me to test? “;

 cin >> input;

 if (input & 1) // True if result is 1;

 // otherwise it is false (0)

 { cout << “The number “ << input << “ is odd\n”; }

 else

 { cout << “The number “ << input << “ is even\n”; }

 return 0;

}

6. The only difference between the bit patterns for uppercase

and lowercase characters is bit number 5 (the third bit from

the left, as shown in Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review”). For lowercase letters, bit

5 is a 1. For uppercase letters, bit 5 is a 0. Figure 11.6 shows

how A and B differ from a and b by a single bit.

Only bit 6
is different

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCII letters.

To convert a character to uppercase, you have to turn off

(change to a 0) bit number 5. You can apply a bitwise & to the

input character and 223 (which is 11011111 in binary) to turn

off bit 5 and convert any input character to its uppercase

equivalent. If the number is already in uppercase, this

bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it

masks (just as masking tape masks areas not to be painted)

bit 5 so it becomes 0, if it is not already. The following

program does this to ensure that users typed uppercase

characters when they were asked for their initials.

241

EXAMPLE
C++ By

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream.h>

main()

{

 char first, middle, last; // Will hold user’s initials

 int bitmask=223; // 11011111 in binary

 cout << “What is your first initial? “;

 cin >> first;

 cout << “What is your middle initial? “;

 cin >> middle;

 cout << “What is your last initial? “;

 cin >> last;

 // Ensure that initials are in uppercase.

 first = first & bitmask; // Turn off bit 5 if

 middle = middle & bitmask; // it is not already

 last = last & bitmask; // turned off.

 cout << “Your initials are “ << first << “ “ <<

 middle << “ “ << last;

 return 0;

}

The following output shows what happens when two of the

initials are typed with lowercase letters. The program con-

verts them to uppercase before printing them again. Al-

though there are other ways to convert to lowercase, none

are as efficient as using the & bitwise operator.

What is your first initial? g

What is your middle initial? M

What is your last initial? p

Your initials are: G M P

Chapter 11 ♦ Additional C++ Operators

242

Review Questions
The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator

replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else

statement.

ans = (a == b) ? c + 2 : c + 3;

4. True or false: The following statements produce the same

results.

var++;

and

var = var + 1;

5. Why is using the increment and decrement operators more

efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;

printf(“You are now %d, and will be %d in one year”,

 age, age++);

8. What is the output of the following program section?

char name[20] = “Mike”;

cout << “The size of name is “ << sizeof(name) << “\n”;

9. What is the result of each of the following bitwise True-False

expressions?

a. 1 ^ 0 & 1 & 1 | 0

b. 1 & 1 & 1 & 1

c. 1 ^ 1 ^ 1 ^ 1

d. ~(1 ^ 0)

243

EXAMPLE
C++ By

Review Exercises
1. Write a program that prints the numerals from 1 to 10. Use

ten different couts and only one variable called result to hold

the value before each cout. Use the increment operator to

add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single

printf() that includes a conditional operator, print on-screen

the following if the input age is over 21,

You are not a minor.

or print this otherwise:

You are still a minor.

This printf() might be long, but it helps to illustrate how the

conditional operator can work in statements where if-else

logic does not.

3. Use the conditional operator—and no if-else statements—to

write the following tax-calculation routine: A family pays no

tax if its annual salary is less than $5,000. It pays a 10 percent

tax if the salary range begins at $5,000 and ends at $9,999. It

pays a 20 percent tax if the salary range begins at $10,000

and ends at $19,999. Otherwise, the family pays a 30 percent

tax.

4. Write a program that converts an uppercase letter to a

lowercase letter by applying a bitmask and one of the bit-

wise logical operators. If the character is already in lower-

case, do not change it.

Summary
Now you have learned almost every operator in the C++

language. As explained in this chapter, conditional, increment, and

decrement are three operators that enable C++ to stand apart from

many other programming languages. You must always be aware of

the precedence table whenever you use these, as you must with all

operators.

Chapter 11 ♦ Additional C++ Operators

244

The sizeof and sequence point operators act unlike most others.

The sizeof is a compile operator, and it works in a manner similar to

the #define preprocessor directive because they are both replaced by

their values at compile time. The sequence point enables you to have

multiple statements on the same line—or in a single expression.

Reserve the sequence point for declaring variables only because it

can be unclear when it’s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now

that you can compute just about any result you will ever need, it is

time to discover how to gain more control over your programs. The

next few chapters introduce control loops that give you repetitive

power in C++.

245

EXAMPLE
C++ By

12

The while Loop

The repetitive capabilities of computers make them good tools for

processing large amounts of information. Chapters 12-15 introduce

you to C++ constructs, which are the control and looping commands

of programming languages. C++ constructs include powerful, but

succinct and efficient, looping commands similar to those of other

languages you already know.

The while loops enable your programs to repeat a series of

statements, over and over, as long as a certain condition is always

met. Computers do not get “bored” while performing the same tasks

repeatedly. This is one reason why they are so important in business

data processing.

This chapter teaches you the following:

♦ The while loop

♦ The concept of loops

♦ The do-while loop

♦ Differences between if and while loops

♦ The exit() function

♦ The break statement

♦ Counters and totals

Chapter 12 ♦ The while Loop

246

After completing this chapter, you should understand the first

of several methods C++ provides for repeating program sections.

This chapter’s discussion of loops includes one of the most impor-

tant uses for looping: creating counter and total variables.

The while Statement
The while statement is one of several C++ construct statements.

Each construct (from construction) is a programming language state-

ment—or a series of statements—that controls looping. The while,

like other such statements, is a looping statement that controls the

execution of a series of other statements. Looping statements cause

parts of a program to execute repeatedly, as long as a certain

condition is being met.

The format of the while statement is

while (test expression)

 { block of one or more C++ statements; }

The parentheses around test expression are required. As long

as test expression is True (nonzero), the block of one or more C++

statements executes repeatedly until test expression becomes False

(evaluates to zero). Braces are required before and after the body of

the while loop, unless you want to execute only one statement. Each

statement in the body of the while loop requires an ending semi-

colon.

The placeholder test expression usually contains relational,

and possibly logical, operators. These operators provide the True-

False condition checked in test expression. If test expression is False

when the program reaches the while loop for the first time, the body

of the while loop does not execute at all. Regardless of whether the

body of the while loop executes no times, one time, or many times,

the statements following the while loop’s closing brace execute if test

expression becomes False.

Because test expression determines when the loop finishes, the

body of the while loop must change the variables used in test

expression. Otherwise, test expression never changes and the while

loop repeats forever. This is known as an infinite loop, and you should

avoid it.

The body of a
while loop
executes repeatedly
as long as test
expression is True.

247

EXAMPLE
C++ By

TIP: If the body of the while loop contains only one statement,

the braces surrounding it are not required. It is a good habit to

enclose all while loop statements in braces, however, because if

you have to add statements to the body of the while loop later,

your braces are already there.

The Concept of Loops
You use the loop concept in everyday life. Any time you have

to repeat the same procedure, you are performing a loop—just as

your computer does with the while statement. Suppose you are

wrapping holiday gifts. The following statements represent the

looping steps (in while format) that you follow while gift-wrapping.

while (there are still unwrapped gifts)
 { Get the next gift;

Cut the wrapping paper;
Wrap the gift;
Put a bow on the gift;
Fill out a name card for the gift;
Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this

procedure (loop) repeatedly until every gift is wrapped. For an

example that is more easily computerized, suppose you want to total

all the checks you wrote in the previous month. You could perform

the following loop.

while (there are still checks from the last month to be totaled)
 { Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,

but that single statement must be performed until you have added

each one of the previous month’s checks. When this loop ends (when

no more checks from the previous month remain to be totaled), you

have the result.

The body of a while loop can contain one or more C++ state-

ments, including additional while loops. Your programs will be

Chapter 12 ♦ The while Loop

248

more readable if you indent the body of a while loop a few spaces to

the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these

programs display an error message and ask the user to enter

another value, which is an acceptable procedure.

Now that you understand the while loop construct, however,

you should put the error message inside a loop. In this way,

users see the message continually until they type proper

input values, rather than once.

The following program is short, but it demonstrates a while

loop that ensures valid keyboard input. It asks users

whether they want to continue. You can incorporate this

program into a larger one that requires user permission to

continue. Put a prompt, such as the one presented here, at

the bottom of a text screen. The text remains on-screen until

the user tells the program to continue executing.

Identify the file and include the necessary header file. In this
program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part

// of a larger program.

#include <iostream.h>

main()

{

 char ans;

 cout << “Do you want to continue (Y/N)? “;

 cin >> ans; // Get user’s answer

249

EXAMPLE
C++ By

 while ((ans != ‘Y’) && (ans != ‘N’))

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N)?”; // again.

 cin >> ans;

 } // Body of while loop ends here.

 return 0;

}

Notice that the two cin functions do the same thing. You

must use an initial cin, outside the while loop, to provide an

answer for the while loop to check. If users type something

other than Y or N, the program prints an error message, asks

for another answer, then checks the new answer. This vali-

dation method is preferred over one where the reader only

has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.

This is why the loop might never execute. If the test is

initially False, the loop does not execute even once. The

output from this program is shown as follows. The program

repeats indefinitely, until the relational test is True (as soon

as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N

Do you want to continue (Y/N)? c

You must type a Y or an N

Do you want to continue (Y/N)? s

You must type a Y or an N

Do you want to continue (Y/N)? 5

You must type a Y or an N

Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while

loop. See if you can find the problem.

Chapter 12 ♦ The while Loop

250

// Filename: C12WHBAD.CPP

// Bad use of a while loop.

#include <iostream.h>

main()

{

 int a=10, b=20;

 while (a > 5)

 { cout << “a is “ << a << “, and b is “ << b << “\n”;

 b = 20 + a; }

 return 0;

}

This while loop is an example of an infinite loop. It is vital

that at least one statement inside the while changes a variable

in the test expression (in this example, the variable a); other-

wise, the condition is always True. Because the variable a

does not change inside the while loop, this program will

never end.

TIP: If you inadvertently write an infinite loop, you must stop

the program yourself. If you use a PC, this typically means

pressing Ctrl-Break. If you are using a UNIX-based system,

your system administrator might have to stop your program’s

execution.

3. The following program asks users for a first name, then uses

a while loop to count the number of characters in the name.

This is a string length program; it counts characters until it

reaches the null zero. Remember that the length of a string

equals the number of characters in the string, not including

the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

251

EXAMPLE
C++ By

 int count=0; // Will hold total characters in name

 // Get the user’s first name

 cout << “What is your first name? “;

 cin >> name;

 while (name[count] > 0) // Loop until null zero reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The loop continues as long as the value of the next character

in the name array is greater than zero. Because the last charac-

ter in the array is a null zero, the test is False on the name’s

last character and the statement following the body of the

loop continues.

NOTE: A built-in string function called strlen() determines

the length of strings. You learn about this function in Chap-

ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as

efficient as it could be. Because a while loop fails when its test

expression is zero, there is no need for the greater-than test.

By changing the test expression as the following program

shows, you can improve the efficiency of the string length

count.

// Filename: C12WHIL3.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

 int count=0; // Will hold total characters in name

 // Get the user’s first name

Chapter 12 ♦ The while Loop

252

 cout << “What is your first name? “;

 cin >> name;

 while (name[count]) // Loop until null zero is reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The do-while Loop
The do-while statement controls the do-while loop, which is

similar to the while loop except the relational test occurs at the end

(rather than beginning) of the loop. This ensures the body of the loop

executes at least once. The do-while tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do

 { block of one or more C++ statements; }

while (test expression)

test expression must be enclosed in parentheses, just as it must

in a while statement.

Examples

1. The following program is just like the first one you saw with

the while loop (C12WHIL1.CPP), except the do-while is used.

Notice the placement of test expression. Because this expres-

sion concludes the loop, user input does not have to appear

before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part

// of a larger program.

The body of the
do-while loop
executes at least
once.

253

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 char ans;

 do

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N) ?”; // again.

 cin >> ans; } // Body of while loop

 // ends here.

 while ((ans != ‘Y’) && (ans != ‘N’));

 return 0;

}

2. Suppose you are entering sales amounts into the computer

to calculate extended totals. You want the computer to print

the quantity sold, part number, and extended total (quantity

times the price per unit), as the following program does.

// Filename: C12INV1.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information.

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no != -999)

 { cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

Chapter 12 ♦ The while Loop

254

 cin >> cost;

 ext_cost = cost * quantity;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) <<

 ext_cost;

 cout << “\n\n\n”; // Print two blank lines.

 }

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

Here is the output from this program:

*** Inventory Computation ***

What is the next part number (-999 to end)? 213

How many were bought? 12

What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92

How many were bought? 53

What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999

End of inventory computation

The do-while loop controls the entry of the customer sales

information. Notice the “trigger” that ends the loop. If the

user enters –999 for the part number, the do-while loop quits

because no part numbered –999 exists in the inventory.

However, this program can be improved in several ways.

The invoice can be printed to the printer rather than the

255

EXAMPLE
C++ By

screen. You learn how to direct your output to a printer in

Chapter 21, “Device and Character Input/Output.” Also, the

inventory total (the total amount of the entire order) can be

computed. You learn how to total such data in the “Counters

and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with

loop constructs. The while and do-while loops repeat a section of code

multiple times, depending on the condition being tested. The if

statement may or may not execute a section of code; if it does, it

executes that section only once.

Use an if statement when you want to conditionally execute a

section of code once, and use a while or do-while loop if you want to

execute a section more than once. Figure 12.1 shows differences

between the if statement and the two while loops.

Body executes only
once if test is true.

Test at top of loop.

Body loops continuously
as long as test is true.

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

Chapter 12 ♦ The while Loop

256

The exit() Function and break
Statement

C++ provides the exit() function as a way to leave a program

early (before its natural finish). The format of exit() is

exit(status);

where status is an optional integer variable or literal. If you are

familiar with your operating system’s return codes, status enables

you to test the results of C++ programs. In DOS, status is sent to the

operating system’s errorlevel environment variable, where it can be

tested by batch files.

Many times, something happens in a program that requires the

program’s termination. It might be a major problem, such as a disk

drive error. Perhaps users indicate that they want to quit the

program—you can tell this by giving your users a special value to

type with cin or scanf(). You can isolate the exit() function on a line

by itself, or anywhere else that a C++ statement or function can

appear. Typically, exit() is placed in the body of an if statement to

end the program early, depending on the result of some relational

test.

Always include the stdlib.h header file when you use exit().

This file describes the operation of exit() to your program. When-

ever you use a function in a program, you should know its corre-

sponding #include header file, which is usually listed in the compiler’s

reference manual.

Instead of exiting an entire program, however, you can use the

break statement to exit the current loop. The format of break is

break;

The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a

while or do-while loop, used to leave the loop early. The following

examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If

you have a while loop in another while loop, break exits only the

internal loop.

The exit()
function provides an
early exit from your
program.

The break
statement ends the
current loop.

257

EXAMPLE
C++ By

Examples

1. Here is a simple program that shows you how the exit()

function works. This program looks as though it prints

several messages on-screen, but it doesn’t. Because exit()

appears early in the code, this program quits immediately

after main()’s opening brace.

// C12EXIT1.CPP

// Quits early due to exit() function.

#include <iostream.h>

#include <stdlib.h> // Required for exit().

main()

{

 exit(0); // Forces program to end here.

 cout << “C++ programming is fun.\n”;

 cout << “I like learning C++ by example!\n”;

 cout << “C++ is a powerful language that is “ <<

 “not difficult to learn.”;

 return 0;

}

2. The break statement is not intended to be as strong a pro-

gram exit as the exit() function. Whereas exit() ends the

entire program, break quits only the loop that is currently

active. In other words, break is usually placed inside a while

or do-while loop to “simulate” a finished loop. The statement

following the loop executes after a break occurs, but the

program does not quit as it does with exit().

The following program appears to print C++ is fun! until the

user enters N to stop it. The message prints only once, how-

ever, because the break statement forces an early exit from

the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.

#include <iostream.h>

main()

Chapter 12 ♦ The while Loop

258

{

 char user_ans;

 do

 { cout << “C++ is fun! \n”;

 break; // Causes early exit.

 cout << “Do you want to see the message again (N/Y)? “;

 cin >> user_ans;

 } while (user_ans == ‘Y’);

 cout << “That’s all for now\n”;

 return 0;

}

This program always produces the following output:

C++ is fun!

That’s all for now

You can tell from this program’s output that the break state-

ment does not allow the do-while loop to reach its natural

conclusion, but causes it to finish early. The final cout prints

because only the current loop—and not the entire pro-

gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an

if statement. This makes it a conditional break, which occurs

only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw

earlier (C12INV1.CPP). Even though the users enter –999

when they want to quit the program, an additional if test is

needed inside the do-while. The –999 ends the do-while loop,

but the body of the do-while still needs an if test, so the

remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s

input, as shown in the following program, the do-while will

not need the if test. The break quits the do-while as soon as

the user signals the end of the inventory by entering –999 as

the part number.

259

EXAMPLE
C++ By

// Filename: C12INV2.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no == -999)

 { break; } // Exit the loop if

 // no more part numbers.

 cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

 cin >> cost;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) << cost*quantity;

 cout << “\n\n\n”; // Print two blank lines.

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

4. You can use the following program to control the two other

programs. This program illustrates how C++ can pass in-

formation to DOS with exit(). This is your first example of a

menu program. Similar to a restaurant menu, a C++ menu

program lists possible user choices. The users decide what

they want the computer to do from the menu’s available

options. The mailing list application in Appendix F, “The

Mailing List Application,” uses a menu for its user options.

Chapter 12 ♦ The while Loop

260

This program returns either a 1 or a 2 to its operating system,

depending on the user’s selection. It is then up to the oper-

ating system to test the exit value and run the proper

program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().

#include <iostream.h>

#include <stdlib.h>

main()

{

 int ans;

 do

 { cout << “Do you want to:\n\n”;

 cout << “\t1. Run the word processor \n\n”;

 cout << “\t2. Run the database program \n\n”;

 cout << “What is your selection? “;

 cin >> ans;

 } while ((ans != 1) && (ans != 2)); // Ensures user

 // enters 1 or 2.

 exit(ans); // Return value to operating system.

 return 0; // Return does not ever execute due to exit().

}

Counters and Totals
Counting is important for many applications. You might have

to know how many customers you have or how many people scored

over a certain average in your class. You might want to count how

many checks you wrote in the previous month with your computer-

ized checkbook system.

Before you develop C++ routines to count occurrences, think of

how you count in your own mind. If you were adding a total number

of something, such as the stamps in your stamp collection or the

261

EXAMPLE
C++ By

number of wedding invitations you sent out, you would probably

do the following:

Start at 0, and add 1 for each item being counted. When you are finished,
you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a

variable and add 1 to it every time you process another data value.

The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints

“Computers are fun!” on-screen 10 times. You can write a

program that has 10 cout statements, but that would not be

efficient. It would also be too cumbersome to have 5000 cout

statements, if you wanted to print that same message 5000

times.

By adding a while loop and a counter that stops after a

certain total is reached, you can control this printing, as the

following program shows.

// Filename: C12CNT1.CPP

// Program to print a message 10 times.

#include <iostream.h>

main()

{

 int ctr = 0; // Holds the number of times printed.

 do

 { cout << “Computers are fun!\n”;

 ctr++; // Add one to the count,

 // after each cout.

 } while (ctr < 10); // Print again if fewer

 // than 10 times.

 return 0;

}

Chapter 12 ♦ The while Loop

262

The output from this program is shown as follows. Notice

that the message prints exactly 10 times.

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

The heart of the counting process in this program is the

statement that follows.

ctr++;

You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is

incremented each time the do-while loops. Because the only

operation performed on this line is the increment of ctr, the

prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-

able, but also performed the loop a specific number of times.

This is a common method of conditionally executing parts of

a program for a fixed number of times.

The following program is a password program. A password

is stored in an integer variable. The user must correctly enter

the matching password in three attempts. If the user does

not type the correct password in that time, the program

ends. This is a common method that dial-up computers use.

They enable a caller to try the password a fixed number of

times, then hang up the phone if that limit is exceeded. This

helps deter people from trying hundreds of different pass-

words at any one sitting.

If users guess the correct password in three tries, they see the

secret message.

263

EXAMPLE
C++ By

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main()

{

 int stored_pass = 11862;

 int num_tries = 0; // Counter for password attempts.

 int user_pass;

 while (num_tries < 3) // Loop only three

 // times.

 { cout << “What is the password (You get 3 tries...)? “;

 cin >> user_pass;

 num_tries++; // Add 1 to counter.

 if (user_pass == stored_pass)

 { cout << “You entered the correct password.\n”;

 cout << “The cash safe is behind the picture “ <<

 “of the ship.\n”;

 exit(0);

 }

 else

 { cout << “You entered the wrong password.\n”;

 if (num_tries == 3)

 { cout << “Sorry, you get no more chances”; }

 else

 { cout << “You get “ << (3-num_tries) <<

 “ more tries...\n”;}

 }

 } // End of while loop.

 exit(0);

 return 0;

}

This program gives users three chances in case they type

some mistakes. After three unsuccessful attempts, the pro-

gram quits without displaying the secret message.

Chapter 12 ♦ The while Loop

264

3. The following program is a letter-guessing game. It includes

a message telling users how many tries they made before

guessing the correct letter. A counter counts the number of

these tries.

// Filename: C12GUES.CPP

// Letter-guessing game.

#include <iostream.h>

main()

{

 int tries = 0;

 char comp_ans, user_guess;

 // Save the computer’s letter

 comp_ans = ‘T’; // Change to a different

 // letter if desired.

 cout << “I am thinking of a letter...”;

 do

 { cout << “What is your guess? “;

 cin >> user_guess;

 tries++; // Add 1 to the guess-counting variable.

 if (user_guess > comp_ans)

 { cout << “Your guess was too high\n”;

 cout << “\nTry again...”;

 }

 if (user_guess < comp_ans)

 { cout << “Your guess was too low\n”;

 cout << “\nTry again...”;

 }

 } while (user_guess != comp_ans); // Quit when a

 // match is found.

 // They got it right, let them know.

 cout << “*** Congratulations! You got it right! \n”;

 cout << “It took you only “ << tries <<

 “ tries to guess.”;

 return 0;

}

265

EXAMPLE
C++ By

Here is the output of this program:

I am thinking of a letter...What is your guess? E

Your guess was too low

Try again...What is your guess? X

Your guess was too high

Try again...What is your guess? H

Your guess was too low

Try again...What is your guess? O

Your guess was too low

Try again...What is your guess? U

Your guess was too high

Try again...What is your guess? Y

Your guess was too high

Try again...What is your guess? T

*** Congratulations! You got it right!

It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead

of adding 1 to the counter variable, you add a value to the total

variable. For instance, if you want to find the total dollar amount of

checks you wrote during December, you can start at nothing (0) and

add the amount of every check written in December. Instead of

building a count, you are building a total.

When you want C++ to add values, just initialize a total

variable to zero, then add each value to the total until you have

included all the values.

Chapter 12 ♦ The while Loop

266

Examples

1. Suppose you want to write a program that adds your grades

for a class you are taking. The teacher has informed you that

you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until

you type –1. The –1 is a signal that you are finished entering

grades and now want to see the total. This program also

prints a congratulatory message if you have enough points

for an A.

// Filename: C12GRAD1.CPP

// Adds grades and determines whether you earned an A.

#include <iostream.h>

include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade; // Holds individual grades.

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; } // Add to total.

 } while (grade >= 0.0); // Quit when -1 entered.

 // Control begins here if no more grades.

 cout << “\n\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points\n”;

 if (total_grade >= 450.00)

 { cout << “** You made an A!!”; }

 return 0;

}

Notice that the -1 response is not added to the total number

of points. This program checks for the -1 before adding to

total_grade. Here is the output from this program:

267

EXAMPLE
C++ By

What is your grade? (-1 to end) 87.6

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) 78.7

What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-

calculating program. It not only totals the points, but also

computes their average.

To calculate the average grade, the program must first

determine how many grades were entered. This is a subtle

problem because the number of grades to be entered is

unknown in advance. Therefore, every time the user enters a

valid grade (not –1), the program must add 1 to a counter as

well as add that grade to the total variable. This is a combi-

nation counting and totaling routine, which is common in

many programs.

// Filename: C12GRAD2.CPP

// Adds up grades, computes average,

// and determines whether you earned an A.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade_avg = 0.0;

 float grade;

 int grade_ctr = 0;

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; // Add to total.

 grade_ctr ++; } // Add to count.

 } while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 ♦ The while Loop

268

 // Control begins here if no more grades.

 grade_avg = (total_grade / grade_ctr); // Compute

 // average.

 cout << “\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points.\n”;

 cout << “Your average was “ << grade_avg << “\n”;

 if (total_grade >= 450.0)

 { cout << “** You made an A!!”; }

 return 0;

}

Below is the output of this program. Congratulations! You

are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 98.7

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) -1

You made a total of 326.68 points.

Your average was 81.7

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between the while loop and the

do-while loop?

2. What is the difference between a total variable and a counter

variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of

while and do-while loops.

269

EXAMPLE
C++ By

5. What is wrong with the following code?

while (sales > 50)

 cout << “Your sales are very good this month.\n”;

 cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;

do

 { printf(“Careful \n”);

 a++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of

code?

a = 1;

while (a < 4)

 { cout << “This is the outer loop\n”;

 a++;

 while (a <= 25)

 { break;

 cout << “This prints 25 times\n”; }

 }

Review Exercises
1. Write a program with a do-while loop that prints the numer-

als from 10 to 20 (inclusive), with a blank line between each

number.

2. Write a weather-calculator program that asks for a list of the

previous 10 days’ temperatures, computes the average, and

prints the results. You have to compute the total as the input

occurs, then divide that total by 10 to find the average. Use a

while loop for the 10 repetitions.

Chapter 12 ♦ The while Loop

270

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-

cise 2, but generalize it so it computes the average of any

number of days’ temperatures. (Hint: You have to count the

number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-

screen. Don’t print the first 31 characters because they are

nonprintable. Print the codes numbered 32 through 255 by

storing their numbers in integer variables and printing their

ASCII values using printf() and the “%c” format code.

Summary
This chapter showed you two ways to produce a C++ loop: the

while loop and the do-while loop. These two variations of while loops

differ in where they test their test condition statements. The while

tests at the beginning of its loop, and the do-while tests at the end.

Therefore, the body of a do-while loop always executes at least once.

You also learned that the exit() function and break statement add

flexibility to the while loops. The exit() function terminates the

program, and the break statement terminates only the current loop.

This chapter explained two of the most important applications

of loops: counters and totals. Your computer can be a wonderful tool

for adding and counting, due to the repetitive capabilities offered

with while loops.

The next chapter extends your knowledge of loops by showing

you how to create a determinate loop, called the for loop. This feature

is useful when you want a section of code to loop for a specified

number of times.

Part III
C++ Constructs

273

EXAMPLE
C++ By

13

The for Loop

The for loop enables you to repeat sections of your program for a

specific number of times. Unlike the while and do-while loops, the for

loop is a determinate loop. This means when you write your program

you can usually determine how many times the loop iterates. The

while and do-while loops repeat only until a condition is met. The for

loop does this and more: It continues looping until a count (or

countdown) is reached.

After the final for loop count is reached, execution continues

with the next statement, in sequence. This chapter focuses on the for

loop construct by introducing

♦ The for statement

♦ The concept of for loops

♦ Nested for loops

The for loop is a helpful way of looping through a section of

code when you want to count, or sum , specified amounts, but it does

not replace the while and do-while loops.

Chapter 13 ♦ The for Loop

274

The for Statement
The for statement encloses one or more C++ statements that

form the body of the loop. These statements in the loop continuously

repeat for a specified number of times. You, as the programmer,

control the number of loop repetitions.

The format of the for loop is

for (start expression; test expression; count expression)

{ Block of one or more C++ statements; }

C++ evaluates the start expression before the loop begins.

Typically, the start expression is an assignment statement (such as

ctr=1;), but it can be any legal expression you specify. C++ evaluates

start expression only once, at the top of the loop.

CAUTION: Do not put a semicolon after the right parenthesis.

If you do, the for loop interprets the body of the loop as zero

statements long! It would continue looping—doing nothing
each time—until the test expression becomes False.

Every time the body of the loop repeats, the count expression

executes, usually incrementing or decrementing a variable. The test

expression evaluates to True (nonzero) or False (zero), then deter-

mines whether the body of the loop repeats again.

TIP: If only one C++ statement resides in the for loop’s body,

braces are not required, but they are recommended. If you add

more statements, the braces are there already, reminding you

that they are now needed.

The Concept of for Loops
You use the concept of for loops throughout your day-to-day

life. Any time you have to repeat a certain procedure a specified

number of times, that repetition becomes a good candidate for a

computerized for loop.

The for loop
iterates for a
specified number
of times.

275

EXAMPLE
C++ By

To illustrate the concept of a for loop further, suppose you are

installing 10 new shutters on your house. You must do the following

steps for each shutter:

1. Move the ladder to the location of the shutter.

2. Take a shutter, hammer, and nails up the ladder.

3. Hammer the shutter to the side of the house.

4. Climb down the ladder.

You must perform each of these four steps exactly 10 times,

because you have 10 shutters. After 10 times, you don’t install

another shutter because the job is finished. You are looping through

a procedure that has several steps (the block of the loop). These steps

are the body of the loop. It is not an endless loop because there are

a fixed number of shutters; you run out of shutters only after you

install all 10.

For a less physical example that might be more easily comput-

erized, suppose you have to fill out three tax returns for each of your

teenage children. (If you have three teenage children, you probably

need more than a computer to help you get through the day!) For

each child, you must perform the following steps:

1. Add the total income.

2. Add the total deductions.

3. Fill out a tax return.

4. Put it in an envelope.

5. Mail it.

You then must repeat this entire procedure two more times.

Notice how the sentence before these steps began: For each child. This

signals an idea similar to the for loop construct.

NOTE: The for loop tests the test expression at the top of the

loop. If the test expression is False when the for loop begins, the

body of the loop never executes.

Chapter 13 ♦ The for Loop

276

The Choice of Loops

Any loop construct can be written with a for loop, a while loop,

or a do-while loop. Generally, you use the for loop when you

want to count or loop a specific number of times, and reserve

the while and do-while loops for looping until a False condition

is met.

Examples

1. To give you a glimpse of the for loop’s capabilities, this

example shows you two programs: one that uses a for loop

and one that does not. The first one is a counting program.

Before studying its contents, look at the output. The results

illustrate the for loop concept very well.

Identify the program and include the necessary header file. You
need a counter, so make ctr an integer variable.

1. Add one to the counter.

2. If the counter is less than or equal to 10, print its value and
repeat step one.

The program with a for loop follows:

// Filename: C13FOR1.CPP

// Introduces the for loop.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Start ctr at one.

 // Increment through loop.

 { cout << ctr << “\n”; } // Body of for loop.

 return 0;

}

277

EXAMPLE
C++ By

This program’s output is

1

2

3

4

5

6

7

8

9

10

Here is the same program using a do-while loop:

Identify the program and include the necessary header file. You need
a counter, so make ctr an integer variable.

1. Add one to the counter.
2. Print the value of the counter.
3. If the counter is less than or equal to 10, repeat step one.

// Filename: C13WHI1.CPP

// Simulating a for loop with a do-while loop.

#include <iostream.h>

main()

{

 int ctr=1;

 do

 { cout << ctr << “\n”; // Body of do-while loop.

 ctr++; }

 while (ctr <= 10);

 return 0;

}

Notice that the for loop is a cleaner way of controlling the

looping process. The for loop does several things that re-

quire extra statements in a while loop. With for loops, you do

not have to write extra code to initialize variables and incre-

ment or decrement them. You can see at a glance (in the

Chapter 13 ♦ The for Loop

278

expressions in the for statement) exactly how the loop

executes, unlike the do-while, which forces you to look at the

bottom of the loop to see how the loop stops.

2. Both of the following sample programs add the numbers

from 100 to 200. The first one uses a for loop; the second one

does not. The first example starts with a start expression

bigger than 1, thus starting the loop with a bigger count

expression as well.

This program has a for loop:

// Filename: C13FOR2.CPP

// Demonstrates totaling using a for loop.

#include <iostream.h>

main()

{

 int total, ctr;

 total = 0; // Holds a total of 100 to 200.

 for (ctr=100; ctr<=200; ctr++) // ctr is 100, 101,

 // 102,...200

 { total += ctr; } // Add value of ctr to each iteration.

 cout << “The total is “ << total << “\n”;

 return 0;

}

The same program without a for loop follows:

// Filename: C13WHI2.CPP

// A totaling program using a do-while loop.

#include <iostream.h>

main()

{

 int total=0; // Initialize total

 int num=100; // Starting value

 do

 { total += num; // Add to total

 num++; // Increment counter

279

EXAMPLE
C++ By

 } while (num <= 200);

 cout << “The total is “ << total << “\n”;;

 return 0;

}

Both programs produce this output:

The total is 15150

The body of the loop in both programs executes 101 times.

The starting value is 101, not 1 as in the previous example.

Notice that the for loop is less complex than the do-while

because the initialization, testing, and incrementing are

performed in the single for statement.

TIP: Notice how the body of the for loop is indented. This is a

good habit to develop because it makes it easier to see the

beginning and ending of the loop’s body.

3. The body of the for loop can have more than one statement.

The following example requests five pairs of data values:

children’s first names and their ages. It prints the teacher

assigned to each child, based on the child’s age. This illus-

trates a for loop with cout functions, a cin function, and an if

statement in its body. Because exactly five children are

checked, the for loop ensures the program ends after the

fifth child.

// Filename: C13FOR3.CPP

// Program that uses a loop to input and print

// the teacher assigned to each child.

#include <iostream.h>

main()

{

 char child[25]; // Holds child’s first name

 int age; // Holds child’s age

 int ctr; // The for loop counter variable

 for (ctr=1; ctr<=5; ctr++)

 { cout << “What is the next child’s name? “;

Chapter 13 ♦ The for Loop

280

 cin >> child;

 cout << “What is the child’s age? “;

 cin >> age;

 if (age <= 5)

 { cout << “\n” << child << “ has Mrs. “

 << “Jones for a teacher\n”; }

 if (age == 6)

 { cout << “\n” << child << “ has Miss “

 << “Smith for a teacher\n”; }

 if (age >= 7)

 { cout << “\n” << child << “ has Mr. “

 << “Anderson for a teacher\n”; }

 } // Quits after 5 times

 return 0;

}

Below is the output from this program. You can improve this

program even more after learning the switch statement in the

next chapter.

What is the next child’s name? Joe

What is the child’s age? 5

Joe has Mrs. Jones for a teacher

What is the next child’s name? Larry

What is the child’s age? 6

Larry has Miss Smith for a teacher

What is the next child’s name? Julie

What is the child’s age? 9

Julie has Mr. Anderson for a teacher

What is the next child’s name? Manny

What is the child’s age? 6

Manny has Miss Smith for a teacher

What is the next child’s name? Lori

What is the child’s age? 5

Lori has Mrs. Jones for a teacher

281

EXAMPLE
C++ By

4. The previous examples used an increment as the count

expression. You can make the for loop increment the loop

variable by any value. It does not have to increment by 1.

The following program prints the even numbers from 1 to

20. It then prints the odd numbers from 1 to 20. To do this,

two is added to the counter variable (rather than one, as

shown in the previous examples) each time the loop

executes.

// Filename: C13EVOD.CPP

// Prints the even numbers from 1 to 20,

// then the odd numbers from 1 to 20.

#include <iostream.h>

main()

{

 int num; // The for loop variable

 cout << “Even numbers below 21\n”; // Title

 for (num=2; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 cout << “\nOdd numbers below 20\n”; // A second title

 for (num=1; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 return 0;

}

There are two loops in this program. The body of each one

consists of a single printf() function. In the first half of the

program, the loop variable, num, is 2 and not 1. If it were 1,

the number 1 would print first, as it does in the odd number

section.

The two cout statements that print the titles are not part of

either loop. If they were, the program would print a title

before each number. The following shows the result of

running this program.

Chapter 13 ♦ The for Loop

282

Even numbers below 21

2 4 6 8 10 12 14 16 18 20

Odd numbers below 20

1 3 5 7 9 11 13 15 17 19

5. You can decrement the loop variable as well. If you do, the

value is subtracted from the loop variable each time through

the loop.

The following example is a rewrite of the counting program.

It produces the reverse effect by showing a countdown.

// Filename: C13CNTD1.CPP

// Countdown to the liftoff.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=10; ctr!=0; ctr--)

 { cout << ctr << “\n”; } // Print ctr as it

 // counts down.

 cout << “*** Blast off! ***\n”;

 return 0;

}

When decrementing a loop variable, the initial value should

be larger than the end value being tested. In this example,

the loop variable, ctr, counts down from 10 to 1. Each time

through the loop (each iteration), ctr is decremented by one.

You can see how easy it is to control a loop by looking at this

program’s output, as follows.

10

 9

 8

 7

 6

 5

 4

 3

283

EXAMPLE
C++ By

 2

 1

*** Blast Off! ***

TIP: This program’s for loop test illustrates a redundancy

that you can eliminate, thanks to C++. The test expression,
ctr!=0; tells the for loop to continue looping until ctr is not

equal to zero. However, if ctr becomes zero (a False value),

there is no reason to add the additional !=0 (except for clarity).

You can rewrite the for loop as

for (ctr=10; ctr; ctr--)

without loss of meaning. This is more efficient and such an

integral part of C++ that you should become comfortable with

it. There is little loss of clarity once you adjust to it.

6. You also can make a for loop test for something other than a

literal value. The following program combines much of what

you have learned so far. It asks for student grades and

computes an average. Because there might be a different

number of students each semester, the program first asks the

user for the number of students. Next, the program iterates

until the user enters an equal number of scores. It then com-

putes the average based on the total and the number of

student grades entered.

// Filename: C13FOR4.CPP

// Computes a grade average with a for loop.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num; // Total number of grades.

 int loopvar; // Used to control the for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

Chapter 13 ♦ The for Loop

284

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s grade? “;

 cin >> grade;

 total += grade; } // Keep a running total

 avg = total / num;

 cout << “\n\nThe average of this class is “ <<

 setprecision(1) << avg;

 return 0;

}

Due to the for loop, the total and the average calculations do

not have to be changed if the number of students changes.

7. Because characters and integers are so closely associated in

C++, you can increment character variables in a for loop.

The following program prints the letters A through Z with a

simple for loop.

// Filename: C13FOR5.CPP

// Prints the alphabet with a simple for loop.

#include <iostream.h>

main()

{

 char letter;

 cout << “Here is the alphabet:\n”;

 for (letter=’A’; letter<=’Z’; letter++) // Loops A to Z

 { cout << “ “ << letter; }

 return 0;

}

This program produces the following output:

Here is the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

285

EXAMPLE
C++ By

8. A for expression can be a blank, or null expression. In the

following for loop, all the expressions are blank:

for (;;)

 { printf(“Over and over...”); }

This for loop iterates forever. Although you should avoid

infinite loops, your program might dictate that you make a

for loop expression blank. If you already initialized the start

expression earlier in the program, you are wasting computer

time to repeat it in the for loop—and C++ does not require it.

The following program omits the start expression and the

count expression, leaving only the for loop’s test expression.
Most the time, you have to omit only one of them. If you use

a for loop without two of its expressions, consider replacing

it with a while loop or a do-while loop.

// Filename: C13FOR6.CPP

// Uses only the test expression in

// the for loop to count by fives.

#include <iostream.h>

main()

{

 int num=5; // Starting value

 cout << “\nCounting by 5s: \n”; // Title

 for (; num<=100;) // Contains only the test expression.

 { cout << num << “\n”;

 num+=5; // Increment expression outside the loop.

 } // End of the loop’s body

 return 0;

}

The output from this program follows:

Counting by 5s:

5

10

15

Chapter 13 ♦ The for Loop

286

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Nested for Loops
Any C++ statement can go inside the body of a for loop—even

another for loop! When you put a loop in a loop, you are creating a

nested loop. The clock in a sporting event works like a nested loop.

You might think this is stretching the analogy a little far, but it truly

works. A football game counts down from 15 minutes to 0. It does

this four times. The first countdown loops from 15 to 0 (for each

minute). That countdown is nested in another that loops from 1 to 4

(for each of the four quarters).

If your program has to repeat a loop more than one time, it is a

good candidate for a nested loop. Figure 13.1 shows two outlines of

nested loops. You can think of the inside loop as looping “faster”

than the outside loop. In the first example, the inside for loop counts

from 1 to 10 before the outside loop (the variable out) can finish its

first iteration. When the outside loop finally does iterate a second

time, the inside loop starts over.

Use nested loops
when you want to
repeat a loop more
than once.

287

EXAMPLE
C++ By

Inside
Loop

First
Inner
Loop

Outside
Loop

Outside
Loop Second

Inner
Loop

Figure 13.1. Outlines of two nested loops.

The second nested loop outline shows two loops in an outside

loop. Both of these loops execute in their entirety before the outside

loop finishes its first iteration. When the outside loop starts its

second iteration, the two inside loops repeat again.

Notice the order of the braces in each example. The inside loop

always finishes, and therefore its ending brace must come before the

outside loop’s ending brace. Indention makes this much clearer

because you can align the braces of each loop.

Nested loops become important when you use them for array

and table processing in Chapter 23, “Introducing Arrays.”

NOTE: In nested loops, the inside loop (or loops) execute

completely before the outside loop’s next iteration.

Chapter 13 ♦ The for Loop

288

Examples

1. The following program contains a loop in a loop—a nested

loop. The inside loop counts and prints from 1 to 5. The

outside loop counts from 1 to 3. The inside loop repeats, in

its entirety, three times. In other words, this program prints

the values 1 to 5 and does so three times.

// Filename: C13NEST1.CPP

// Print the numbers 1-5 three times.

// using a nested loop.

#include <iostream.h>

main()

{

 int times, num; // Outer and inner for loop variables

 for (times=1; times<=3; times++)

 {

 for (num=1; num<=5; num++)

 { cout << num; } // Inner loop body

 cout << “\n”;

 } // End of outer loop

 return 0;

}

The indention follows the standard of for loops; every

statement in each loop is indented a few spaces. Because the

inside loop is already indented, its body is indented another

few spaces. The program’s output follows:

12345

12345

12345

2. The outside loop’s counter variable changes each time

through the loop. If one of the inside loop’s control variables

is the outside loop’s counter variable, you see effects such as

those shown in the following program.

289

EXAMPLE
C++ By

// Filename: C13NEST2.CPP

// An inside loop controlled by the outer loop’s

// counter variable.

#include <iostream.h>

main()

{

 int outer, inner;

 for (outer=5; outer>=1; outer--)

 { for (inner=1; inner<=outer; inner++)

 { cout << inner; } // End of inner loop.

 cout << “\n”;

 }

 return 0;

}

The output from this program follows. The inside loop

repeats five times (as outer counts down from 5 to 1) and

prints from five numbers to one number.

12345

1234

123

12

1

The following table traces the two variables through this

program. Sometimes you have to “play computer” when

learning a new concept such as nested loops. By executing a

line at a time and writing down each variable’s contents, you

create this table.

The outer variable The inner variable

5 1

5 2

5 3

5 4

5 5

4 1

4 2

continues

Chapter 13 ♦ The for Loop

290

The outer variable The inner variable

4 3

4 4

3 1

3 2

3 3

2 1

2 2

1 1

Tip for Mathematicians

The for statement is identical to the mathematical summation

symbol. When you write programs to simulate the summation

symbol, the for statement is an excellent candidate. A nested

for statement is good for double summations.

For example, the following summation

i = 30

Σ (i / 3 * 2)

i = 1

can be rewritten as

total = 0;

for (i=1; i<=30; i++)

 { total += (i / 3 * 2); }

4. A factorial is a mathematical number used in probability

theory and statistics. A factorial of a number is the multi-

plied product of every number from 1 to the number in

question.

291

EXAMPLE
C++ By

For example, the factorial of 4 is 24 because 4 ✕ 3 ✕ 2 ✕ 1 = 24.

The factorial of 6 is 720 because 6 ✕ 5 ✕ 4 ✕ 3 ✕ 2 ✕ 1 = 720. The

factorial of 1 is 1 by definition.

Nested loops are good candidates for writing a factorial

number-generating program. The following program asks

the user for a number, then prints the factorial of that

number.

// Filename: C13FACT.CPP

// Computes the factorial of numbers through

// the user’s number.

#include <iostream.h>

main()

{

 int outer, num, fact, total;

 cout << “What factorial do you want to see? “;

 cin >> num;

 for (outer=1; outer <= num; outer++)

 { total = 1; // Initialize total for each factorial.

 for (fact=1; fact<= outer; fact++)

 { total *= fact; } // Compute each factorial.

 }

 cout << “The factorial for “ << num << “ is “

 << total;

 return 0;

}

The following shows the factorial of seven. You can run this

program, entering different values when asked, and see

various factorials. Be careful: factorials multiply quickly.

(A factorial of 11 won’t fit in an integer variable.)

What factorial do you want to see? 7

The factorial for 7 is 5040

Chapter 13 ♦ The for Loop

292

Review Questions
The answers to the review questions are in Appendix B.

1. What is a loop?

2. True or false: The body of a for loop contains at most one

statement.

3. What is a nested loop?

4. Why might you want to leave one or more expressions out

of the for statement’s parentheses?

5. Which loop “moves” fastest: the inner loop or the outer

loop?

6. What is the output from the following program?

for (ctr=10; ctr>=1; ctr-=3)

 { cout << ctr << “\n”; }

7. True or false: A for loop is better to use than a while loop

when you know in advance exactly how many iterations a

loop requires.

8. What happens when the test expression becomes False in a

for statement?

9. True or false: The following program contains a valid nested

loop.

for (i=1; i<=10; i++);

 { for (j=1; j<=5; j++)

 { cout << i << j; }

 }

10. What is the output of the following section of code?

i=1;

start=1;

end=5;

step=1;

293

EXAMPLE
C++ By

for (; start>=end;)

 { cout << i << “\n”;

 start+=step;

 end--;}

Review Exercises
1. Write a program that prints the numerals 1 to 15 on-screen.

Use a for loop to control the printing.

2. Write a program to print the numerals 15 to 1 on-screen. Use

a for loop to control the printing.

3. Write a program that uses a for loop to print every odd

number from 1 to 100.

4. Write a program that asks the user for her or his age. Use a

for loop to print “Happy Birthday!” for every year of the

user’s age.

5. Write a program that uses a for loop to print the ASCII

characters from 32 to 255 on-screen. (Hint: Use the %c conver-

sion character to print integer variables.)

6. Using the ASCII table numbers, write a program to print the

following output, using a nested for loop. (Hint: The outside

loop should loop from 1 to 5, and the inside loop’s start

variable should be 65, the value of ASCII A.)

A

AB

ABC

ABCD

ABCDE

Summary
This chapter taught you how to control loops. Instead of

writing extra code around a while loop, you can use the for loop to

control the number of iterations at the time you define the loop. All

Chapter 13 ♦ The for Loop

294

for loops contain three parts: a start expression, a test expression,
and a count expression.

You have now seen C++’s three loop constructs: the while loop,

the do-while loop, and the for loop. They are similar, but behave

differently in how they test and initialize variables. No loop is better

than the others. The programming problem should dictate which

loop to use. The next chapter (Chapter 14, “Other Loop Options”)

shows you more methods for controlling your loops.

295

EXAMPLE
C++ By

14

Other Loop
Options

Now that you have mastered the looping constructs, you should

learn some loop-related statements. This chapter teaches the con-

cepts of timing loops, which enable you to slow down your programs.

Slowing program execution can be helpful if you want to display a

message for a fixed period of time or write computer games with

slower speeds so they are at a practical speed for recreational use.

You can use two additional looping commands, the break and

continue statements, to control the loops. These statements work

with while loops and for loops.

This chapter introduces you to the following:

♦ Timing loops

♦ The break statement with for loops

♦ The continue statement with for loops

When you master these concepts, you will be well on your way

toward writing powerful programs that process large amounts of

data.

Chapter 14 ♦ Other Loop Options

296

Timing Loops
Computers are fast, and at times you would probably like them

to be even faster. Sometimes, however, you want to slow down the

computer. Often, you have to slow the execution of games because

the computer’s speed makes the game unplayable. Messages that

appear on-screen many times clear too fast for the user to read if you

don’t delay them.

A nested loop is a perfect place for a timing loop, which simply

cycles through a for or while loop many times. The larger the end

value of the for loop, the longer the time in which the loop repeats.

A nested loop is appropriate for displaying error messages to

your user. If the user requested a report—but had not entered

enough data for your program to print the report—you might print

a warning message on-screen for a few seconds, telling users that

they cannot request the report yet. After displaying the message for

a few seconds, you can clear the message and give the user another

chance. (The example program in Appendix F, “The Mailing List

Application,” uses timing loops to display error messages.)

There is no way to determine how many iterations a timing

loop takes for one second (or minute or hour) of delay because

computers run at different speeds. You therefore have to adjust your

timing loop’s end value to set the delay to your liking.

Examples

1. Timing loops are easy to write—simply put an empty for

loop inside the program. The following program is a rewrit-

ten version of the countdown program (C13CNTD1.CPP)

you saw in Chapter 13. Each number in the countdown is

delayed so the countdown does not seem to take place

instantly. (Adjust the delay value if this program runs too

slowly or too quickly on your computer.)

Identify the program and include the input/output header file. You
need a counter and a delay, so make cd and delay integer variables.
Start the counter at 10, and start the delay at 1.

1. If the delay is less than or equal to 30,000, add 1 to its value
and repeat step one.

Timing loops make
the computer wait.

297

EXAMPLE
C++ By

2. Print the value of the counter.

3. If the counter is greater than or equal to 0, subtract 1 from its
value and repeat step one.

Print a blast-off message.

// Filename: C14CNTD1.CPP

// Countdown to the liftoff with a delay.

#include <iostream.h>

main()

{

 int cd, delay;

 for (cd=10; cd>=0; cd--)

 { { for (delay=1; delay <=30000; delay++); } // Delay

 // program.

 cout << cd << “\n”; // Print countdown value.

 } // End of outer loop

 cout << “Blast off!!! \n”;

 return 0;

}

2. The following program asks users for their ages. If a user

enters an age less than 0, the program beeps (by printing an

alarm character, \a), then displays an error message for a few

seconds by using a nested timing loop. Because an integer

does not hold a large enough value (on many computers) for

a long timing loop, you must use a nested timing loop.

(Depending on the speed of your computer, adjust the

numbers in the loop to display the message longer or

shorter.)

The program uses a rarely seen printf() conversion charac-

ter, \r, inside the loop. As you might recall from Chapter 7,

“Simple Input and Output,” \r is a carriage-return character.

This conversion character moves the cursor to the beginning

of the current line, enabling the program to print blanks on

that same line. This process overwrites the error message

and it appears as though the error disappears from the

screen after a brief pause.

Chapter 14 ♦ Other Loop Options

298

// Filename: C14TIM.CPP

// Displays an error message for a few seconds.

#include <stdio.h>

main()

{

 int outer, inner, age;

 printf(“What is your age? “);

 scanf(“ %d”, &age);

 while (age <= 0)

 { printf(“*** Your age cannot be that small! ***”);

 // Timing loop here

 for (outer=1; outer<=30000; outer++)

 { for (inner=1; inner<=500; inner++); }

 // Erase the message

 printf(“\r\n\n”);

 printf(“What is your age? “);

 scanf(“ %d”, &age); // Ask again

 }

 printf(“\n\nThanks, I did not think you would actually tell”);

 printf(“me your age!”);

 return 0;

}

NOTE: Notice the inside loop has a semicolon (;) after the for

statement—with no loop body. There is no need for a loop body

here because the computer is only cycling through the loop to

waste some time.

The break and for Statements
The for loop was designed to execute for a specified number of

times. On rare occasions, you might want the for loop to quit before

299

EXAMPLE
C++ By

the counting variable has reached its final value. As with while loops,

you use the break statement to quit a for loop early.

The break statement is nested in the body of the for loop.

Programmers rarely put break on a line by itself, and it almost always

comes after an if test. If the break were on a line by itself, the loop

would always quit early, defeating the purpose of the for loop.

Examples

1. The following program shows what can happen when C++

encounters an unconditional break statement (one not pre-

ceeded by an if statement).

Identify the program and include the input/output header files.
You need a variable to hold the current number, so make num

an integer variable. Print a “Here are the numbers” message.

1. Make num equal to 1. If num is less than or equal to
20, add one to it each time through the loop.

2. Print the value of num.

3. Break out of the loop.

Print a goodbye message.

// Filename: C14BRAK1.CPP

// A for loop defeated by the break statement.

#include <iostream.h>

main()

{

 int num;

 cout << “Here are the numbers from 1 to 20\n”;

 for(num=1; num<=20; num++)

 { cout << num << “\n”;

 break; } // This line exits the for loop immediately.

 cout << “That’s all, folks!”;

 return 0;

}

Chapter 14 ♦ Other Loop Options

300

The following shows you the result of running this program.

Notice the break immediately terminates the for loop. The for

loop might as well not be in this program.

Here are the numbers from 1 to 20

1

That’s all, folks!

2. The following program is an improved version of the pre-

ceding example. It asks users if they want to see another

number. If they do, the for loop continues its next iteration.

If they don’t, the break statement terminates the for loop.

// Filename: C14BRAK2.CPP

// A for loop running at the user’s request.

#include <iostream.h>

main()

{

 int num; // Loop counter variable

 char ans;

 cout << “Here are the numbers from 1 to 20\n”;

 for (num=1; num<=20; num++)

 { cout << num << “\n”;

 cout << “Do you want to see another (Y/N)? “;

 cin >> ans;

 if ((ans == ‘N’) || (ans == ‘n’))

 { break; } // Will exit the for loop

 // if user wants to.

 }

 cout << “\nThat’s all, folks!\n”;

 return 0;

}

The following display shows a sample run of this program.

The for loop prints 20 numbers, as long as the user does not

answer N to the prompt. Otherwise, the break terminates the

for loop early. The statement after the body of the loop

always executes next if the break occurs.

301

EXAMPLE
C++ By

Here are the numbers from 1 to 20

1

Do you want to see another (Y/N)? Y

2

Do you want to see another (Y/N)? Y

3

Do you want to see another (Y/N)? Y

4

Do you want to see another (Y/N)? Y

5

Do you want to see another (Y/N)? Y

6

Do you want to see another (Y/N)? Y

7

Do you want to see another (Y/N)? Y

8

Do you want to see another (Y/N)? Y

9

Do you want to see another (Y/N)? Y

10

Do you want to see another (Y/N)? N

That’s all, folks!

If you nest one loop inside another, the break terminates the

“most active” loop (the innermost loop in which the break

statement resides).

3. Use the conditional break (an if statement followed by a break)

when you are missing data. For example, when you process

data files or large amounts of user data-entry, you might

expect 100 input numbers and receive only 95. You can use a

break to terminate the for loop before it iterates the 96th time.

Suppose the teacher that used the grade-averaging program

in the preceding chapter (C13FOR4.CPP) entered an incor-

rect total number of students. Maybe she typed 16, but there

are only 14 students. The previous for loop looped 16 times,

no matter how many students there are, because it relies on

the teacher’s count.

Chapter 14 ♦ Other Loop Options

302

The following grade averaging program is more sophisti-

cated than the last one. It asks the teacher for the total num-

ber of students, but if the teacher wants, she can enter –99 as

a student’s score. The –99 is not averaged; it is used as a

trigger value to break out of the for loop before its normal

conclusion.

// Filename: C14BRAK3.CPP

// Computes a grade average with a for loop,

// allowing an early exit with a break statement.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num, count=0; // Total number of grades and counter

 int loopvar; // Used to control for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter.

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s “ <<

 “grade? (-99 to quit) “;

 cin >> grade;

 if (grade < 0.0) // A negative number

 // triggers break.

 { break; } // Leave the loop early.

 count++;

 total += grade; } // Keep a running total.

 avg = total / count;

 cout << “\n\nThe average of this class is “<<

 setprecision(1) << avg;

 return 0;

}

Notice that grade is tested for less than 0, not –99.0. You

cannot reliably use floating-point values to compare for

303

EXAMPLE
C++ By

equality (due to their bit-level representations). Because no

grade is negative, any negative number triggers the break

statement. The following shows how this program works.

*** Grade Calculation ***

How many students are there? 10

What is the next student’s grade? (-99 to quit) 87

What is the next student’s grade? (-99 to quit) 97

What is the next student’s grade? (-99 to quit) 67

What is the next student’s grade? (-99 to quit) 89

What is the next student’s grade? (-99 to quit) 94

What is the next student’s grade? (-99 to quit) -99

The average of this class is: 86.8

The continue Statement
The break statement exits a loop early, but the continue state-

ment forces the computer to perform another iteration of the loop.

If you put a continue statement in the body of a for or a while loop, the

computer ignores any statement in the loop that follows continue.

The format of continue is

continue;

You use the continue statement when data in the body of the

loop is bad, out of bounds, or unexpected. Instead of acting on the

bad data, you might want to go back to the top of the loop and try

another data value. The following examples help illustrate the use of

the continue statement.

The continue
statement causes
C++ to skip all
remaining state-
ments in a loop.

Chapter 14 ♦ Other Loop Options

304

TIP: The continue statement forces a new iteration of any of the

three loop constructs: the for loop, the while loop, and the

do-while loop.

Figure 14.1 shows the difference between the break and continue

statements.

Figure 14.1. The difference between break and continue.

Examples

1. Although the following program seems to print the numbers

1 through 10, each followed by “C++ Programming,” it does

not. The continue in the body of the for loop causes an early

finish to the loop. The first cout in the for loop executes, but

the second does not—due to the continue.

break terminates
loop immediately

continue causes loop to perform
another iteration

305

EXAMPLE
C++ By

// Filename: C14CON1.CPP

// Demonstrates the use of the continue statement.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Loop 10 times.

 { cout << ctr << “ “;

 continue; // Causes body to end early.

 cout << “C++ Programming\n”;

 }

 return 0;

}

This program produces the following output:

1 2 3 4 5 6 7 8 9 10

On some compilers, you receive a warning message when

you compile this type of program. The compiler recognizes

that the second cout is unreachable code—it never executes

due to the continue statement.

Because of this fact, most programs do not use a continue,

except after an if statement. This makes it a conditional

continue statement, which is more useful. The following two

examples demonstrate the conditional use of continue.

2. This program asks users for five lowercase letters, one at a

time, and prints their uppercase equivalents. It uses the

ASCII table (see Appendix C, “ASCII Table”) to ensure that

users type lowercase letters. (These are the letters whose

ASCII numbers range from 97 to 122.) If users do not type a

lowercase letter, the program ignores the mistake with the

continue statement.

// Filename: C14CON2.CPP

// Prints uppercase equivalents of five lowercase letters.

#include <iostream.h>

main()

Chapter 14 ♦ Other Loop Options

306

{

 char letter;

 int ctr;

 for (ctr=1; ctr<=5; ctr++)

 { cout << “Please enter a lowercase letter “;

 cin >> letter;

 if ((letter < 97) || (letter > 122)) // See if

 // out-of-range.

 { continue; } // Go get another

 letter -= 32; // Subtract 32 from ASCII value.

 // to get uppercase.

 cout << “The uppercase equivalent is “ <<

 letter << “\n”;

 }

 return 0;

}

Due to the continue statement, only lowercase letters are

converted to uppercase.

3. Suppose you want to average the salaries of employees in

your company who make over $10,000 a year, but you have

only their monthly gross pay figures. The following program

might be useful. It prompts for each monthly employee

salary, annualizes it (multiplying by 12), and computes an

average. The continue statement ensures that salaries less

than or equal to $10,000 are ignored in the average calcu-

lation. It enables the other salaries to “fall through.”

If you enter -1 as a monthly salary, the program quits and

prints the result of the average.

// Filename: C14CON3.CPP

// Average salaries over $10,000

#include <iostream.h>

#include <iomanip.h>

main()

{

 float month, year; // Monthly and yearly salaries

 float avg=0.0, total=0.0;

 int count=0;

307

EXAMPLE
C++ By

 do

 { cout << “What is the next monthly salary (-1) “ <<

 “to quit)? “;

 cin >> month;

 if ((year=month*12.00) <= 10000.00) // Do not add

 { continue; } // low salaries.

 if (month < 0.0)

 { break; } // Quit if user entered -1.

 count++; // Add 1 to valid counter.

 total += year; // Add yearly salary to total.

 } while (month > 0.0);

 avg = total / (float)count; // Compute average.

 cout << “\n\nThe average of high salaries “ <<

 “is $” << setprecision(2) << avg;

 return 0;

}

Notice this program uses both a continue and a break state-

ment. The program does one of three things, depending on

each user’s input. It adds to the total, continues another

iteration if the salary is too low, or exits the while loop (and

the average calculation) if the user types a -1.

The following display is the output from this program:

What is the next monthly salary (-1 to quit)? 500.00

What is the next monthly salary (-1 to quit)? 2000.00

What is the next monthly salary (-1 to quit)? 750.00

What is the next monthly salary (-1 to quit)? 4000.00

What is the next monthly salary (-1 to quit)? 5000.00

What is the next monthly salary (-1 to quit)? 1200.00

What is the next monthly salary (-1 to quit)? -1

The average of high salaries is $36600.00

Chapter 14 ♦ Other Loop Options

308

Review Questions
The answers to the review questions are in Appendix B.

1. For what do you use timing loops?

2. Why do timing loop ranges have to be adjusted for different

types of computers?

3. Why do continue and break statements rarely appear without

an if statement controlling them?

4. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { continue;

 cout << “***** \n”;

 }

5. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { cout << “***** \n”;

 break;

 }

6. To perform a long timing loop, why do you generally have

to use a nested loop?

Review Exercises
1. Write a program that prints C++ is fun on-screen for ten

seconds. (Hint: You might have to adjust the timing loop.)

2. Make the program in Exercise 1 flash the message C++ is fun

for ten seconds. (Hint: You might have to use several timing

loops.)

3. Write a grade averaging program for a class of 20 students.

Ignore any grade less than 0 and continue until all 20 student

grades are entered, or until the user types –99 to end the

program early.

309

EXAMPLE
C++ By

4. Write a program that prints the numerals from 1 to 14 in one

column. To the right of the even numbers, print each

number’s square. To the right of the odd numbers, print each

number’s cube (the number raised to its third power).

Summary
In this chapter, you learned several additional ways to use and

modify your program’s loops. By adding timing loops, continue

statements, and break statements, you can better control how each

loop behaves. Being able to exit early (with the break statement) or

continue the next loop iteration early (with the continue statement)

gives you more freedom when processing different types of data.

The next chapter (Chapter 15, “The switch and goto State-

ments”) shows you a construct of C++ that does not loop, but relies

on the break statement to work properly. This is the switch statement,

and it makes your program choices much easier to write.

Chapter 14 ♦ Other Loop Options

310

311

EXAMPLE
C++ By

15

The switch and
goto Statements

This chapter focuses on the switch statement. It also improves the if

and else-if constructs by streamlining the multiple-choice deci-

sions your programs make. The switch statement does not replace

the if statement, but it is better to use switch when your programs

must perform one of many different actions.

The switch and break statements work together. Almost every

switch statement you use includes at least one break statement in the

body of the switch. To conclude this chapter—and this section of the

book on C++ constructs—you learn the goto statement, although it

is rarely used.

This chapter introduces the following:

♦ The switch statement used for selection

♦ The goto statement used for branching from one part of your

program to another

If you have mastered the if statement, you should have little

trouble with the concepts presented here. By learning the switch

statement, you should be able to write menus and multiple-choice

data-entry programs with ease.

Chapter 15 ♦ The switch and goto Statements

312

The switch Statement
The switch statement is sometimes called the multiple-choice

statement. The switch statement enables your program to choose

from several alternatives. The format of the switch statement is a little

longer than the format of other statements you have seen. Here is the

switch statement:

switch (expression)

 { case (expression1): { one or more C++ statements; }

 case (expression2): { one or more C++ statements; }

 case (expression3): { one or more C++ statements; }

 .

 .

 .

 default: { one or more C++ statements; }

 }

The expression can be an integer expression, a character, a

literal, or a variable. The subexpressions (expression1, expression2,
and so on) can be any other integer expression, character, literal, or

variable. The number of case expressions following the switch line is

determined by your application. The one or more C++ statements is any

block of C++ code. If the block is only one statement long, you do not

need the braces, but they are recommended.

The default line is optional; most (but not all) switch statements

include the default. The default line does not have to be the last line

of the switch body.

If expression matches expression1, the statements to the right of

expression1 execute. If expression matches expression2, the statements

to the right of expression2 execute. If none of the expressions match

the switch expression, the default case block executes. The case

expression does not need parentheses, but the parentheses some-

times make the value easier to find.

TIP: Use a break statement after each case block to keep execu-

tion from “falling through” to the remaining case statements.

Use the switch
statement when your
program makes a
multiple-choice
selection.

313

EXAMPLE
C++ By

Using the switch statement is easier than its format might lead

you to believe. Anywhere an if-else-if combination of statements

can go, you can usually put a clearer switch statement. The switch

statement is much easier to follow than an if-in-an-if-in-an-if

statement, as you have had to write previously.

However, the if and else-if combinations of statements are not

difficult to follow. When the relational test that determines the

choice is complex and contains many && and || operators, the if

statement might be a better candidate. The switch statement is

preferred whenever multiple-choice possibilities are based on a

single literal, variable, or expression.

TIP: Arrange case statements in the most-often to least-often

executed order to improve your program’s speed.

The following examples clarify the switch statement. They

compare the switch statement to if statements to help you see the

difference.

Examples

1. Suppose you are writing a program to teach your child how

to count. Your program will ask the child for a number. It

then beeps (rings the computer’s alarm bell) as many times

as necessary to match that number.

The following program assumes the child presses a number

key from 1 to 5. This program uses the if-else-if combina-

tion to accomplish this counting-and-beeping teaching

method.

Identify the program and include the necessary header file. You
want to sound a beep and move the cursor to the next line, so
define a global variable called BEEP that does this. You need a
variable to hold the user’s answer, so make num an integer variable.

Ask the user for a number. Assign the user’s number to num. If num
is 1, call BEEP once. If num is 2, call BEEP twice. If num is 3, call BEEP
three times. If num is 4, call BEEP four times. If num is 5, call BEEP five
times.

Chapter 15 ♦ The switch and goto Statements

314

// Filename: C15BEEP1.CPP

// Beeps a designated number of times.

#include <iostream.h>

// Define a beep cout to save repeating printf()s

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 // Use multiple if statements to beep.

 if (num == 1)

 { BEEP; }

 else if (num == 2)

 { BEEP; BEEP; }

 else if (num == 3)

 { BEEP; BEEP; BEEP; }

 else if (num == 4)

 { BEEP; BEEP; BEEP; BEEP; }

 else if (num == 5)

 { BEEP; BEEP; BEEP; BEEP; BEEP; }

 return 0;

}

No beeps are sounded if the child enters something other

than 1 through 5. This program takes advantage of the

#define preprocessor directive to define a shortcut to an

alarm cout function. In this case, the BEEP is a little clearer to

read, as long as you remember that BEEP is not a command,

but is replaced with the cout everywhere it appears.

One drawback to this type of if-in-an-if program is its

readability. By the time you indent the body of each if and

else, the program is too far to the right. There is no room for

more than five or six possibilities. More importantly, this

315

EXAMPLE
C++ By

type of logic is difficult to follow. Because it involves a

multiple-choice selection, a switch statement is much better

to use, as you can see with the following, improved version.

// Filename: C15BEEP2.CPP

// Beeps a certain number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 }

 return 0;

}

This example is much clearer than the previous one. The

value of num controls the execution—only the case that

matches num executes. The indention helps separate each

case.

If the child enters a number other than 1 through 5, no beeps

are sounded because there is no case expression to match

any other value and there is no default case.

Chapter 15 ♦ The switch and goto Statements

316

Because the BEEP preprocessor directive is so short, you can

put more than one on a single line. This is not a requirement,

however. The block of statements following a case can also

be more than one statement long.

If more than one case expression is the same, only the first

expression executes.

2. If the child does not enter a 1, 2, 3, 4, or 5, nothing happens

in the previous program. What follows is the same program

modified to take advantage of the default option. The default

block of statements executes if none of the previous cases

match.

// Filename: C15BEEP3.CPP

// Beeps a designated number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 default: { cout << “You must enter a number from “ <<

 “1 to 5\n”;

317

EXAMPLE
C++ By

 cout << “Please run this program again\n”;

 break; }

 }

 return 0;

}

The break at the end of the default case might seem redun-

dant. After all, no other case statements execute by “falling

through” from the default case. It is a good habit to put a

break after the default case anyway. If you move the default

higher in the switch (it doesn’t have to be the last switch

option), you are more inclined to move the break with it

(where it is then needed).

3. To show the importance of using break statements in each

case expression, here is the same beeping program without

any break statements.

// Filename: C15BEEP4.CPP

// Incorrectly beeps using a switch.

#include <iostream.h>

// Define a beep printf() to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num) // Warning!

 { case (1): { BEEP; } // Without a break, this code

 case (2): { BEEP; BEEP; } // falls through to the

 case (3): { BEEP; BEEP; BEEP; } // rest of the beeps!

 case (4): { BEEP; BEEP; BEEP; BEEP; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP; }

 default: { cout << “You must enter a number “ <<

 “from 1 to 5\n”;

Chapter 15 ♦ The switch and goto Statements

318

 cout << “Please run this program again\n”; }

 }

 return 0;

}

If the user enters a 1, the program beeps 15 times! The break

is not there to stop the execution from falling through to the

other cases. Unlike other programming languages such as

Pascal, C++’s switch statement requires that you insert break

statements between each case if you want only one case

executed. This is not necessarily a drawback. The trade-off of

having to specify break statements gives you more control in

how you handle specific cases, as shown in the next example.

4. This program controls the printing of end-of-day sales totals.

It first asks for the day of the week. If the day is Monday

through Thursday, a daily total is printed. If the day is a

Friday, a weekly total and a daily total are printed. If the day

happens to be the end of the month, a monthly sales total is

printed as well.

In a real application, these totals would come from the disk

drive rather than be assigned at the top of the program.

Also, rather than individual sales figures being printed, a

full daily, weekly, and monthly report of many sales totals

would probably be printed. You are on your way to learning

more about expanding the power of your C++ programs. For

now, concentrate on the switch statement and its possibilities.

Each type of report for sales figures is handled through a

hierarchy of case statements. Because the daily amount is the

last case, it is the only report printed if the day of the week is

Monday through Thursday. If the day of the week is Friday,

the second case prints the weekly sales total and then falls

through to the daily total (because Friday’s daily total must

be printed as well). If it is the end of the month, the first case

executes, falling through to the weekly total, then to the

daily sales total as well. Other languages that do not offer

this “fall through” flexibility are more limiting.

319

EXAMPLE
C++ By

// Filename: C15SALE.CPP

// Prints daily, weekly, and monthly sales totals.

#include <iostream.h>

#include <stdio.h>

main()

{

 float daily=2343.34; // Later, these figures

 float weekly=13432.65; // come from a disk file

 float monthly=43468.97; // instead of being assigned

 // as they are here.

 char ans;

 int day; // Day value to trigger correct case.

 // Month is assigned 1 through 5 (for Monday through

 // Friday) or 6 if it is the end of the month. Assume

 // a weekly and a daily prints if it is the end of the

 // month, no matter what the day is.

 cout << “Is this the end of the month? (Y/N) “;

 cin >> ans;

 if ((ans==’Y’) || (ans==’y’))

 { day=6; } // Month value

 else

 { cout << “What day number, 1 through 5 (for Mon-Fri)” <<

 “ is it? “;

 cin >> day; }

 switch (day)

 { case (6): printf(“The monthly total is %.2f \n”,

 monthly);

 case (5): printf(“The weekly total is %.2f \n”,

 weekly);

 default: printf(“The daily total is %.2f \n”, daily);

 }

 return 0;

}

5. The order of the case statements is not fixed. You can rear-

range the statements to make them more efficient. If only

one or two cases are being selected most of the time, put

those cases near the top of the switch statement.

Chapter 15 ♦ The switch and goto Statements

320

For example, in the previous program, most of the company’s

reports are daily, but the daily option is third in the case

statements. By rearranging the case statements so the daily

report is at the top, you can speed up this program because

C++ does not have to scan two case expressions that it rarely

executes.

// Filename: C15DEPT1.CPP

// Prints message depending on the department entered.

#include <iostream.h>

main()

{

 char choice;

 do // Display menu and ensure that user enters a

 // correct option.

 { cout << “\nChoose your department: \n”;

 cout << “S - Sales \n”;

 cout << “A - Accounting \n”;

 cout << “E - Engineering \n”;

 cout << “P - Payroll \n”;

 cout << “What is your choice? “;

 cin >> choice;

 // Convert choice to uppercase (if they

 // entered lowercase) with the ASCII table.

 if ((choice>=97) && (choice<=122))

 { choice -= 32; } // Subtract enough to make

 // uppercase.

 } while ((choice!=’S’)&&(choice!=’A’)&&

 (choice!=’E’)&&(choice!=’P’));

 // Put Engineering first because it occurs most often.

 switch (choice)

 { case (‘E’) : { cout << “\n Your meeting is at 2:30”;

 break; }

 case (‘S’) : { cout << “\n Your meeting is at 8:30”;

 break; }

 case (‘A’) : { cout << “\n Your meeting is at 10:00”;

 break; }

 case (‘P’) : { cout << “\n Your meeting has been “ <<

 “canceled”;

321

EXAMPLE
C++ By

 break; }

 }

 return 0;

}

The goto Statement
Early programming languages did not offer the flexible con-

structs that C++ gives you, such as for loops, while loops, and switch

statements. Their only means of looping and comparing was with

the goto statement. C++ still includes a goto, but the other constructs

are more powerful, flexible, and easier to follow in a program.

The goto statement causes your program to jump to a different

location, rather than execute the next statement in sequence. The

format of the goto statement is

goto statement label

A statement label is named just as variables are (see Chapter 4,

“Variables and Literals”). A statement label cannot have the same

name as a C++ command, a C++ function, or another variable in the

program. If you use a goto statement, there must be a statement label

elsewhere in the program to which the goto branches. Execution then

continues at the statement with the statement label.
The statement label precedes a line of code. Follow all statement

labels with a colon (:) so C++ recognizes them as labels, not

variables. You have not seen statement labels in the C++ programs

so far in this book because none of the programs needed them. A

statement label is optional unless you have a goto statement.

The following four lines of code each has a different statement

label. This is not a program, but individual lines that might be

included in a program. Notice that the statement labels are on the left.

pay: cout << “Place checks in the printer \n”;

Again: cin >> name;

EndIt: cout << “That is all the processing. \n”;

CALC: amount = (total / .5) * 1.15;

The goto causes
execution to jump to
some statement
other than the
next one.

Chapter 15 ♦ The switch and goto Statements

322

The statement labels are not intended to replace comments,

although their names reflect the code that follows. Statement labels

give goto statements a tag to go to. When your program finds the goto,

it branches to the statement labeled by the statement label. The

program then continues to execute sequentially until the next goto

changes the order again (or until the program ends).

TIP: Use identifying line labels. A repetitive calculation de-

serves a label such as CalcIt and not x15z. Even though both are

allowed, the first one is a better indication of the code’s pur-

pose.

Use goto Judiciously

The goto is not considered a good programming statement

when overused. There is a tendency, especially for beginning

programmers, to include too many goto statements in a pro-

gram. When a program branches all over the place, it becomes

difficult to follow. Some people call programs with many goto

statements “spaghetti code.”

To eliminate goto statements and write better structured pro-

grams, use the other looping and switch constructs seen in the

previous few chapters.

The goto is not necessarily a bad statement—if used judiciously.

Starting with the next chapter, you begin to break your pro-

grams into smaller modules called functions, and the goto

becomes less and less important as you write more and more

functions.

For now, become familiar with goto so you can understand

programs that use it. Some day, you might have to correct the

code of someone who used the goto.

323

EXAMPLE
C++ By

Examples

1. The following program has a problem that is a direct result

of the goto, but it is still one of the best illustrations of the

goto statement. The program consists of an endless loop (or an

infinite loop). The first three lines (after the opening brace)

execute, then the goto in the fourth line causes execution to

loop back to the beginning and repeat the first three lines.

The goto continues to do this until you press Ctrl-Break or

ask your system administrator to cancel the program.

Identify the program and include the input/output header file. You
want to print a message, but split it over three lines. You want the
message to keep repeating, so label the first line, then use a goto to
jump back to that line.

// Filename: C15GOTO1.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

 Again: cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously.

 return 0;

}

Notice the statement label (Again in the previous example)

has a colon to separate it from the rest of the line, but there is

not a colon with the label at the goto statement. Here is the

result of running this program.

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

Chapter 15 ♦ The switch and goto Statements

324

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

2. It is sometimes easier to read your program’s code when you

write the statement labels on separate lines. Remember that

writing maintainable programs is the goal of every good

programmer. Making your programs easier to read is a

prime consideration when you write them. The following

program is the same repeating program shown in the previ-

ous example, except the statement label is placed on a

separate line.

// Filename: C15GOTO2.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

Again:

 cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously

 return 0;

}

325

EXAMPLE
C++ By

The line following the statement label is the one that ex-

ecutes next, after control is passed (by the goto) to the label.

Of course, these are silly examples. You probably don’t want

to write programs with infinite loops. The goto is a statement

best preceded with an if; this way the goto eventually stops

branching without intervention from the user.

3. The following program is one of the worst-written programs

ever! It is the epitome of spaghetti code! However, do your

best to follow it and understand its output. By understand-

ing the flow of this output, you can hone your understand-

ing of the goto. You might also appreciate the fact that the

rest of this book uses the goto only when needed to make the

program clearer.

// Filename: C15GOTO3.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

 First:

 cout << “A \n”;

 goto Final;

 There:

 cout << “B \n”;

 goto First;

 Here:

 cout << “C \n”;

 goto There;

 Final:

 return 0;

}

At first glance, this program appears to print the first three

letters of the alphabet, but the goto statements make them

print in the reverse order, C, B, A. Although the program is

Chapter 15 ♦ The switch and goto Statements

326

not a well-designed program, some indention of the lines

without statement labels make it a little more readable. This

enables you to quickly separate the statement labels from the

remaining code, as you can see from the following program.

// Filename: C15GOTO4.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

First:

 cout << “A \n”;

 goto Final;

There:

 cout << “B \n”;

 goto First;

Here:

 cout << “C \n”;

 goto There;

Final:

 return 0;

}

This program’s listing is slightly easier to follow than the

previous one, even though both do the same thing. The

remaining programs in this book with statement labels also

use such indention.

You certainly realize that this output is better produced by

the following three lines.

cout << “C \n”;

cout << “B \n”;

cout << “A \n”;

The goto warning is worth repeating: Use goto sparingly and

only when its use makes your program more readable and

maintainable. Usually, you can use much better commands.

327

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. How does goto change the order in which a program nor-

mally executes?

2. What statement can substitute for an if-else-if construct?

3. Which statement almost always ends each case statement in

a switch?

4. True or false: The order of your case statements has no

bearing on the efficiency of your program.

5. Rewrite the following section of code using a switch

statement.

if (num == 1)

 { cout << “Alpha”; }

else if (num == 2)

 { cout << “Beta”; }

 else if (num == 3)

 { cout << “Gamma”; }

 else

 { cout << “Other”; }

6. Rewrite the following program using a do-while loop.

Ask:

 cout << “What is your first name? “;

 cin >> name;

 if ((name[0] < ‘A’) || (name[0] > ‘Z’))

 { goto Ask; } // Keep asking until the user

 // enters a valid letter.

Chapter 15 ♦ The switch and goto Statements

328

Review Exercises
1. Write a program using the switch statement that asks users

for their age, then prints a message saying “You can vote!” if

they are 18, “You can adopt!” if they are 21, or “Are you

really that young?” for any other age.

2. Write a menu-driven program for your local TV cable com-

pany. Here is how to assess charges: If you are within 20

miles outside the city limits, you pay $12.00 per month; 21 to

30 miles outside the city limits, you pay $23.00 per month; 31

to 50 miles outside the city limits, you pay $34.00. No one

outside 50 miles receives the service. Prompt the users with

a menu for their residence’s distance from the city limits.

3. Write a program that calculates parking fees for a multilevel

parking garage. Ask whether the driver is in a car or a truck.

Charge the driver $2.00 for the first hour, $3.00 for the

second, and $5.00 for more than 2 hours. If it is a truck, add

$1.00 to the total fee. (Hint: Use one switch and one if state-

ment.)

4. Modify the previous parking problem so the charge depends

on the time of day the vehicle is parked. If the vehicle is

parked before 8 a.m., charge the fees in Exercise 3. If the

vehicle is parked after 8 a.m. and before 5 p.m., charge an

extra usage fee of 50 cents. If the vehicle is parked after 5

p.m., deduct 50 cents from the computed price. You must

prompt users for the starting time in a menu, as follows.

1. Before 8 a.m.

2. Before 5 p.m.

3. After 5 p.m.

Summary
You now have seen the switch statement and its options. With

it, you can improve the readability of a complicated if-else-if

selection. The switch is especially good when several outcomes are

possible, based on the user’s choice.

329

EXAMPLE
C++ By

The goto statement causes an unconditional branch, and can be

difficult to follow at times. The goto statement is not used much now,

and you can almost always use a better construct. However, you

should be acquainted with as much C++ as possible in case you have

to work on programs others have written.

This ends the section on program control. The next section

introduces user-written functions. So far, you have been using

C++’s built-in functions, such as strcpy() and printf(). Now it’s time

to write your own.

Chapter 15 ♦ The switch and goto Statements

330

331

EXAMPLE
C++ By

16

Writing C++
Functions

Computers never become bored. They perform the same input,

output, and computations your program requires—for as long as

you want them to do it. You can take advantage of their repetitive

natures by looking at your programs in a new way: as a series of

small routines that execute whenever you need them, however

many times you require.

This chapter approaches its subject a little differently than the

previous chapters do. It concentrates on teaching you to write your

own functions, which are modules of code that you execute and

control from the main() function. So far, the programs in this book

have consisted of a single long function called main(). As you learn

here, the main() function’s primary purpose is to control the execu-

tion of other functions that follow it.

This chapter introduces the following:

♦ The need for functions

♦ How to trace functions

♦ How to write functions

♦ How to call and return from functions

Chapter 16 ♦ Writing C++ Functions

332

This chapter stresses the use of structured programming, some-

times called modular programming. C++ was designed in a way that

the programmer can write programs in several modules rather than

in one long block. By breaking the program into several smaller

routines (functions), you can isolate problems, write correct pro-

grams faster, and produce programs that are easier to maintain.

Function Basics
When you approach an application that has to be programmed,

it is best not to sit down at the keyboard and start typing. Rather, first

think about the program and what it is supposed to do. One of the

best ways to attack a program is to start with the overall goal, then

divide this goal into several smaller tasks. You should never lose

sight of the overall goal, but think also of how individual pieces can

fit together to accomplish such a goal.

When you finally do sit down to begin coding the problem,

continue to think in terms of those pieces fitting together. Don’t

approach a program as if it were one giant problem; rather, continue

to write those small pieces individually.

This does not mean you must write separate programs to do

everything. You can keep individual pieces of the overall program

together—if you know how to write functions. Then you can use the

same functions in many different programs.

C++ programs are not like BASIC or FORTRAN programs.

C++ was designed to force you to think in a modular, or subroutine-

like, functional style. Good C++ programmers write programs that

consist of many small functions, even if their programs execute one

or more of these functions only once. Those functions work together

to produce a program quicker and easier than if the program had to

be written from scratch.

TIP: Rather than code one long program, write several smaller

routines, called functions. One of those functions must be

called main(). The main() function is always the first to execute.

It doesn’t have to be first in a program, but it usually is.

C++ programs
should consist of
many small
functions.

333

EXAMPLE
C++ By

Breaking Down Problems
If your program does very much, break it into several func-

tions. Each function should do only one primary task. For example,

if you were writing a C++ program to retrieve a list of characters

from the keyboard, alphabetize them, then print them to the screen,

you could—but shouldn’t—write all these instructions in one big

main() function, as the following C++ skeleton (program outline)

shows:

main()

{

 // :

 // C++ code to retrieve a list of characters.

 // :

 // C++ code to alphabetize the characters.

 // :

 // C++ code to print the alphabetized list on-screen.

 // :

 return 0;

}

This skeleton is not a good way to write this program. Even

though you can type this program in only a few lines of code, it is

much better to begin breaking every program into distinct tasks so

this process becomes a habit to you. You should not use main() to do

everything—in fact, use main() to do very little except call each of the

functions that does the actual work.

A better way to organize this program is to write a separate

function for each task the program is supposed to do. This doesn’t

mean that each function has to be only one line long. Rather, it means

you make every function a building block that performs only one

distinct task in the program.

The following program outline shows you a better way to write

the program just described:

main()

{

 getletters(); // Calls a function to retrieve the numbers.

 alphabetize(); // Calls a function to alphabetize

 // letters.

Chapter 16 ♦ Writing C++ Functions

334

 printletters(); // Calls a function to print letters

 // on-screen.

 return 0; // Returns to the operating system.

}

getletters()

{

 // :

 // C++ code to get a list of characters.

 // :

 return 0; // Returns to main().

}

alphabetize()

{

 // :

 // C++ code to alphabetize the characters

 // :

 return 0; // Returns to main().

}

printletters()

{

 // :

 // C++ code to print the alphabetized list on-screen

 // :

 return 0; // Returns to main().

}

The program outline shows you a much better way of writing

this program. It takes longer to type, but it’s much more organized.

The only action the main() function takes is to control the other

functions by calling them in a certain order. Each separate function

executes its instructions, then returns to main(), whereupon main()

calls the next function until no more functions remain. The main()

function then returns control of the computer to the operating

system.

Do not be too concerned about the 0 that follows the return

statement. C++ functions return values. So far, the functions you’ve

seen have returned zero, and that return value has been ignored.

335

EXAMPLE
C++ By

Chapter 19, “Function Return Values and Prototypes,” describes

how you can use the return value for programming power.

TIP: A good rule of thumb is that a function should not be

 more than one screen in length. If it is longer, you are probably

doing too much in one function and should therefore break it

into two or more functions.

The first function called main() is what you previously used to

hold the entire program. From this point, in all but the smallest of

programs, main() simply controls other functions that do the work.

These listings are not examples of real C++ programs; instead,

they are skeletons, or outlines, of programs. From these outlines, it

is easier to develop the actual full program. Before going to the

keyboard to write a program such as this, know that there are four

distinct sections: a primary function-calling main() function, a key-

board data-entry function, an alphabetizing function, and a print-

ing function.

Never lose sight of the original programming problem. (Using

the approach just described, you never will!) Look again at the main()

calling routine in the preceding program. Notice that you can glance

at main() and get a feel for the overall program, without the remain-

ing statements getting in the way. This is a good example of

structured, modular programming. A large programming problem

is broken into distinct, separate modules called functions, and each

function performs one primary job in a few C++ statements.

More Function Basics
Little has been said about naming and writing functions, but

you probably understand much of the goals of the previous listing

already. C++ functions generally adhere to the following rules:

1. Every function must have a name.

2. Function names are made up and assigned by the program-

mer (you!) following the same rules that apply to naming

The main()
function is usually
a calling function
that controls the
remainder of the
program.

Chapter 16 ♦ Writing C++ Functions

336

variables: They can contain up to 32 characters, they must

begin with a letter, and they can consist of letters, numbers,

and the underscore (_) character.

3. All function names have one set of parentheses immediately

following them. This helps you (and C++) differentiate them

from variables. The parentheses may or may not contain

something. So far, all such parentheses in this book have

been empty (you learn more about functions in Chapter 18,

“Passing Values”).

4. The body of each function, starting immediately after the

closing parenthesis of the function name, must be enclosed

by braces. This means a block containing one or more state-

ments makes up the body of each function.

TIP: Use meaningful function names. Calc_balance() is more

descriptive than xy3().

Although the outline shown in the previous listing is a good

example of structured code, it can be improved by using the under-

score character (_) in the function names. Do you see how get_letters()

and print_letters() are much easier to read than are getletters() and

printletters()?

CAUTION: Be sure to use the underscore character (_) and not

the hyphen (-) when naming functions and variables. If you use

a hyphen, C++ produces misleading error messages.

The following listing shows you an example of a C++ function.

You can already tell quite a bit about this function. You know, for

instance, that it isn’t a complete program because it has no main()

function. (All programs must have a main() function.) You know also

that the function name is calc_it because parentheses follow this

name. These parentheses happen to have something in them (you

learn more about this in Chapter 18). You know also that the body

of the function is enclosed in a block of braces. Inside that block is a

All programs must
have a main()
function.

337

EXAMPLE
C++ By

smaller block, the body of a while loop. Finally, you recognize that the

return statement is the last line of the function.

calc_it(int n)

{

 // Function to print the square of a number.

 int square;

 while (square <= 250)

 { square = n * n;

 cout << “The square of “ << n <<

 “ is “ << square << “\n”;

 n++; } // A block in the function.

 return 0;

}

TIP: Not all functions require a return statement for their last

line, but it is recommended that you always include one

because it helps to show your intention to return to the calling

function at that point. Later in the book, you learn that the

return is required in certain instances. For now, develop the

habit of including a return statement.

Calling and Returning
Functions

You have been reading much about “function calling” and

“returning control.” Although you might already understand these

phrases from their context, you can probably learn them better

through an illustration of what is meant by a function call.

A function call in C++ is like a detour on a highway. Imagine

you are traveling along the “road” of the primary function called

main() and then run into a function-calling statement. You must

temporarily leave the main() function and execute the function that

was called. After that function finishes (its return statement is

A function call is like
a temporary program
detour.

Chapter 16 ♦ Writing C++ Functions

338

reached), program control reverts to main(). In other words, when

you finish a detour, you return to the “main” route and continue the

trip. Control continues as main() calls other functions.

NOTE: Generally, the primary function that controls function

calls and their order is called a calling function. Functions

controlled by the calling function are called the called functions.

A complete C++ program, with functions, will make this

concept clear. The following program prints several messages to the

screen. Each message printed is determined by the order of the

functions. Before worrying too much about what this program does,

take a little time to study its structure. Notice that there are three

functions defined in the program: main(), next_fun(), and third_fun().

A fourth function is used also, but it is the built-in C++ printf()

function. The three defined functions appear sequentially. The body

of each is enclosed in braces, and each has a return statement at its

end.

As you will see from the program, there is something new

following the #include directive. The first line of every function that

main() calls is listed here and also appears above the actual function.

C++ requires these prototypes. For now, just ignore them and study

the overall format of multiple-function programs. Chapter 19, “Func-

tion Return Values and Prototypes, ” explains prototypes.

// C16FUN1.CPP

// The following program illustrates function calls.

#include <stdio.h>

next_fun(); // Prototypes.

third_fun();

main() // main() is always the first C++ function executed.

{

 printf(“First function called main() \n”);

 next_fun(); // Second function is called here.

 third_fun(); // This function is called here.

 printf(“main() is completed \n”); // All control

 // returns here.

339

EXAMPLE
C++ By

 return 0; // Control is returned to

 //the operating system.

} // This brace concludes main().

next_fun() // Second function.

 // Parentheses always required.

{

 printf(“Inside next_fun() \n”); // No variables are

 // defined in the program.

 return 0; // Control is now returned to main().

}

third_fun() // Last function in the program.

{

 printf(“Inside third_fun() \n”);

 return 0; // Always return from all functions.

}

The output of this program follows:

First function called main()

Inside next_fun()

Inside third_fun()

main() is completed

Figure 16.1 shows a tracing of this program’s execution. Notice

that main() controls which of the other functions is called, as well as

the order of the calling. Control always returns to the calling function

after the called function finishes.

To call a function, simply type its name—including the paren-

theses—and follow it with a semicolon. Remember that semicolons

follow all executable statements in C++, and a function call (some-

times called a function invocation) is an executable statement. The

execution is the function’s code being called. Any function can call

any other function. In the previous program, main() is the only

function that calls other functions.

Now you can tell that the following statement is a function call:

print_total();

Chapter 16 ♦ Writing C++ Functions

340

Figure 16.1. Tracing function calls.

Because print_total is not a C++ command or built-in function

name, it must be a variable or a written function’s name. Only

function names end with the parentheses, so it must be a function

call or the start of a function’s code. Of the last two possibilities, it

must be a call to a function because it ends with a semicolon. If it

didn’t have a semicolon, it would have to be the start of a function

definition.

When you define a function (by typing the function name and

its subsequent code inside braces), you never follow the name with

a semicolon. Notice in the previous program that main(), next_fun(),

and third_fun() have no semicolons when they appear in the body

of the program. A semicolon follows their names only in main(),

where these functions are called.

341

EXAMPLE
C++ By

CAUTION: Never define a function in another function. All

function code must be listed sequentially, throughout the

program. A function’s closing brace must appear before an-

other function’s code can be listed.

Examples

1. Suppose you are writing a program that does the following.

First, it asks users for their departments. Then, if they are in

accounting, they receive the accounting department’s report.

If they are in engineering, they receive the engineering

department’s report. Finally, if they are in marketing, they

receive the marketing department’s report.

The skeleton of such a program follows. The code for main()

is shown in its entirety, but only a skeleton of the other

functions is shown. The switch statement is a perfect

function-calling statement for such multiple-choice

selections.

// Skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { cout << “Choose your department from the “ <<

 “following list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

Chapter 16 ♦ Writing C++ Functions

342

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating

 // system when finished.

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The bodies of switch statements normally contain function

calls. You can tell that these case statements execute func-

tions. For instance, acct_report(); (which is the first line of

the first case) is not a variable name or a C++ command. It

is the name of a function defined later in the program. If

users enter 1 at the menu, the function called acct_report()

executes. When it finishes, control returns to the first case

343

EXAMPLE
C++ By

body, and its break statement causes the switch statement to

end. The main() function returns to DOS (or to your inte-

grated C++ environment if you are using one) when its

return statement executes.

2. In the previous example, the main() routine is not very

modular. It displays the menu, but not in a separate func-

tion, as it should. Remember that main() does very little

except control the other functions, which do all the work.

Here is a rewrite of this sample program, with a fourth

function to print the menu to the screen. This is truly a

modular example, with each function performing a single

task. Again, the last three functions are shown only as

skeleton code because the goal here is simply to illustrate

function calling and returning.

// Second skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

menu_print()

{

Chapter 16 ♦ Writing C++ Functions

344

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The menu-printing function doesn’t have to follow main().

Because it’s the first function called, however, it seems best

to define it there.

3. Readability is the key, so programs broken into separate

functions result in better written code. You can write and

test each function, one at a time. After you write a general

outline of the program, you can list a bunch of function calls

in main(), and define their skeletons after main().

345

EXAMPLE
C++ By

The body of each function initially should consist of a single

return statement, so the program compiles in its skeleton

format. As you complete each function, you can compile and

test the program. This enables you to develop more accurate

programs faster. The separate functions enable others (who

might later modify your program) to find the particular

function easily and without affecting the rest of the program.

Another useful habit, popular with many C++ programmers,

is to separate functions from each other with a comment

consisting of a line of asterisks (*) or dashes (-). This makes it

easy, especially in longer programs, to see where a function

begins and ends. What follows is another listing of the

previous program, but now with its four functions more

clearly separated by this type of comment line.

// Third skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

//**

menu_print()

Chapter 16 ♦ Writing C++ Functions

346

{

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

//***

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

//***

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

//***

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

Due to space limitations, not all program listings in this book

separate the functions in this manner. You might find,

however, that your listings are easier to follow if you put

these separating comments between your functions. The

application in Appendix F, “The Mailing List Application,”

347

EXAMPLE
C++ By

for example, uses these types of comments to separate its

functions.

4. You can execute a function more than once simply by calling

it from more than one place in a program. If you put a

function call in the body of a loop, the function executes

repeatedly until the loop finishes.

The following program prints the message C++ is Fun!

several times on-screen—forward and backward—using

functions. Notice that main() does not make every function

call. The second function, name_print(), calls the function

named reverse_print(). Trace the execution of this program’s

couts.

// Filename: C16FUN2.CPP

// Prints C++ is Fun! several times on-screen.

#include <iostream.h>

name_print();

reverse_print();

one_per_line();

main()

{

 int ctr; // To control loops

 for (ctr=1; ctr<=5; ctr++)

 { name_print(); } // Calls function five times.

 one_per_line(); // Calls the program’s last

 // function once.

 return 0;

}

//***

name_print()

{

 // Prints C++ is Fun! across a line, separated by tabs.

 cout << “C++ is Fun!\tC++ is Fun!\tC++ is Fun!

 \tC++ is Fun!\n”;

 cout << “C++ i s F u n !\tC++ i s F u n ! “ <<

 “\tC++ i s F u n !\n”;

Chapter 16 ♦ Writing C++ Functions

348

 reverse_print(); // Call next function from here.

 return 0; // Returns to main().

}

//***

reverse_print()

{

 // Prints several C++ is Fun! messages,

 // in reverse, separated by tabs.

 cout << “!nuF si ++C\t!nuF si ++C\t!nuF si ++C\t\n”;

 return 0; // Returns to name_print().

}

//***

one_per_line()

{

 // Prints C++ is Fun! down the screen.

 cout << “C++\n \ni\ns\n \nF\nu\nn\n!\n”;

 return 0; // Returns to main()

}

Here is the output from this program:

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++

349

EXAMPLE
C++ By

i

s

F

u

n

!

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command.

2. What is the name of the first function executed in a C++

program?

3. Which is better: one long function or several smaller

functions? Why?

4. How do function names differ from variable names?

5. How can you use comments to help visually separate

functions?

6. What is wrong with the following program section?

calc_it()

{

 cout << “Getting ready to calculate the square of 25 \n”;

 sq_25()

 {

 cout << “The square of 25 is “ << (25*25);

 return 0;

 }

 cout << “That is a big number! \n”;

 return 0;

}

Chapter 16 ♦ Writing C++ Functions

350

7. Is the following a variable name, a function call, a function

definition, or an expression?

scan_names();

8. True or false: The following line in a C++ program is a

function call.

cout << “C++ is Fun! \n”;

Summary
You have now been exposed to truly structured programs.

Instead of typing a long program, you can break it into separate

functions. This method isolates your routines so surrounding code

doesn’t clutter your program and add confusion.

Functions introduce just a little more complexity, involving the

way variable values are recognized by the program’s functions. The

next chapter (Chapter 17, “Variable Scope”) shows you how vari-

ables are handled between functions, and helps strengthen your

structured programming skills.

Part IV
Variable Scope and
Modular Programming

