oue

C++ From Scratch

Table of Contents:

Chapter 1 - Introduction

Chapter 2 - Getting Started

Chapter 3 - Program Flow

Chapter 4 - Creating Classes

Chapter 5 - Playing the Game

Chapter 6 - Using Linked Lists
Chapter 7 - The Canonical Methods
Chapter 8 - Using Polymorphism
Chapter 9 - Implementing Templates
Chapter 10 - Leveraging Standard Template Library
Chapter 11 - The Computer Guesses
Chapter 12 - Delegating Responsibility
Chapter 13 - Persistence

Chapter 14 - Exceptions

Chapter 15 - Next Steps

Appendix A - Binary and Hexadecimal
Appendix B - Operator Precedence

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

2
Getting Started

. Why Teach a Process that |s Only Good for Smaller Projects?
o Namespaces
o using namespace std
o Returning aVaue
o main() Is More Equal than Others
o Using cout to Print to the Screen
o Variables
o Characters
o Built-In Types
o Constants

In This Chapter
. How BigIsaSmall Project
. Bootstrapping Y our Knowledge
. Creating the Project

. Examining the Code

. Code Spelunking
. Anayzing the Code

With afairly simple program such as Decryptix!, my first goal isto get a version up and running--and to
keep it running. After it isworking, I'll add features, redesigning on-the-fly as| go.

On alarge project, this can be afatally inefficient process. Asfeatures are added, the complexity of the
overall project grows, and without a good design you end up with code that is hard to maintain.

With a smaller project such as Decryptix!, however, therisk isminimal. If anew feature requires a
complete redesign and rewrite of the program, no problem: It only takes a couple of daysto writeitin
the first place.

How Big Isa Small Project?

How small must a program be to design it as you go? I'd argue that any program that takes one person
more than a few weeks to program ought to be subject to a more rigorous design process. Here's why:
Programs that evolve organically, rather than by design, often have to be rewritten at least once. If doing
so ispainful, it isworth working out the design up front. If rewriting istrivial, however, nothing was lost
by diving right in.

Why Teach a Process that Is Only Good for Smaller Projects?

"Why," | hear you ask, "show an example of organic design if all large projects require formal design?"
The answer isfairly straightforward: There'salot to learn in both programming and design. This book
aims to teach programming; you'll find lots of books (including afew | wrote) on object-oriented
analysis and design. You can't learn everything at once.

Nothing | teach in this book is inconsistent with good design; we just won't take the time to design
everything up front. | don't know about you, but I'm eager to dive into some code.

Bootstrapping Your Knowledge

In aclassic C++ primer, I'd start with the structure of the program, introduce statements and expressions,
add variables and constants, and then turn to classes. I'd build skill upon skill, and I'd be about 600 pages
into the book before you could even begin to write your Decryptix! program.

This book is different. Y ou're going to jump right in and wallow around awhile. Not all of it will make
sense at first, and I'll gloss over lots of detail only to return to it later in the book, but the essentia flow
of the program can be explained pretty quickly. From time to time you'll take an "Excursion” to related--

but not strictly relevant--areas of C++.
Creating the Project

This book is designed to be of use regardless of which compiler you are using or what platform (for
example, Windows or Mac) you are developing for. From time to time, however, I'll demonstrate how
you can accomplish a specific task in Microsoft Visual C++ 6.0. Y our compiler might be somewhat
different, but the principles are the same. With the knowledge that is provided here you can easily read
the documentation for your compiler and make the necessary adjustments.

| begin by creating a project. On the drive on which | installed my compiler | have created a directory
called Decryptix Projects. Thiswill house all the versions of the program | will create.

First | start Visual C++ and tell it to create a new Win32 Console Application called Decryptix, as
shown in Figure 2.1.

Figure 2.1 Microsoft Visual C++ New Project.

If your compiler offers awizard (a series of dialog boxes that helps you make these decisions), choose
whatever provides you with the simplest, text-based, non-windowed, | SO-standard environment. In this
case, | choose empty application.

After creating the project, Visual C++ drops me in the Integrated Development Environment (IDE). |
choose File, New, and enter a new C++ source file named Decryptix.cpp.

In other environments, for example atext editor in UNIX, I'd just open anew file and saveit as
Decryptix.cpp. Often, in IDESs, saving the file with the .cpp extension signals that thisis C++ source
code and turns on source code indentation support (and, sometimes, color-coded text!). Source code
Indentation support means that when you type your source code the editor automatically indentsiit
properly for you. Thus, if you enter

I f (soneVal ue > thisValue)

and then press Enter, the editor automatically indents the next line. (Don't worry about what this code
does, it will all be explained in time.)

NOTE: To learn what support your editor provides, please check the documentation that
comes with your compiler.

Examining the Code

Now take alook at a preliminary version of Decryptix, in Listing 2.1. Y ou can open afilein your
project, save it as Decryptix.cpp, and then enter this code, exactly as shown.

TIP: | strongly advise you to enter all the source code yourself because that is the best
way to learn. If you simply can't stand the thought of all that typing, however, you can
retrieve this code from the CD that accompanies this book, or you can download this
code--and all the code for this book--from my Web site (go to www.

| i bertyassoci at es. comand click on Books & Resources).

This program is quite advanced, and of course you won't understand much of what you are reading.
Don't be intimidated, however; this chapter and Chapter 3, "Program Flow," go over it line by line. You
might find, however, that you can get a pretty good idea of what the program is doing just by reading it
as prose.

Try running it and examining what it does, and then try matching the code to the outpui.

Listing 2.1 First Glimpse of Decryptix!

0: #include <iostreanp

1:

2: int main()

3

4. std::cout << "Decryptix. Copyright 1999 Liberty ";

5: std::cout << "Associates, Inc. Version 0.2\n " << std::endl;
6: std::cout << "There are two ways to play Decryptix: ";

7. std::cout << " either you can guess a pattern | create, ";
8. std::cout << "or | can guess your pattern.\n\n";

9:

10: std::cout << "If you are guessing, | wll think of a\n ";
11: std::cout << "pattern of letters (e.g., abcde).\n\n";

12:

13: std::cout << "On each turn, you guess the pattern and\n";
14 std::cout << " | will tell you how many letters you \n";
15: std::cout << "got right, and how many of the correct\n";

16: std::cout << " letters were in the correct position.\n\n";

17:

18: std::cout << "The goal is to decode the puzzle as quickly\n";
19: std::cout << "as possible. You control how many letters \n";
20: std::cout << "can be used and how nmany positions\n";

21: std::cout << " (e.g., 5 possible letters in 4 positions) \n";
22: std::cout << "as well as whether or not the pattern m ght\n";
23: std::cout << " contain duplicate letters (e.g., aabcd).\n\n";
24:

25: std::cout << "If |I'mguessing, you think of a pattern \n";
26: std::cout << "and score each of ny answers.\n\n" << std::endl;
27:

28: const int mnLetters = 2;

29: const int maxLetters = 10;

30: const int mnPositions = 3;

31: const int maxPositions = 10;

32:

33: I nt howvanyLetters = 0, howManyPositions = O;

34 bool dupl i catesAl |l owed = fal se;

35: I nt round = 1;

36:

37: std::cout << "How many letters? (";

38: std::cout << mnlLetters << "-" << nmaxLetters << "): ";

39: std::cin >> howManylLetters;

40:

41: std::cout << "How many positions? (";

42: std::cout << mnPositions << "-" << maxPositions << "): ";
43: std::cin >> howvanyPosi ti ons;

44

45: char choi ce;

46: std::cout << "All ow duplicates (y/n)? ";

47: std::cin >> choice;

48

49: return O;

50: }

Compile, link, and run this program. In Visual C++ you can do all this at once by pressing Ctrl+F5.
Here's the output:

Decrypti x. Copyright 1999 Liberty Associates, Inc. Version 0.2
There are two ways to play Decrypti x:
ei ther you can guess a pattern | create,
or | can guess your pattern.
| f you are guessing, | wll think of a

pattern of letters (e.qg., abcde).
On each turn, you guess the pattern and

| wll tell you how nmany letters you
got right, and how nany of the correct

| etters were in the correct position.
The goal is to decode the puzzle as quickly
as possible. You control how many letters
can be used and how many positions

(e.g., 5 possible letters in 4 positions)
as well as whether or not the pattern m ght
contain duplicate letters (e.g., aabcd).
If I'm guessing, you think of a pattern
and score each of ny answers.

How many letters? (2-10):

Analyzing the Code
The very first line of this program (Line0) is
#i ncl ude <i ostreanr

The goal of thislineisto add to your current file the information it needs to support Input and Output
streaming: the capability to read from the keyboard (input) and write to the screen (output).

I nput Stream--How data comes into your program,; typically from the keyboard

Output Stream--How data leaves your program; typically to the display

Here's how it works: C++ now includes a group of supporting code called the standard library, which
provides objects to handle input and output. ci n is an object that handles input from the keyboard, and
cout isan object that handles output to the screen. The details of how they work are not important at
this point, but to use them you must include in your program the file iostream, which provides their
definitions. The definition of an object tells the compiler what it needs to know in order for the object to
be used.

ci n ispronounced see-in, and cout is pronounced see-out.

You include thisfilein your program with the #i ncl ude statement. When your compiler isinvoked,
the precompiler runs, reading through your program and looking for lines that begin with the # symbol.
When it sees#i ncl ude, it knowsit must read in afile. The angle brackets (< and >) say "look in the
usual place.” When you installed your compiler, it should have set up "the usual place" to look for these
files.

Some folks pronounce # as hash, others as cross-hash. | call it pound, so | pronounce
thisline of code pound include eye-oh-stream .

The net effect isthat the file iostream is read into your program at this point, which isjust what you
want. Y ou can now usethe cout object, asyou'll seein afew moments.

NOTE: Using the angle brackets, <i ost r ean® indicates that the precompiler isto "look
in the usual place." An dternative isto use double quote marks--for instance " nyfi | e.
h" --which say "look in the current project directory and, failing that, look in the usual
place."

Namespaces

Unlike the code in Chapter 1, "Introduction,” this version uses the new ANSI/ISO standard library
header file <iostream> rather than <iostream.h> (note that the new header doesn't use .h).

These headers support the new namespace protocols, which enable you to avoid conflicts in the names
of objects and methods when working with code you buy from other vendors. For example, there might
be two objects named cout . We solve this by "qualifying" the name with st d: : , as shown on lines 4-
26. Thisqualification with st d: : indicatesto the compiler that it isto usethecout object that is
defined in the standard (st d) library, which comes with your compiler.

Unfortunately, this makes the code look much more complicated and difficult to read.

using namespace std

To simplify this code and to make it easier for usto focus on the issues we care about, I'll rewrite the
preceding example by adding the keywords

usi ng nanmespace std;

This signals to the compiler that the code I'm writing iswithin the st d (standard) namespace. In effect,
it tellsthe compiler that when it seescout itistotreatitlikest d: : cout .

NOTE: All therest of the code in the book uses this trick, which makes the code much
easier to read and follow, at the cost of undermining the protection that namespaces afford.

When you write your commercial applications you might want to eschew the usi ng
namespace idiom because you might want to ensure namespace protection.

Listing 2.1ais an exact replicaof Listing 2.1, except that it takes advantage of theusi ng nanmespace
idiom.

0: #include <iostreanp

1: using nanmespace std;

2: int main()

3 {

4: cout << "Decryptix. Copyright 1999 Liberty ";

5: cout << "Associates, Inc. Version 0.2\n " << endl;

6:

7: cout << "There are two ways to play Decryptix: ";

8: cout << " either you can guess a pattern | create, ";
9: cout << "or | can guess your pattern.\n\n";

10:

11: cout << "If you are guessing, | will think of a\n ";
12: cout << "pattern of letters (e.g., abcde).\n\n";

13:

14. cout << "On each turn, you guess the pattern and\n";
15: cout << " I wll tell you how many letters you \n";
16: cout << "got right, and how nany of the correct\n";
17: cout << " |etters were in the correct position.\n\n";

19: cout << "The goal is to decode the puzzle as quickly\n";

20: cout << "as possible. You control how many letters \n";
21: cout << "can be used and how many positions\n";

22: cout << " (e.g., 5 possible letters in 4 positions) \n";
23: cout << "as well as whether or not the pattern m ght\n";
24 cout << " contain duplicate letters (e.g., aabcd).\n\n";
25:

26: cout << "If I'mguessing, you think of a pattern \n";
27: cout << "and score each of nmy answers.\n\n" << endl;
28:

29: const int mnLetters = 2;

30: const int maxLetters = 10;

31: const int mnPositions = 3;

32: const int maxPositions = 10;

33:

34 I nt howivanyLetters = 0, howManyPositions = O;
35: bool dupl i catesAl |l owed = fal se;

36: I nt round = 1;

37:

38: cout << "How nmany letters? (";

39: cout << mnLetters << "-" << maxLetters << "): ";

40: cin >> howManylLetters;

41

42: cout << "How many positions? (";

43: cout << mnPositions << "-" << maxPositions << "): ";
44 cin >> howManyPosi ti ons;

45:

46: char choi ce;

47: cout << "Allow duplicates (y/n)? ";

48: cin >> choi ce;

49:

50: return O;

51: }

Code Spelunking

One of the most powerful waysto learn C++ isto use your debugger. | highly recommend that
immediately after entering this code into your project (or downloading it from my site), you compile,
link, and run it. Y ou'll need to check your documentation for how to do this, but most modern IDEs offer
amenu choice to "Build the entire project.”

If you are using Visual C++, you can simply point your cursor at the buttons on the toolbar until you
find the ones that compile and link or that build the entire project.

After it isworking, set this book aside and pick up the documentation for your debugger, which you'll
find with the documentation for your compiler. Set abreak point on the first line of codein mai n()
(seeline5inListing 2.1). In Visual C++ you just put your cursor on that line and press F9, or press the
break point toolbar button. Once the break point is set, run to the break point (in Visual C++, press F5).
Step over each line of code and try to guess what is going on. Again, you'll need to check your
documentation for how to step over each line of code (in Visual C++ itisF10).

The debugger is one of the last things most primersintroduce; | feel that it needs to be one of the very
first things you learn. If you get stuck, see the exploration of debugging at the end of this chapter.

Every C++ program hasamai n() function (Listing 2.1, line 2). The general purpose of afunctionisto
run alittle code and then return to whomever called you.

All functions begin and end with parentheses, as you can see on lines 3 and 51. A function
consists of a series of statements, which are all the lines that are shown between the
parentheses.

Thisisthe essence of a structured program. Program flow continues in the order in which the code
appears in the file until afunction is called. The flow then branches off to the function and follows line
by line until another function is called or until the function returns (see Figure 2.2).

In asense, afunction is a subprogram. In some languages, it is called a subroutine or a procedure. The
job of afunction is to accomplish some work and then return control to whatever invoked the function.

Figure 2.2 When a program calls a fuction, execution switches to the function and then resumes at the
line after the function call.

When mai n() executes, we execute St at enent 1. Wethen branchtoline1l of Funcl1l(). Funcl's
three lines execute, and then processing returnsto mai n() , where we execute St at enent 2. Func?2
isthen called, whichin turn callsFunc3() . When Func3 completesit returnsto Func2(), which
continues to run until itsown r et ur n statement, at which time we return to mai n() and execute

St at enent 3. Wethen call Func4() , which executes its own code and then returnsto mai n() ,
where we execute St at enent 4.

Returning a Value

When afunction returns to whoever called it, it can return avalue. You'll see later what the calling

function can do with that value.

Every function must declare what kind of value it returns. For example, does it return an integer or a
character? If afunction does not return avalue, it declares itself to return voi d, which meansthat it
returns nothing.

main() Is More Equal than Others

mai n() isaspecia functionin C++. All C++ programs begin with mai n() ; when mai n ends, the
program ends. In a sense, the operating system (Windows, DOS, and so on) calsmai n() .

mai n() awaysreturnsani nt (integer). I'll discuss the various types of values later in the book; for
now it is sufficient to know that you must always declare mai n to return an integer.

NOTE: On some older compilers, you can have mai n() returnvoi d, but that is not
legal under the new 1SO standard. It isagood ideato get into the habit of having mai n()
returnani nt every time.

You'll notice that mai n() doesreturn an integer (in this case, 0) on line 50. When programs are run
from batch files or scripts, you can examine these values. For the programs in this book (and probably
for most of the programs you will write), this value is discarded. By convention, you'll return O to
indicate that the program ran without incident.

Using cout to Print to the Screen

Most of the statementsin this very first program are designed to write to the screen. Use the standard
output object cout . You send a string of charactersto cout by enclosing them in quotation marks and
by using the output redirection operator (<<), which you create by holding the Shift key and pressing the
comma key twice.

This actually takes advantage of avery advanced feature in C++ called operator overloading, whichis
discussed in detail in Chapter 6, "Using Linked Lists." Fortunately, for now you can use this feature
without fully understanding it. The net effect is that the words

Decrypti x. Copyright 1999 Liberty

are sent to the screen.

Operator Overloading--The capability of user-created types to use the operators that
built-in types use, such as +, =, and ==. | explain how to do thisin Chapter 6.

Special Printing Characters
Line 5 prints the words
Associ ates, Inc. Version 0.2

to the screen. Notice that before the closing quotes, line 5 includes\ n. These are two special marks
within quoted strings. The slash is called an escape character, and when it isfound in a quoted string it
means "what followsis a special instruction to the compiler.” The letter n, when it follows the escape
character, stands for "new line." Thus, the effect isto print, to the output, a new line.

Escape character--A character that serves as a signal to the compiler or precompiler that
the letter that follows requires special treatment. For example, the precompiler usually
treats the character n as aletter, but when it is preceded by the escape character (\ n), it
indicates anew line.

Notice also that this line ends with
<< endl ;

cout canreceive more than just strings. In this case, the redirection operator is being used to send
endl .

NOTE: endl ispronounced end-ell and stands for "end line."

This sends another new line to the output and flushes out the buffers. Buffers will be explained | ater,
when | talk about streams, but the net effect ensures that all the text is written to the screen immediately.

Line 7 beginsto print another line, which is continued on line 8 and completed on line 9.
Together, these lines print the following output:

Decrypti x. Copyright 1999 Liberty Associates, Inc. Version 0.2

There are two ways to play Decryptix: either you can guess a pattern
| create,

or | can guess your pattern.

Note first that there is no new line after Liberty and before Associates. There was no instruction to cout
to print anew line, so none was printed. Two new lines appear after 0. 2. Thefirst, created by the\ n
character, ends the line; the second, created by endl , skipsaline.

Y ou can achieve the effect of skipping aline by putting intwo \ n characters, as shown online 9.
Table 2.1 illustrates the other specia printing characters.

Table 2.1Special Printing Characters

Character |What it means

\'n new line

\ t tab

\b rings the bell

\ " prints a double quote

\ prints a single quote

\? prints a question
mark

|\\

prints a backslash ‘

Variables

A variableis aplace to store a value during the progress of your program.

Variable--A placeto store avalue

In this case, at line 36, you want to keep track of what round of play you are up to. Store this information
inavariable named r ound:

int round = 1;

One way to think of your computer's memory is as a series of cubbyholes. Each cubbyhole is one byte,
and every byte is numbered sequentialy: The number isthe address of that memory. Each variable
reserves one or more bytes in which you can store avalue.

Y our variable's name (r ound) isalabel on one of these cubbyholes, which enables you to find it easily
without knowing its actual memory address.

Think of it like this: When you jump in a cab in Washington, D.C., you can ask for 1600 Pennsylvania
Avenue, or you can ask for The White House. The identifier "the White House" is the name of that
address.

Figure 2.3 is a schematic representation of thisidea. Asyou can see from the figure, r ound starts at
memory address 103. Depending on the size of r ound, it can take up one or more memory addresses.

Figure 2.3 A schematic representation of memory.

RAM is random access memory. When you run your program, it isloaded into RAM from
the disk file. All variables are also created in RAM. When programmers talk about
memory, they are usualy referring to RAM.

Setting Aside Memory

When you define avariable in C++, you must tell the compiler what kind of variable you are declaring:
ani nt, char, and so forth. The type tells the compiler the size of the variable. For example, achar is
1 byte, and on modern computersan i nt is4 bytes; thus, the variable r ound consumes four bytes
(cubbyholes) of memory.

Defining a Variable

Y ou define avariable by stating its type, followed by one or more spaces, the variable name, and a
semicolon:

I nt round;

The variable name can be virtually any combination of letters, but it cannot contain spaces. Legal
variable namesinclude x, J23qr snf , and ny Age. It is good programming practice to use variable
names that tell you what the variables are for. This makes them easier to understand, which makes it
easier for you to maintain your program.

Case Sensitivity

C++ is case sendgitive; therefore, avariable named r ound isdifferent from Round, which is different
from ROUND. Avoid using multiple variables whose names differ only by capitalization--it can be
terribly confusing.

NOTE: Some compilers enable you to turn case sensitivity off. Don't be tempted to do
this. Y our programs won't work with other compilers, and other C++ programmers will be
very confused by your code.

Keywords

C++ reserves some words, and you cannot use them as variable names. These are keywords that are used
by the compiler to control your program. Keywordsincludei f ,whi | e, f or, and mai n. Your
compiler manual probably provides a complete list, but generally, any reasonable name for avariableis
almost certainly not a keyword.

Creating More Than One Variable at a Time

Y ou can create more than one variable of the same type in one statement by writing the type and then
the variable names, separated by commas. For example

I nt howManyLetters, howManyPositi ons;
bool valid, duplicatesAll owed;

Assigning Values to Your Variables

Back inlisting 2.1, at line 36, alocal variable is defined by stating the type (i nt) and the variable name
(r ound).

This actually alocates memory for the variable. Because ani nt isfour bytes, this alocates four bytes
of memory. When the compiler allocates memory, it reserves the memory for the use of your variable
and assigns the name that you provide (in this case, r ound).

Scope

Scope refers to the region of a program in which an identifier--something that is named, such as an
object, variable, function, or constant--is valid. When | say avariable has local scope, | meanthat it is
valid within a particular function.

Scope--The region of aprogram in which an identifier (that is, the name of something) is
valid.

L ocal scope--When an identifier has local scope, it isvalid within a particular function.

There are other levels of scope (global, static member, and so on) that | will discussas| progress
through the program.

The Value of Variables
Local variables, such asr ound, have avalue when they are created regardless of whether you initialize

them. If you don't initialize them (as shown here), whatever happened to already bein the bit of memory
Is assigned to them--that is, a random garbage value.

It is good programming practice to initialize your variables. When you initialize a variable, you create it
and give it aspecific value, al in one step:

Int round = 1;
This createsthe variabler ound and initializes it with thevalue 1.

Just as you can define more than one variable at atime, you can initialize more than one variable. For
example,

i nt howMvanylLetters = 0, howManyPositions = O;

initializes the two variableshowiVanyLet t er s, each to the value 0. Y ou can even mix definitions and
initializations:
I nt howManyLetters = 0, round, howManyPositions = 2;

This example defines three variables of typei nt , and it initializes the first and third.

Characters

Online 46 of Listing 2.1, you created a character variable (type char) named choi ce. On most
computers, character variables are 1 byte, enough to hold 256 values. A char can be interpreted as a
small number (0-255) or as a member of the ASCII set. ASCII stands for the American Standard Code
for Information Interchange. The ASCII character set and its 1SO (International Standards
Organization) equivalent are away to encode all the letters, numerals, and punctuation marks.

ASCII--The American Standard Code for Information Interchange

| SO--The International Standards Organization

Y ou create a character by placing the letter in single quotes. Therefore, ' a' creates the character a.

In the ASCII code, the lowercase letter ais assigned the value 97. All the lower- and uppercase letters,
al the numerals, and all the punctuation marks are assigned values between 1 and 128. Another 128
marks and symbols are reserved for use by the computer maker.

Characters and Numbers

When you insert acharacter--' a' , for example--into achar variable, what isreally thereisjust a
number between 0 and 255. The compiler knows, however, how to translate back and forth between
characters and one of the ASCII values.

The value/letter relationship is arbitrary; there is no particular reason that the lowercase a is assigned the
value 97. Aslong as everyone (your keyboard, compiler, and screen) agrees, thereisno problem. It is
important to realize, however, that there is a big difference between the value 5 and the character ' 5' .
The latter isactually valued at 53, much astheletter ' a' isvalued at 97.

Listing 2.2 isasimple program that prints the character values for the integers 32-127. Pay no attention
to the details of this program--we will walk through how this works later in the book.

Listing 2.2 Printing out the Characters

#i ncl ude <i ostream >
usi ng nanmespace std;

I nt main()
{
for (int 1 = 32; 1<128; i ++)
cout << (char) i;
return O;
}

I #$%G () *+, ./0123456789: ; <>?@\BCDEFGHI JKLMNOP
_QRSTUWKYZ[\]~ abcdef ghi j kl mopgr st uvwxyz<| >~s

NOTE: Your computer might print aslightly different list.

Built-In Types

C++ comes right out of the box with knowledge of a number of primitive built-in types. The type of a
variable or object definesits size, its attributes, and its capabilities.

For example, ani nt is, on modern compilers, 4 bytesin size. It holds a value from -
2,147,483, 6481t02, 147, 483, 647. For more on bytesand why 2, 147, 483, 648 isaround
number, see Appendix A, "Binary and Hexadecimal."

Y ou might think that an integer is an integer, but it isn't quite. The keyword i nt eger refersto afour-
byte value, but only if you are using a modern compiler on a modern 32-bit computer. If your software
or computer is 16-bit, however, an integer might be only two bytes. The keyword shor t usualy refers
to atwo-byte integer, and the keyword | ong most often refers to a four-byte integer, but neither of
these is certain. The language requires only that ashor t is shorter than or equal to an integer, and an
integer is shorter than or equal to al ong. On my computer, ashort is2 bytesand aninteger is4, asis
al ong.

|SO C++ providesthe types that are listed in Table 2.2.

Table2.2 Variable Types

Type Size |Values

unsigned shorti nt (2 0 to 65, 535
bytes

short i nt 2 -32,768t032, 767
bytes

unsigned long i nt 4 Oto4, 294, 967, 295
bytes

longi nt 4 -2,147, 483, 648 to
bytes (2, 147, 483, 647

i nt (16-bit) 2 -32,7681t032, 767
bytes
i nt (32-bit) 4 -2, 147, 483, 648 to

bytes |2, 147, 483, 647

unsigned i nt (16- 2 0to 65, 535
bit) bytes

unsignedi nt (32- |4 0to4, 294, 967, 295
bit) bytes

char 1 byte |256 character values

fl oat 4 1. 2e-38103. 4e38
bytes

doubl e 8 2.2e-308to1l. 8e308
bytes

bool 1byte trueorfal se

NOTE: I1SO C++ recently added anew type, bool , whichisatrue orf al se vaue.
bool isnamed after the British mathematician George Bool (1815-1864), who invented
Boolean algebra, a system of symbolic logic.

Size of Integers

This book assumes that you are using a 32-bit computer (for example, a Pentium) and that you are
programming with a 32-bit compiler. With that development environment, an integer is always 4 bytes.
Listing 2.3 can help you determine the size of the built-in types on your computer, using your compiler.

Listing 2.3 Finding the Size of Built-In Types

#i ncl ude <i ostreanr
usi ng nanespace std;

I nt main()
{
cout << "The size of an int is:\t\t";:
a: cout << sizeof(int) << " bytes.\n";

cout << "The size of a short int is:\t";
cout << sizeof(short) << " bytes.\n";
cout << "The size of along int is:\t";
cout << sizeof (I ong) << " bytes.\n";
cout << "The size of a char is:\t\t";
cout << sizeof(char) << " bytes.\n";
cout << "The size of a float is:\t\t";

B

©RERINPDI A WN

9a:
10:

10a:

11:

11a:

12:

13:

The
The
The
The
The
The
The

cout << sizeof(float) << " bytes.\n";
cout << "The size of a double is:\t";
cout << sizeof (double) << " bytes.\n";
cout << "The size of a bool is:\t";
cout << sizeof(bool) << " bytes.\n";

return O;

}

size of an int is: 4 bytes.
size of a short int is: 2 bytes.
size of along int is: 4 bytes.
size of a char is: 1 bytes.
size of a float is: 4 bytes.
size of a double is: 8 bytes.
si ze of a bool is: 1 bytes.

NOTE: On your computer, the number of bytes presented might be different. If the
number of bytes reported for ani nt (thefirst line of output) is 2 bytes, you are using an
older (and probably obsolete) 16-bit compiler.

TIP: If you areusing Visual C++, you can run your program with Ctrl+F5. Y our ouput
displays, followed by

Press any key to continue
This gives you timeto look at the output; then, when you press a key, the window closes.

If your compiler does not provide this service, you might find that the text scrolls by very
quickly, and then you are returned to your IDE.

In this case, add the following line to the top of thefile:
#i ncl ude <coni o. h>
Add the following line just beforer et urn 0; :

_getch();

This causes your program to pause after al the output is completed; it waits for you to
press the spacebar or other character key. Add these lines to every sample program.

Most of Listing 2.3 is probably pretty familiar to you. The one new feature is the use of the si zeof ()
operator, which is provided by your compiler and tells you the size of the object you pass as a parameter.
For example, online 5, the keyword i nt ispassed intosi zeof (). Usingsi zeof (), | determined
that on my computer ani nt isequal toalongi nt, whichis4 bytes.

Using an Integer Variable

In Decryptix!, we want to keep track of how many different letters the code can contain. Because thisis
anumber (between 1 and 26), you can keep track of thisvaluewith ani nt . In fact, because this
number isvery small, it can beashort i nt , and because it must be a positive number, in can be an
unsigned short i nt .

Using ashorti nt might save me two bytes. There was a time when such a savings was significant;
today, however, | rarely bother. Short i nt s can be written just as short, so it isthe height of profligacy
to waste bytes because I'm too lazy to write short rather thani nt .

When | was a boy, bytes were worth something, and | watched every one. Today, for most applications,
bytes are cheap. They are the pennies of programming, and these days most programmers just keep a
small cup of bytes out on the counter and let customers take them when they need afew, occasionally
tossing extra bytes into the cup for the next person to use.

NOTE: Inthe 1960s, many programmers worked in primitive languages, which
represented dates as characters. Each number in the date consumed one byte (so 1999
consumed 4 bytes). Obsessive concern about saving a byte here and a byte there led many
programmers to shorten dates from four digits (1999) to two (99), thus saving two bytes
and creating the Y 2K problem.

For the vast mgjority of programs, the only built-in types to be concerned with arei nt , char , and
bool . Now and again you'll useunsignedi nt s, f | oat s, and doubl es. Of course, most of the time
you'll use your own programmer-created types.

Signed and Unsigned

After you determine the size of an integer, you're not quite done. An integer (and a short and along) can
be signed or unsigned. If it issigned, it can store negative and positive numbers. If it isunsigned, it can
store only positive numbers.

Because signed numbers can store negative as well as positive numbers, the absol ute value they can
storeisonly half aslarge.

Wrapping Around an Unsigned Integer

The fact that unsigned long integers have alimit to the values they can hold is only rarely a problem--but
what happens if you do run out of room?

When an unsigned integer reaches its maximum value, it wraps around and starts over, much like a car
odometer. Listing 2.4 shows what happens if you try to put too large a value into a short integer.

Listing 2.4 Wrapping Around an Unsigned | nteger

1: #include <iostreanp
2: using nanespace std;

3: int main()

4. |

5: unsi gned short int small Nunber;

6: smal | Nunber = 65535;

7. cout << "small number:" << small Number << endl;
8: smal | Nunber ++;

9: cout << "small number:" << small Number << endl;
10: smal | Nunber ++;

11: cout << "snall nunber:" << snall Nunber << endl;
12: return O;

13. }

smal | nunber: 65535
smal | nunber: 0
smal | nunber:1

Online4, smal | Nunber isdeclared to be an unsigned short i nt , which on my computer is atwo-
byte variable that can hold a value between 0 and 65, 535. On line 5, the maximum value is assigned to
smal | Nunber , and it is printed on line 6 using the standard output library function. Note that because
we did not add thelineusi ng nanespace std; wemust explicitly identify cout . The keyword
endl is also part of the standard library and must be explicitly identified.

Online7,smal | Nunber isincremented; that is, oneis added to it. The symbol for incrementing is ++

(asin the name C++, an incremental increase from C). Thus, thevalueinsmal | Nunber is65, 536.
However, unsigned short integers can't hold a number larger than 65, 535, so the value is wrapped
around to O, which is printed on line 8.

I ncremented--When avalue isincremented, it is increased by one.

Online9, smal | Nunber isincremented again, and then its new value, 1, is printed.
Wrapping Around a Signed Integer

A signed integer is different from an unsigned integer in that half of the values you can represent are
negeative. Instead of picturing atraditional car odometer, you might picture one that rotates up for
positive numbers and down for negative numbers. One milefrom O iseither 1 or - 1. When you run out
of positive numbers, you run right into the largest negative numbers and then count back down to O.
Listing 2.5 shows what happens when you add 1 to the maximum positive number in short integer.

Listing 2.5 Wrapping Around a Signed I nteger

1 #1 ncl ude <i ostreanp

2: Uusing nanespace std;

3 I nt main()

4. |

5: short int small Nunber;

6: smal | Nunber = 32767;

7 cout << "small nunber:" << small Nunber << endl;
8 smal | Nunber ++;

9: cout << "small number:" << small Number << endl;
10: smal | Nunber ++;

11: cout << "snall nunber:" << snall Nunber << endl;
12: return O;

13: }

smal | nunber: 32767
smal | nunber:-32768
smal | nunber:-32767

Online4, smal | Nunber isdeclared to be a signed short integer. (If you don't explicitly say that it is
unsigned, it isassumed that it is signed.) The program proceeds much as the preceding program does,
but the output is quite different.

The bottom line is that just like an unsigned integer, the signed integer wraps around from its highest
positive value to its highest negative value.

Constants

The point of avariableisto storeavalue. | call it avariable because it might vary: That is, the value
might change over the course of the program. howiVanyLet t er s startsout as 0, but is assigned a new
value based on the user's input.

At times, however, you need afixed value--one that won't change over the course of the program. The
minimum number of letters a user is alowed to choose is an example of afixed value; the programmer
determinesit long before the program runs.

A fixed valueis called a constant. There are two flavors of constants: literal and symboalic.

Literal Constants

A literal constant isavalue that is typed directly into your program wherever it is needed. For example
I nt howiManylLetters = 7;

howivanyLet t er s isavariable of typei nt ; 7 isaliteral constant. You can't assign avalueto 7, and
its value can't be changed.

Symbolic Constants

Like variables, symbolic constants are storage locations, but their contents never change during the
course of your program. When you declare a constant, what you are really doing is saying to the
compiler, "Treat thislike avariable, but if | ever change the value stored here, let me know." The
compiler then tells you with a compiler error.

You'll definem nLet t er s to be asymbolic constant--specifically, a constant integer whose valueis 2.
Note that the constant mi nLet t er s isused on a number of different lines of code. If you decide later
to change the value to 3, you need to change it only in one place--the change affects many lines of code.
This helps you avoid bugsin your code. Changes are localized, so thereislittle chance of oneline
assuming that the minimum number of lettersis two, whereas another line assumes that it is three.

There are actually two ways to declare a symbolic constant in C++. The old, traditional, and now
obsolete way is with a preprocessor directive: #def i ne.

Defining Constants with #defi ne
To define a constant in the traditional way, enter the following code:
#define mnLetters 2

Note that when it is declared thisway, m nLet t er s isof no particular type (i nt , char , and so on).
#def i ne doesasimpletext substitution. Every time the preprocessor seestheword m nLet t er s, it
putsin thetext 2.

Because the preprocessor runs before the compiler, your compiler never sees your constant; it seesthe
number 2. Later, when | discuss debugging, you'll find that #def i ned constants do not appear as
symbolic constants in the debugger; you see only the literal value (2).

Defining Constants with const
Although #def i ne works, there is a newer, much better way to define constantsin C++:
const int mnlLetters = 2;

This creates the symbolic constant m nLet t er s but ensuresthat it has a particular type--i nt eger . If
you try to write

const int mnLetters = 3. 2;

the compiler complains that you have declared it to bean i nt but that you are trying to initialize it with
af | oat .

The purpose of adebugger isto enable you to peek inside the machine and watch your variables change
as the program runs. Y ou can accomplish alot with a debugger, and aside from your text editor, it is
your most important tool.

Unfortunately, most novices don't become comfortable with their debugger until very late in their
experience of C++. Thisis a shame because the debugger is aterrific learning tool.

Although every debugger is different and you definitely want to consult your documentation, this
excursion illustrates how you might debug Listing 2.1 using the Microsoft Visual C++ 6.0 Enterprise
Edition debugger. Y our exact experience might vary, but the principles are the same.

Follow these steps:

1. Create a project called Decryptix.
2. Open anew file called decryptix.cpp.
3. Enter the program as it is written or download it from my Web site.

4. Place the cursor on the first line after the opening brace and press F9. You see ared dot in the
margin next to that line, indicating a break point (see Figure 2.4).

Figure 2.4 A break point showing in Visual C++.
5. Press Go (F5). The debugger starts, and your code runs.

6. Choose View/Debug Windows and make sure that the Watch and V ariables windows are open
(see Figure 2.5).

Figure 2.5 Checking that the Watch and Variables windows are open.
7. Press Step Over (F10) to walk through the code line by line.

8. Scroll down to the line on which dupl i cat esAl | owed is defined, and place a break point
there. Press Go (F5) to run until this second break point.

9. Note in the variables window that howManyLet t er s and howManyPosi ti ons are zero,
but that dupl i cat esAl | owed has arandom value (see Figure 2.6).

Figure 2.6 Looking at values in the debugger.

10. Press Step Over (F10) to step over this one line of code. This causes

dupl i cat esAl | owed to be created and initialized. Note that the value that is shown in the
variables window is now correct (f al se isindicated as0, andt r ue isindicated as 1). Note
also that r ound hasarandom value. Press F10 again; r ound isinitialized to 1.

11. Explore the debugger and read through the documentation and help files. The more time you
spend in the debugger, the more you will come to appreciate its tremendous value, both for
finding bugs and for helping you understand how programs work.

(4 Comtents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

(4 Contents

Online Copyright

©Copyright 1999, Macmillan Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or stored in a database or
retrieval system without prior written permission of the publisher except in the case of brief quotations
embodied in critical articles and reviews.

For information, address Macmillan Publishing, 201 West 103rd Street, Indianapolis, IN 46290.

This material is provided "as is" without any warranty of any kind.

oue

C++ From Scratch

3

Program Flow

In this Chapter
Building Robustness
What Are You Trying to Accomplish?
Solving the Problem with L oops
o Relational Operators
o Blocks and Compound Statements
o Logical Operators
o Short Circuit Evaluation
o Relational Precedence
o Putting It All Together
o dowhile
o Enumerated Constants
o Returning to the Code
o Getting a Boolean Answer from the User
o Equality Operator ==
n else
o The Conditional (or ternary) Operator
o Putting It All Together

In this Chapter

. Building Robustness

. What Are You Trying to Accomplish?
« Solving the Problem with Loops

. Thei f Statement

This chapter takes alook at how programs progress, how loops are created, and how programs branch
based on user input and other conditions.

Building Robustness

Listing 2.1 in Chapter 2, "Getting Started,” is vulnerable to incorrect user input. For example, what
happens if the user asks for 35 letters or says, "Use five lettersin six positions without duplicates.” This,
of course, isimpossible: You can't put five letters into six positions without duplicating at least one
letter. How do you prevent the user from giving you bogus data?

A robust programis one that can handle any user input without crashing. Writing highly robust codeis
difficult and complex. Therefore, we won't set agoal of handling absolutely any bogus data, but we will
attempt to deal with afew highly predictable errors.

Robust--A program is robust when it can handle incorrect user input or other
unanticipated events without crashing.

Listing 3.1 illustrates a more complex version of the code you just considered. Before it is discussed,
take alook at it and see if you can make some guesses about what it is doing.

Listing 3.1[em]A More Complex Version of Decryptix!

0: #include <iostreanp
1: using nanespace std;
2: int main()
3 {
4 cout << "Decryptix. Copyright 1999 Liberty";

cout << "Associates, Inc. Version 0.2\n\n" << endl;
cout << "There are two ways to play Decryptix: either";
cout << "you can guess a pattern | create,\n";

cout << "or | can guess your pattern.\n\n";

cout << "If you are guessing, | wll think of a pattern\n";

cout << "of letters (e.g., abcde).\n\n";

cout << "On each turn, you guess the pattern and | wll\n";
cout << "tell you how many letters you got right, and how many

cout << "of the correct letters were in the correct position.\n

cout << "The goal is to decode the puzzle as quickly as\n";
cout << "possible. You control how many |l etters can be\n";
cout << "used and how many positions (e.g., 5 possible \n";
not\ n";

cout << "letters in 4 positions) as well as whether or
cout << "the pattern mght contain duplicate \n";
cout << "letters (e.qg., aabcd).\n\n";

cout << "If |I'mguessing, you think of a pattern and score \n";

cout << "each of ny answers.\n\n" << endl;

int round = 1;

I nt howManyLetters = 0, howManyPositions = 0O;
bool duplicatesAllowed = fal se;

bool valid = fal se;

const int mnLetters = 2;
const int nmaxLetters = 10;
const int mnPositions = 3;
const int nmaxPositions = 10;

while (! valid)
{
while (howManylLetters < mnlLetters
| | howiManylLetters > maxLetters)
{
cout << "How many letters? (",
cout << mnLetters << "-" << maxLetters << "):
cin >> howManylLetters;
I f (howMvanyLetters < mnlLetters
|| howManylLetters > maxLetters)

{

46: cout << "please enter a nunber between ";

47: cout << mnLetters << " and " << nmaxLetters << endl;
48: }

49: }

50:

51: while (howMvanyPositions < m nPositions

52: | | howianyPositions > maxPositions)

53: {

54: cout << "How many positions? (";

55: cout << mnPositions << "-" << maxPositions << "): ";
56: ci n >> howianyPosi ti ons;

57: i f (howManyPositions < m nPositions

58: | | howianyPositions > maxPositions)

59: {

60: cout << "please enter a nunber between ";
61: cout << mnPositions <<" and " << maxPositions <<
endl ;

62: }

63: }

64:

65: char choice ="' ';

66: while (choice !'="y" &% choice !="n")

67: {

68: cout << "Allow duplicates (y/n)? ";

69: cin >> choi ce;

70: }

71:

72: duplicatesAll owed = choice == 'y' ? true : false;
73:

74 if (! duplicatesAl |l owed

75: && howManyPosi ti ons > howvanylLetters)

76: {

77: cout << "l can't put " << howiMhnylLetters;

78: cout << " letters in " << howvhnyPositions;

79: cout << " positions wthout duplicates! Please try again.
\n";

80: howMvanylLetters = O,

81: howMvanyPosi tions = O;

82: }

83: el se

84: valid = true;

85: }

86:

87: return O;
88: }

What Are You Trying to Accomplish?

Line 35 brings usto thefirst line of code after the initialization of the local variables and constants.

The goal with this piece of code isto prompt the user for a series of pieces of information. Specifically,
you want to know how many letters he or she will use (for example, five letters means a, b, ¢, d, and €),
how many positions (for example, three positions means there are three | etters that are actually used in
the code), and whether you'll allow duplicates (can one | etter repeat?)

The problem is that the user might not give you valid information. For example, the user might tell you
to use four lettersin five positions with no duplicates. This, unfortunately, is not physically possible.
Y ou want to make sure that you have reasonabl e choices before moving forward with the program.

NOTE: Let me pause and point out that in areal commercial program, it is not unusual
for literally dozens--or even hundreds--of lines of code to be devoted to catching and
responding appropriately to bogus user input. Y ou will not endeavor to be quite that
robust here, but you do want to trap the obvious mistakes and ask the user to try again.

Solving the Problem with Loops

The essential approach to solving this problem isto do some work (ask the user for input), test a
condition (determine whether the data makes sense), and, if the condition fails, start over.

Thisis caled aloop; C++ supports a number of different looping mechanisms.

loop--A section of code that repeats.

Remember that you've created two constant integers for the values you need: m nLett er s and
maxLet t er s. Because you initialized howivanyLet t er s to zero, when you start out,
howManyL ettersis of course lessthan m nLet t er s, assuming that m nLet t er s isgreater than zero.

Y ou want to continue to prompt and then reprompt the user while howManyL ettersis either less than the
minimum or more than the maximum. To do this, you'll create awhi | e loop.

The syntax for thewhi | e statement is asfollows:

while (condition)
st at erment ;

condi ti onisany C++ expression, and st at enent isany valid C++ statement or block of
statements. Whencondi ti on evaluatestot r ue, st at enent executes, andthencondi ti onis
tested again. This continues until condi t i on testsfalse, at which time thewhi | e loop terminates and
execution continues on thefirst line following st at enent .

Y our whi | e statement might be

while (howMvanylLetters < mnLetters)
{

}

I, ..

NOTE: The symbol
I, ..

indicates that I've left out code that you're not considering at the moment.

Relational Operators

Relational operators determine whether two numbers are equal, or whether one is greater or less than
the other. Every relational statement evaluatesto eithert r ue or f al se.

Relational Operator--A symbol (for example, > or <) that is used to determine the
relative size of two objects. Relational operatorsevaluatetot r ue or f al se.

If the integer variable howivanyLet t er s hasthevalue 1 and the constant mi nLet t er s hasthe
value 2, the expression

howMvanylLetters < m nLetters
returnst r ue.

A whi | e loop continues while the expression istrue, so if howvanylLettersisl andm nLetters
Is 2, the expression is true and the whi | e loop will in fact execute.

Note that | talk about a single statement executing. It is also possible to execute a block (that is, a group)
of statements.

Blocks and Compound Statements

A statement can be asingleline or it can be ablock of code that is surrounded by braces, whichis
treated as a single statement. Although every statement in the block must end with a semicolon, the
block itself does not end with a semicolon.

The block of codeitself can consist of any number of statements, but it is treated as a single statement.
This enables you to run severa statements as the execution of asinglewhi | e loop.

Not only can you test whether one variable is less than another, you can test whether oneis larger, or
even whether they are the same.

There are six relational operators listed in Table 3.1, which also shows each operator's use and some
sample code.

Table 3.1 Relational Operators

Name Operator (Sample Evaluates
Equals == 100 == fal se
50;

50 == 50; |[true

100 ! = true
50;

Not Equals

50 = 50; |[false

Greater > 100 > 50; |true
Than

50 > 50; fal se

Greater >= 100 >= true
Than 50;

or Equals 50 >= 50; |[true
LessThan |< 100 < 50; [false

50 < 50; fal se

LessThan |[<= 100 <= fal se
50;
or Equals 50 <= 50; |true

WARNING: Many novice C++ programmers confuse the assignment operator (=) with
the equals operator (==). This can create a nasty bug in your program.

Logical Operators

The problem with thiswhi | e loop isthat it tests only whether howvanyLet t er s islessthan the
constant m nlLet t er s; you also need to test to find out whether howivanyLet t er s isgreater than
maxLetters.

Y ou can test them separately:

while (howManylLetters < mnlLetters)

{
...
}
while (howManylLetters > nmaxLetters)
{
...
}

Thiswill work, but the code within both whi | e loops will be identical. In fact, what you are really
trying to say is that you want to repeat thiswork while howanyLet t er s islessthanm nLetters
or whilehowvanyLet t er s isgreater than maxLet t er s. C++ enables you to make exactly that test
using the logical OR operator (| |). You create the logical OR operator by pressing Shift+\ twice.

The Logical OR Operator

In this case, you are asking for thewhi | e loop to continue as long as either condition is true, so you use
logical OR:

while (howManylLetters < mnLetters || howManylLetters > nmaxLetters)
{

}

I, ..

This code says that the statement (between the braces) is executed if it istrue that howivanylLet t er s
islessthan mi nLet t er s orif itistruethat howvanyLet t er s isgreater than maxLet t er s (or if
both conditions are true).

The Logical AND Operator
At other times, you might want to continue only if both conditions are true, in which case you want to
usewhile (condition 1 and condition 2).Thelogical AND operator (&&) handlesthis

condition. A logical AND statement evaluates two expressions, and if both expressions are true, the
logical AND statement istrue as well.

For example, you can test the following:

while (howvanylLetters > mnLetters &% howianylLetters < naxLetters)
{

/...
}

this statement executes only if it istrue that howivanyLet t er s isgreater thanm nLett er s and if it
Isalso truethat howivanyLet t er s islessthanmaxLet t ers.

Logical operator OR--| | created by two vertical lines, by pressing Shift+backslash (\)
twice.

L ogical operator AND--& & created by two ampersands, by pressing Shift+7 twice.

Thei f StatementAni f statement alows you to take action only if acondition is true (and to skip the
action or do something elseif the conditionisfalse). Youusei f statements every day:

If it is raining, I'll take ny unbrell a.
If | have tine, 1'll wal k the dog.

If | don't walk the dog, I'll be sorry.

Thesimplest form of ani f statement isthis:

I f (expression)
st at enment ;

Theexpr essi on in the parentheses can be any expression at all, but it usually contains one of the
relational expressions. If the expression hasthe valuef al se, the statement is skipped. If it evaluates to
t r ue, the statement executes. Once again, the statement can certainly be a compound statement
between braces, as you see here.

The Logical NOT Operator

A logical NOT statement (!) evaluatest r ue if the expression that is being tested isfalse. Thisis
confusing at first, but an example will help. | might start by saying, "If it israining, I'll bring my
umbrella’:

if (raining)

Bri ngUnbrella();
How do | expressthat I'll only go for awalk if it is not raining?

if (! raining)
GoFor Wl k() ;

| can also reverse these:

if (! raining)
LeaveUnbrell a;

if (raining)
GoFor Wl k;

Y ou get the idea.

Thus

if (! valid)

istrueonly if val i d isfalse.

Logical NOT--Evalutest r ue when something is not true, and f al se when it istrue.

Y ou can use this nifty construct to turn your logical OR statement into alogical AND statement without
changing its meaning. For example

while (howvanylLetters < mnLetters || howianylLetters > naxLetters)
Is exactly the same thing as

while ((! (howanylLetters > minLetters)) &&
(! (howivanylLetters > maxLetters)))

Thelogic of thisis easy to understand if you use values. Assumethat m nLettersis2,
maxLettersis10,and howivanylLettersisO.

In that case, the whi | e loop executes because the left part of the statement istrue (O islessthan 2). In
an OR statement, only one side must be true for the entire statement to returnt r ue.

Thus,

while (howvanylLetters < mnLetters || howianylLetters > naxLetters)
becomes

while (0 <2 || O0>10) // substitute the val ues

becomes

while (true || false) // evaluate the truth of each side

becomes

while (true) // if either is true, the statenent is true

The second statement,

while ((! (howianylLetters > mnLetters)) &&
(! (howianylLetters > maxLetters)))

becomes
while ((! (0>2)) & (! (0 >10)))

Now each side must be evaluated. The NOT symbol reverses the truth of what follows. It isasif this
said, "Whileit is not true that zero is greater than 2 and it is not true that zero is greater than 10."

Thus you get

while ((! (false)) && (! (false)))
When you apply NOT tof al se,yougettr ue:
while ((true)) && (true))

With an AND statement, both sides must be true; in this case they are, so the statement will execute.

Short Circuit Evaluation

When the compiler is evaluating an AND statement such as

while ((x == 5) && (y ==5))

the compiler evaluates the truth of the first statement (x==5); if thisfails (that is, if x is not equal to

five), the compiler does not go on to evaluate the truth or falsity of the second statement (y == 5)
because AND requires that both be true.

Similarly, if the compiler is evaluating an OR statement such as
while ((x ==5) || (y ==5))

If thefirst statementist rue (x == 5), the compiler never evaluates the second statement (y == 5)
because the truth of either is sufficient in an OR statement.

Relational Precedence

Relational operators and logical operators, because they are C++ expressions, each return avalue of
true orf al se. Likeall expressions, they have a precedence order (see Appendix B, "Operator
Precedence") that determines which relations are evaluated first. This fact isimportant when
determining the value of the statement

if (x>58& y >5 || z >05)
It might be that the programmer wanted this expression to evaluatet r ue if both x and y are greater than
5 or if zisgreater than 5. On the other hand, the programmer might have wanted this expression to

evaluatet r ue only if x isgreater than 5, and if it isalso true that either y isgreater than 5 or zis
greater than 5.

If x is3 andy and z are both 10, thefirst interpretation istrue (z is greater than 5, so ignore x and y),
but the second isfalse (it isn't true that x is greater than 5, and it therefore doesn't matter what is on the
right side of the && symbol because both sides must be true.)

Although precedence determines which relation is evaluated first, parentheses can both change the order
and make the statement clearer:

it (x>935 & (y>5]] z>5))

Using the values that were mentioned earlier, this statement isfalse. Becauseit isnot truethat x is

greater than 5, the left side of the AND statement fails, so the entire statement is false. Remember that
an AND statement requires that both sides be true: Something isn't both "good tasting® AND "good for
you" if it isn't good tasting.

NOTE: Itisoften agood ideato use extra parentheses to clarify what you want to group.
Remember, the goal is to write programs that work and that are easy to read and
understand. It is easier to understand

(8 * 5 + 3
than
8 * 5+ 3

even though the result is the same.

Putting It All Together
Following isthewhi | e statement you'll use to see whether you have a reasonable number of letters:

while (howvanylLetters < mnLetters || howManylLetters > nmaxLetters)
{

}

...

Thisreads"Aslong as the condition is true, do the work between the braces." The condition that is
tested isthat either howivanyLet t er s islessthanm nLet t ers OR howvanylLet t er s isgreater
thanmaxLetters.

Thus, if the user enters 0 or 1, howivanyLet t er s islessthanm nLet t er s, the condition istrue,
and the body of thewhi | e loop executes.

do while

Because howvanyLet t er s isinitialized to zero, you know that thiswhi | e loop will run at least
once. If you do not want to rely on the initial value of howivanyLet t er s but you want to ensure that
the loop runs at least once in any case, you can use adight variant on thewhi | e loop--thedo whi | e

loop:

do st at enent
while (condition)

This says that you will do the body of the loop while the condition is true. The loop must run at |least

once because the condition is not tested until after the statement executes the first time. So you can
rewrite your loop as follows:

do

{
I, ..
} while (howMvanyLetters < mnLetters || howManylLetters > nmaxLetters)

You know you need ado whi | e loop when you are staring at awhi | e loop and find your self saying,
"Dang, | want thisto run at least once!"

do whi | e--A whi | e loop that executes at least once and continues to exit while the
condition that is tested is true.

Enumerated Constants

When | have constants that belong together, | can create enumerated constants. An enumerated constant
IS not quite atype; it ismore of acollection of related constants.

The syntax for enumerated constants is to write the keyword enum followed by the enumeration name,
an open brace, each of the legal values (separated by commas), and a closing brace and a semicolon.
Here's an example:

enum COLOR { RED, BLUE, GREEN, WH TE, BLACK };

This statement performs two tasks:

1. It makes COLOR the name of an enumeration.

2. It makes RED a symbolic constant with the value 0, BLUE a symbolic constant with the value
1, GREEN a symbolic constant with the value 2, and so on.

Every enumerated constant has an integer value. If you don't specify otherwise, the first constant has the
value 0 and the rest count up from there. Any one of the constants can be initialized with a particular
value, however, and those that are not initialized count upward from the ones before them. Thus, if you
write

enum Col or { RED=100, BLUE, GREEN=500, WHI TE, BLACK=700 };

RED hasthevalue 100: BLUE, thevalue 101; GREEN, the value 500; WHI TE, thevalue501: and
BLACK, the value 700.

In this case you'll create an enumcalled BoundedVal ues and establish the values you need:

enum BoundedVal ues

m nLetters
maxLetters

Hi

i n -
N

26

This replaces the four constant integers described previoudly. Frankly, there often islittle advantage to
enumerated constants, except that they keep these values together in one place. If, on the other hand, you
are creating a number of constants and you don't particularly care what their value is so long as they all
have unique values, enumerated constants can be quite useful.

Enumerated constants are most often used for comparison or testing, which is how you use them here.
You'll test whether m nLet t er s isgreater or less than these enumerated values.

Returning to the Code

Let'slook at the code beginning on line 37 and ending on line 49:

37: while (howManylLetters < mnlLetters

38: | | howiManylLetters > nmaxLetters)

39: {

40: cout << "How many letters? (";

41 cout << mnLetters << "-" << maxLetters << "): ";
42: cin >> howManylLetters;

43: I f (howManylLetters < mnlLetters

44: | | howiManylLetters > maxLetters)

45: {

46: cout << "please enter a nunber between ";

47: cout << mnLetters << " and " << maxLetters << endl;
48: }

49: }

The goal of this statement is to continue to prompt the user for an entry that is greater than
m nLet t er s and smaller than maxLetters.

The purpose of thei f statement is to issue areminder message if the number that is entered is out of
bounds. Here's how the code reads in words:

37: whi

| e (howManylLetters < mnLetters
38: | |

howianylLetters > maxLetters)

Whileit is either true that the value howivanyLet t er s issmaller thanm nLet t er s or it istrue that
howianyLet t er s isgreater than maxLet t ers,

cout << "How many letters? (";
cout << mnLetters << "-" << maxLetters << "): ";
cin >> howManylLetters;

prompts the user and captures the user's response in the variable howivanyLet t er s:

I f (howManylLetters < mnlLetters
| | howanylLetters > nmaxLetters)

Test the response; if it iseither smaller than m nLet t er s or greater than maxLet t er s,

{

cout << "please enter a nunber between ";
cout << mnLetters << " and " << maxLetters << endl;

}

prints out the reminder message.
Thelogic of thisnext whi | e loop, shown on line 51, isidentical to the preceding one.
Getting a Boolean Answer from the User

It is now time to ask the user whether he or she wants to allow duplicates (on line 72). You have a
problem, however. The local variable dupl i cat esAl | owed is of type bool , which, you'll

remember, is atype that evaluates either tot r ue or f al se.

Y ou cannot capture a Boolean value from the user. The user can enter anumber (using ci n to saveitin
ani nt variable) or acharacter (using ci n to saveit in acharacter variable). There are some other
choices as well, but Boolean is not one of them.

Here's how you'll doit: You'll prompt the user to enter aletter, y or n, and you'll then set the Boolean
value based on what is entered.

Thefirst task isto capture the response, and here you need something very much like the whi | e logic
that was shown previously for the letters. That is, you create a variable, as shown on line 65, initidlize it
to an invalid answer (in this case, space), and then continue to prompt until the user gives you an
acceptableanswer (' y' or' n'):

char choice ="' ';
while (choice !'="y" &% choice !="n")
{
cout << "Allow duplicates (y/n)? ";
cin >> choice;

}

Begin by defining and initializing a character variable, choi ce. You caninitialize it to a space by
enclosing a space in single quotes, as described in Chapter 2.

Once again, you use awhi | e loop to test whether you have valid data. Thistime, you will test to see
whether choi ceisnotequalto' y' or' n' .

If itistruethat choi ceisnotequalto(! =)' y' ,anditisalsotruethat choi ce isnotequal to' n'
the expression returnst r ue and thewhi | e statement executes.

Y our next task isto test the valuein choi ce (whichmust now be' y' or' n') and set
dupl i cat esAl | owed accordingly. You can certainly useani f statement:

if (choice =="y")
dupl i catesAl |l owed = true;
el se
dupl i cat esAl | owed

fal se;
Equality Operator ==

The equality operator (==) tests whether two objects are the same. With integers, two variables are equal

if they have the same value (for example, if x isassigned the value 4 and y is assigned the value 2* 2,
they are equal). With character variables, they are equal if they have the same character value. No
surprises here. We test for equality on line 72 to seeif choi ce isequal totheletter ' y' .

Equality operator (==)--Determines whether two objects have the same value. Be careful
with this; you need two equal signs. A single equal sign (=) indicates assignment in C++.
Thus, if you write

a=b

in C++ you assign the value currently in b to the variable a. If you want to test if they are
equal, you must write

a==

else

Often your program wants to take one branch if your condition is true, another if it isfalse. The keyword
el se indicates what the compiler isto execute if the tested expression evaluatesf al se:

I f (expression)
st at enment ;
el se
st at enment ;

el se--An el se statement is executed only whenani f statement evaluatestof al se.

Thus, the code shown says, "If choi ce isequal toy, set dupl i cat esAl | owed tot r ue; otherwise
(el se), setittof al se.”

The Conditional (or ternary) Operator

You'retrying to assign the valuedupl i cat esAl | owed depending on the value of choi ce. In

English you might want to say, "Ischoi ce equal toy?If so, set dupl i cat esAl | owed equal to
t rue; otherwise, setittof al se."

C++ has an operator that does exactly what you want.

The conditional operator (?:) is C++'s only ternary operator: It isthe only operator to take three terms.

NOTE: The arity of an operator describes how many terms are used. For example, a
binary operator, such as the addition operator (+), usestwo terms: a+b. In this case, a and
b are the two terms.

C++ has afew unary operators, but you've not seen them yet. The conditional operator is C
++'s only ternary operator, and thus the terms conditional operator and ternary operator
are often used interchangeably.

arity--How many terms an operator uses
unary--An operator that uses only one term
binary--An operator that uses two terms

ternary--An operator that uses three terms

The conditional operator takes three terms and returns avalue. In fact, all three terms are expressions;
that is, they can be statements that return avalue:

(expressionl) ? (expression2) : (expression3)

Thislineisread asfollows: "If expr essi onl istrue, return the value of expr essi on2; otherwise,
return the value of expr essi on3." Typicaly, thisvalue is assigned to a variable.

Thus, line 72 shows

duplicatesAllowed = (choice ==y) ? true : false;
Figure 3.1 illustrates each of the operators and terms.
Figure 3.1 Dissecting a statement.

Thislineisread asfollows: "Isit true that choi ce equalsthe character ' y' ?If so, assignt r ue to
dupl i cat esAl | owed; otherwise, assignf al se."

After you are comfortable with the conditional operator, it is clean, quick, and easy to use.

Putting It All Together

Y ou are now ready to analyze thewhi | e loop, beginning at line 35. Y ou start at line 27 by establishing
val i d asaBoolean operator that isinitializedto f al se.

while (! valid)

Thewhi | e loop executeswhileval i d isfase. Becauseval i d wasinitidlizedtof al se, thewhi | e
loop will certainly execute the first time through. Thiswhi | e loop begins with the opening brace on
line 36 and ends at the closing brace on line 86.

This entire loop continues to execute until and unlessval i d issettot r ue.

Within thiswhi | e loop are a series of interior whi | e loops that solicit and test the values for
howanyLet t er s, howvanyPosi t i ons, and, ultimately (if indirectly), dupl i cat esAl | owed:

(! duplicatesAl |l owed &% howianyPositions > howanylLetters)

Finally, after the values are gathered, on line 74 you test the logic of the choices. If it istrue that
duplicates are not allowed, and it is also true that howMManyPosi t i ons (provided by the user) is
greater than the number the user chose for howivanyLet t er s, you have a problem: Y ou need to put
five lettersin six positions without duplicating any letters--it can't be done.

In this case, you execute thei f statement and write to the screen, "I can't put five lettersin six positions
without duplicates! Pleasetry again." You then reinitialize howivanyLet t er s and

howianyPosi t i ons to zero. Make sure that you understand why. Hint: check thewhi | e loopsin
which these variables are assigned the user's choice.

If, on the other hand, thei f statement fails (if duplicates are allowed or if howManyPosi ti ons isnot
greater than howivanyLet t er s) , theel se statement executes, val i dissettot r ue, and the

whi | e loop terminates.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

4

Creating Classes

Why Classes?
Creating New Types:. Class
| nterface Versus |mplementation
o Clients
L ooking at the Code
Declaring the Class
o Classes and Objects
o Member Variables
o Member Methods or Functions
o The Size of Objects
Files
Constructors
o Destructors
| mplementing the M ethods
| ncluding the Header
| mplementing the Constructor
Initialization
o Using the Debugger
Examining the Constructor
The Other Methods
Storing the Pattern
What Isan Array?

o Initializing Arrays

o Array Elements

o Writing Past the End of an Array
. Generating the Solution
. Examining the Defined Values File

In Chapter 3, "Program Flow," you began to put logic into mai n() to gather the user's preference. In
this chapter you'll ook at creating classes to do this work.

Why Classes?

Although it is possible--and perhaps tempting--to just flesh out mai n() with the additional
functionality you want to add to this program, it isavery bad idea.

The point of object-oriented programming is to create objects and assign them responsibility for specific
aspects of the game. This fosters encapsulation, and with it maintainability and extensibility.

Maintainability means that the programs can be maintained at |ess expense. Extensibility means that you
can add features without breaking the existing code.

Aswe design and implement classes, I'll discuss design heuristics: guidelines for designing excellent
software.

design heuristics--Guidelines for quality in design

The very first--and perhaps most important--object-oriented design heuristic is that each class needs to
have a single area of responsibility, and each object needs to collaborate with other objectsto
accomplish more complicated tasks.

Asarule, C++ programmerstend to keep mai n() very simple. Itsjob isonly to create the first object
and set off the chain of eventsthat lead to these objects accomplishing their assigned tasks.

You'll begin by creating a Gane class that is responsible for keeping track of the user's preferences and
getting the game underway.

Creating New Types: Class

Although the built-in types are fine for storing values, they are limited in the complexity of the
information they can manage.

Built-in types can be combined, however, into user-defined types that can be far more complex.

For example, suppose you want to store the number of letters from which you'll allow the player to
choose and the number of positions (for example, choosing among three numbers in two positions,
without duplicates, makes the following codes possible: ab, ba, ac, ca, bc, and cb). Y ou can store
these two values in variables, or you can store both of them along with the decision as to whether to
allow duplicates--all within a Ganre class.

A class not only has values--it aso has capabilities. Just as you know that ani nt can be added,
subtracted, multiplied, and divided, a Ganme can be set up, played, restarted, quit, and saved.

Interface Versus Implementation

We draw a sharp distinction between the declaration of a class and its implementation. The declaration
of aclasstells the compiler about the attributes of the class and what its capabilities are. We often refer
to this declaration as the class's interface.

Every method that is declared in the interface must be implemented: Y ou must write the code that shows
how it works.

interface--The declaration of the methods of a class

implementation--The code showing how the class methods work

Clients

Classes provide services to clients of the class. The client of your classis any programmer (even you!)
who creates instances of your classin his code.

NOTE: It isregrettable that the generic pronoun in Standard English is masculine, and
thisis especially exacerbated by the fact that the programming profession is
disproportionately male. Please understand that the masculine pronoun isintended to be
generic.

Programmers use the term client in many ways. For example, if class A callsamethod in
Class B, we say that A isaclient of B. If | writeclass A and | call code you wrotein class
B, | am aclient of your code. If my computer calls code running on your computer, my
computer isaclient of your (server) computer. And so on.

All these share the same essential characteristic: The client receives a service from the
server.

The client of your class needs to know what your class does, but not how it works. If you create an

enpl oyee class, your client needs to know that the employee can tell him his hire date, but your client
does not need to know how your enpl oyee class keeps track of that date. Y ou can store it in memory,
on disk, or in acentral database, but that is not important to your client. He cares about the interface (can
supply date), not the implementation (retrieve date fromfile). Thus, the client treats your code as a black
box.

client--Any code that makes use of aclass

Looking at the Code

Before we discuss classes, let's take a quick look at the new code that is declaring the Gane class. Once
again, thereis much here that will be new, but by reading through the code you can get a good idea of
how it works--even before we go through it in detail.

Listing 4.1 Game.h

cl ass Gane
{
publ i c:
Game() ;
~Game() ;

NP Q

5: voi d Play();

6:

7: bool dupl i cat esAl | owed;
8: I nt howianylLet t ers;
9: I nt howanyPosi ti ons;
10: I nt round;

11. };

Declaring the Class

A classis declared by writing the keyword cl ass, followed by the class name and an opening brace (as
shown at line 0). The declaration is ended by a closing brace and a semicolon.

NOTE: The keyword publ i ¢ isneeded asit isshown in line 2. We'll cover what this
word does in alater chapter. For now, please be sure to place the keyword publ i c,
followed by acolon, at the start of every class declaration.

Classes and Objects

A classisatype. When you make instances of that type, they are called objects. In fact, the action of
creating an object is called instantiation.

class--Defines a new type
obj ect--An instance of the type defined by a class

instantiation--Creating an instance of aclass. an object

Novice programmers often confuse classes with objects. The type of something (the class) tells you what
itis(cat), what it can do (purr, eat, jump), and what attributes it has (weight and age). Individual objects
of that type have specific objects (nine pounds, two years old.)

Member Variables

When this codewas in nmai n() , you had a number of local variables: dupl i cat esAl | owed,
howianyLet t er s, howvanyPosi t i ons, andr ound.

These variables are now moved into the class, and they become members of the classitself starting at
line 7.

Member variables represent attributes of the objects of that class type. In other words, we are now
saying that every Gane object will keep track of whether duplicates are allowed in that game, how many
letters and how many positions are to be used in the game, what the current round is, and that these are
the attributes of the class Gane.

member variable--Datathat is owned by a particular object of a class, and which
represents attributes of that class.

Member variables are different from normal variables only in that they are scoped to a specific class.
Thisisactually avery powerful aspect of object-oriented programming. The details of these values and
their management are now delegated to the Gane class and can be made invisible to the clients of that
class.

Member Methods or Functions
The Ganre class has two principal activities:
« Setup--Get the user's preferences and choose a secret code.

. Play--Ask the user for guesses and score the guesses based on how many are correct and how
many are in the correct position.

Y ou provide these capabilities to a class by giving the class member methods, which are also called
member functions. A member method is afunction that is owned by a class--a method that is scoped to a
particular class.

NOTE: When we say that a member method is scoped to a class, we mean that the
identifier that is the member method is visible only within the context of the class or an

object of that class.

It is through these member methods that an object of a class achieves its behavior.
The Size of Objects

The size of an object is the sum of the sizes of the member variables that are declared for its class. Thus,
if ani nt is4 bytesand your class declares three integer member variables, each object is 12 bytes.
Functions have no size.

Files

Y ou create aclass in two steps. First, the interface to the classis declared in a header file; second, the
member methods are created in a source code file.

NOTE: Header file--A text file that contains the class declaration. Traditionally named
with the .h extension

Sour ce file--A text file that contains the source code for the member methods of a class.
Traiditionally named with the .cpp extension

The header file typically has an extension of .h or .hpp, and the source code file has the extension .cpp.
So for your Gane class, you can expect to find the declaration in the file Game.h and the
implementation of the class methods in Game.cpp.

Constructors

It is not uncommon for aclassto require a bit of setting up before it can be used. In fact, an object of
that class might not be considered valid if it hasn't been set up properly. C++ provides a special method
to set up and initialize each object, called a constructor, as shown at line 3.

In this case, you want the constructor to initialize each of the member variables. For some member
variables, you'll hard wire areasonable value; for example, you'll keep track of what round of play you
are on, and of course, you'll start with round 1.

NOTE: Hard wireis aprogramming term that means that the value is written into the
code and doesn't change each time you run the program.

For other member variables, you must ask the user to choose an appropriate starting value. For example,
you'll ask the user to tell you whether duplicates are allowed, how many letters are to be used, and how
many positions are to appear in the secret code.

A constructor (line 3) has the same name as the class itself, and never has areturn value.

NOTE: The absence of areturn value does not, in this case, mean that it returnsvoi d.
Constructors are special: They have no return value. There are only two types of methods
for which thisis true--constructors and destructors.

Destructors

The job of the destructor (line 4) isto tear down the object. Thisideawill make more sense after we talk
about allocating memory or other resources. For now, the destructor won't do much, but as a matter of
form, if | create a constructor, | always create a destructor.

Implementing the Methods

The header file provides the interface. Each of the methods is named, but the actual implementation is
not in thisfile--it isin the implementation file (See Listing 4.2).

Listing 4.2 Game.cpp

0: #include "Gane. h"

1: #include <iostream h>
2.

3.

4. Gane:: Gane():

5: round(1l),

6.

howivanyPosi ti ons(0),

7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22.
23:
24.
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41
42
43:
44
45:
46:
47
48:
49:

howvanyLet t er s(0),
dupl i cat esAl | owed(fal se)

{

enum BoundedVal ues
{
m nPos = 2,
maxPos = 10,
m nLetters = 2,
maxLetters = 26
¥
bool valid = fal se;
while (! valid)
{
while (howvanylLetters < mnLetters
| | howianylLetters > naxLetters)

cout << "How nmany letters? (";

{

cout << mnLetters << "-" << maxLetters << "): ";

cin >> howManylLetters;
i f (howManylLetters < mnLetters

| | howianylLetters > naxLetters)

<< maxLetters << endl;

{
cout << "please enter a nunber between ";
cout << mnlLetters << " and "
}
}
whil e (howianyPositions < m nPos
| | howiManyPositions > maxPos)
{
cout << "How many positions? (";
cout << mnPos << "-" << maxPos << "): ";
cin >> howianyPosi ti ons;
i f (howManyPositions < m nPos
| | howiManyPositions > maxPos)
{
cout << "please enter a nunber between ";
cout << mnPos <<" and " << maxPos << endl;
}
}

char choice ="' ';
while (choice !'="y" &&% choice !=

)

50: {

51: cout << "Allow duplicates (y/n)? ";

52: cin >> choi ce;

53: }

o4

55: duplicatesAll owed = choice == 'y' ? true : false;
56:

57: if (! duplicatesAllowed &&

58: howianyPosi ti ons > howManylLetters)

59: {

60: cout << "l can't put " << howiMhnylLetters;
61: cout << " letters in " << howivhnyPositions;
62: cout << " positions without duplicates! Please try again.
\n";

63: howianylLetters = O;

64: howianyPositi ons = O;

65: }

66: el se

67: valid = true;

68: }

69:

70:

71}

12:

73. Gne:: ~Gne()

74. |

75:

76: }

77

78: void Gane::Play()

79:

80:

81l. }

Listing 4.3 provides a short driver program that does nothing but instantiate an object of type Gane.
Listing 4.3 Decryptix.cpp

#i ncl ude <i ostream >
#i ncl ude " Gane. h"

i nt main()

{

NP2 O

5: Gane t heGane;
6: return O;
8: }

Including the Header

The compiler can't know what a Ganre is without the definition, which isin the header file. To tell the
compiler what a Gane object is, the first thing you do in the implementation fileisto #i ncl ude the
file with the definition of the Gane class, in this case Game.h (as shown on line 1 of Listing 4.2).

NOTE: It isdesirable to minimize the number of header files that are included in other
header files. Having many i ncl ude statements within a header file can risk the creation
of circular references (aincludes b, which includes ¢, which includes @) that won't
compile. This can also introduce order dependence, which means that the proper
execution of your code depends on files being added in the "correct order." This makes for
code that is difficult to maintain.

Thereisno limit to the number of header files you might want to include in
implementation files, but keep the includes in your header file to a minimum.

Implementing the Constructor

A member function definition begins with the name of the class, followed by two colons (the scoping
operator), the name of the function, and its parameters. On line4 in Listing 4.2, you can see the
implementation of the constructor.

scope oper ator--The pair of colons between the class name and the method

identifier--Any named thing: object, method, class, variable, and so on

Like al methods, the constructor begins with an open brace ({) and ends with aclosing brace (}). The
body of the constructor lies between the braces.

Initialization

In the exploration of variables, | talked about the difference between assignment and initialization.
Member variables can be initialized as well. In fact, the constructor actually executes in two steps:

. Initialization
. Construction

Construction is accomplished in the body of the constructor. Initialization is accomplished through the
syntax that is shown: After the closing parentheses on the constructor, add a colon. For each member
variable you want to initialize, write the variable name, followed by the value to which you want to
initialize it (enclosed in parentheses). Note also that you can initialize multiple members by separating
them with commas. There must be no comma after the last initialized value.

Thus, online5in Listing 4.3, you seer ound initialized to the value 1, howivanyPosi t i ons to the
value 0, howvanyLet t er s tothevalue 0, and dupl i cat esAl | owed tothevauef al se.

NOTE: The new line I've placed between each initialized value is only for the
convenience of the programmer. | can just as easily put them all on one line, separated by
spaces:

Gane: : Gane() :

round(1),
howvanyPosi ti ons(0),
howvanyLetters(0),

dupl i cat esAl | owed(fal se)

{

All thisinitialization occurs before the body of the constructor runs, beginning on line 10 of Listing 4.2 .

NOTE: Wetalk of methods or functions running, being executed, or being called,
depending on context. These all mean the same thing: Program execution branches to the
function, beginning at the first line and proceeding from there until it reaches areturn
statement.

Within the body of the constructor, you see that an enumerated constant, BoundedVal ues, is created,
and alocal variable, val i d, iscreated and initialized on line 17.

Thislocal variable, val i d, will exist only for the duration of the constructor. Because thisvalueis
needed only temporarily and is not part of the permanent state of the object (it is not an attribute of the
class Gane), do not make it amember variable.

Just asval i d isavariablethat islocal to the constructor, the instance of Gane that is created in mai n
() isloca tomai n() (Listing 4.3, line5). Declareit like you declare any other variable--by declaring
itstype (Gane), and then the name of the object itself (t heGane). Y ou can name the object anything
you want, but it is best to name it something meaningful so that the code can be easily understood.

By defining this object, you bring it into existence, and that causes the constructor to be invoked
automatically.

Normally, methods are called explicitly. The constructor, however, is called implicitly when the object is
created, and the destructor is called implicitly when the object is destroyed. When a method is called
implicitly, the call doesn't appear in your code: It is understood to be the result of another action. Thus,
when you create an object, you implicitly call the constructor; when you delete an object, you implicitly
call the destructor. Not only do you not have to call these methods explicitly, you are prohibited from
doing so.

There are two ways to see this explicitly. One way isto add a temporary output line to the constructor
and destructor (as shownin Listing 4.4), and to mai n() (asshownin Listing 4.5).

Listing 4.4 Implicit Call to Constructor and Destructor

0: #include "Gane. h"

1: #include <iostreanp

2.

3: Gane:: Gne():

4: round(1),

5: howMvanyPosi ti ons(0),

6: howvanyLetters(0),

7: dupl i cat esAl | owed(fal se)
8: |

9: cout << "In the Gane constructor\n"" << endl;
10: }

11:

12: Gane::~Gne()

13.

14: cout << "In the Game destructor\n" << endl;
15. }

16:

17. void Gane:: Play()

18: {

19:

20: }

Listing 4.5 Driver Program for Listing 4.4

0: #include <iostreanp

1: #include "Gne. h"

2:

3: using nanmespace std;

4.

5. int main()

6: |

7: cout << "Creating the gane\n" << endl;
8: Gane theGane;

9: cout << "Exiting main\n" << endl;
10: return O;

11. }

Creating the gane

In the Gane constructor
Exiting main

In the Gane destructor

Here we've stripped the constructor down to do nothing except print an informative message. As you can
see, creating the Ganre object causes the constructor to be invoked. Returning from nai n() endsthe
function and implicitly destroys any local objects. This causes the destructor to be invoked, which prints
an equally informative message.

Using the Debugger

Although thisworks, it is tedious to add these printout messages; in any case, you can only infer the
effect because you don't actually see the constructor being invoked. The debugger is afar more powerful
tool.

Load Listings 4.1, 4.2, and 4.3 into a project and compile, link, and run it. Now, put a break point on line
5in Listing 4.3--the creation of the Gane object (see Figure 4.?). You are ready to see what this does, so
step into the function call. You find yourself at the opening brace to the constructor.

The debugger is a powerful tool for learning C++. It can show you explicitly what is happening in your
program as it runs. Because you'll be using the debugger throughout this book, you might want to take a
few minutes and read the documentation that came with your programming environment to learn more
about how to use your debugger.

Examining the Constructor

Careful examination of the constructor reveals that you have, essentially, duplicated the logic you had in
mai n() inthe preceding chapter. The one exception isthat you are now capturing and storing the
user's preferences in member variables as shown on lines 25, 39, and 52. These member variables are
part of the object and will, therefore, persist and contain these values after the constructor returns.

The Other Methods

The Gane object has two other methods: a destructor and the Pl ay() method. At this time neither of
these methods has any action, and you'll note that Pl ay () isnot yet called. This stubbed out function
exists only to remind the programmer of his intent--that eventually this class will include a meaningful
Pl ay() method.

NOTE: When a programmer wants to show a method or function but does not want to do
the work of implementing that function, he stubs it out: He creates a stub function that
does nothing more than return, or at most prints, a message "in myTestMethod" and then
returns.

Storing the Pattern

The computer creates a pattern that the human player guesses. How is this pattern to be stored? Clearly,
you need the capability to store betweenm nLet t er s and maxLet t er s characters as a pattern
against which you can compare the human's guesses.

NOTE: Let me explain the preceding sentence because thisis exactly how programmers
talk about a problem like this: "The capability to store between mi nLett er s and
maxLet t er s characters.” This sentenceis easier to understand if we use sample values:
If mM nLettersis2andmaxLetters isl0, thissentence meansthat you need the

capability to store between 2 and 10 lettersin a pattern.

Programmers become comfortable using variables rather than absolute values in their
formulations of a problem. The astute reader might also note that in fact we store these
values (m nLet t er and maxLet t er) as constants, not variables. That is true, but the
values can vary from one compiled version to another, so they are variable in the more
general sense.

So how do you store the computer's secret code? Let's assume that the player chooses seven possible
letters with five positions, and the computer generates a secret code of acbed. How do you store this
string of letters?

Y ou have several options. Y ou can use the built-in array class or the standard library string, you can
create your own data structure to hold the letters, or you can use one of the standard library collection
classes.

The rest of this chapter examines arrays in some detail; in coming chapters you'll turn to other
aternatives.

What Is an Array?

An array is afixed-size collection of data storage locations, each of which holds the same type of data.
Each storage location is called an element of the array.

Array--A fixed size collection of data

Y ou declare an array by writing the type, followed by the array name and the subscript. The subscript is
the number of elements in the array, surrounded by square brackets. For example

| ong LongArray|[25];

declares an array of 25 long integers, named LongAr r ay. When the compiler sees this declaration, it
sets aside enough memory to hold all 25 elements. Because each long integer requires 4 bytes, this
declaration sets aside 100 contiguous bytes of memory, asillustrated in Figure 4.1.

subscript--The number of elementsin an array

Figure 4.1 Declaring an array.
Initializing Arrays

You caninitialize asimple array of built-in types, such asintegers and characters, when you first declare
the array. After the array name, put an equal sign (=) and alist of comma-separated values enclosed in
braces. For example

int IntegerArray[5] = { 10, 20, 30, 40, 50 },;

declares| nt eger Ar r ay to be an array of fiveintegers. It assigns| nt eger Arr ay[0] thevalue 10,
| nt eger Array|[1] thevalue 20, and so on.

If you omit the size of the array, an array that isjust big enough to hold the initialization is created.
Therefore, if you write

int IntegerArray[] = { 10, 20, 30, 40, 50 };

you create exactly the same array as you did in the preceding example.

If you need to know the size of the array, you can ask the compiler to compute it for you. For example
int IntegerArrayLength = sizeof (I ntegerArray)/sizeof (I ntegerArray[0]);

setsthei nt variablel nt eger Arr ayLengt h to the result that is obtained by dividing the size of the
entire array by the size of each individual entry in the array. That quotient is the number of membersin
the array.

Y ou cannot initialize more elements than you've declared for the array. Therefore,

int IntegerArray[5] = { 10, 20, 30, 40, 50, 60};

generates acompiler error because you've declared a five-member array and initialized six values. Y ou
can, however, write

int IntegerArray[5] = { 10, 20};

Uninitialized array members have no guaranteed values; therefore, any value might be in an array
member if you don't initialize it.

Initializing Character Arrays
Y ou can use a special syntax for initializing character arrays. Rather than writing

char al pha[]

I
~~—
m—
o
O—
—

you can write
char al pha[] = "abc";

This creates an array of four characters and initializes with the three | etters shown, followed by a NULL
character. It isexactly asif you had written

char al pha[4] ={'"a','b",'c', 0}
It adds the NULL because NUL L-terminated strings have specia meaning in C and C++.
C-Style Strings

C++ inherits from C the capability to create strings, which are meaningful groups of characters used to
store words, phrases, and other strings of characters. These strings are represented in C and C++ as
NUL L-terminated arrays of characters. The old C library string.h, still a part of C++, provides methods
for manipulating these strings. copying them, printing them, and so on.

The new Standard Library now includes afar better alternative: the st ri ng class. Objects of type

st ri ng offer all the functionality of old C-style NULL-terminated arrays of characters, but with al the
benefits of being well-defined types. That is, the new libraries are object-oriented, type safe, and well
encapsul ated.

You'll look at st ri ng objectsin some detail aswe go forward, and along the way I'll review some of
the details of how C-style strings are used. For now, you're actually using this array of charactersas a
simple array, and it is not NULL-terminated. Y ou are using the array as a collection. The objects that are
being collected happen to be characters, but they can just as easily be integers or anything else you can
storein an array.

Array Elements

Y ou access each of the array elements by referring to an offset from the array name. Array elements are
counted from zero. Therefore, the first array elementisar r ayNane[0] .

In the version of the program we'll examine for the rest of this chapter, you'll add a member variable
sol ut i on, which will hold an array of characters that represent the solution to the code generated by
the compiler.

The declaration for that array is
char sol uti on[maxPos+1];

This creates an array of characters that can hold exactly one more than maxPos characters. maxPos is
asymbolic constant defined to 10, so thisdefines an array of 11 characters. The 11th character isthe
NULL character.

Because arrays count from offset O, the elementsin thisarray aresol uti on[0], sol ution[1],
solution[2]...solution[9].

Writing Past the End of an Array

When you write a value to an element in an array, the compiler computes where to store the value, based
on the size of each element and the subscript. Suppose that you ask to write over thevalue at sol ut i on
[5] , which isthe sixth element. The compiler multiplies the offset (5) by the size of each element.
Sincethisisachar array, each element is 1 byte, so the math isfairly ssmple. The compiler then moves
that many bytes (5) from the beginning of the array and writes the new value at that |ocation.

If you ask to writeat sol ut i on[12] , the compiler ignores the fact that there is no such element. It
computes how far past the first element it is to look, and then writes over whatever is at that location.
This can be virtually any data, and writing your new value there might have unpredictable results. If
you're lucky, your program will crash immediately. If you're unlucky, you'll get strange results
elsewhere in your program, and you'll spend weeks trying to find the bug.

Fence Post Errors

It is so common to write to one past the end of an array that this bug hasits own name. It iscalled a
fence post error. Thisrefers to the problem in counting how many fence posts you need for a 10-foot
fence if you need one post for every foot: Most people answer ten, but of course you need 11. Figure 4.2
makes this clear.

Figure 4.2 Fence post errors.

This sort of "off by one" counting can be the bane of any programmer'slife. Over time, however, you'll
get used to the idea that a 25-element array counts only to element 24, and that everything counts from
Zero.

NOTE: Fence post errors are responsible for one of the great misunderstandings of our
time: when the new millennium begins. A millennium is 1,000 years. We are ending the
second millennium of the Common Era, and we are about to start the third--but when,
exactly?

The first Millennium began with the year 1 and ended with the year 1000. The second
Millennium runs from 1001 to 2000. The third will begin on January 1, 2001. (Don't tell
the newspapers.)

Of course, to a C++ programmer thisis al wrong. We begin counting with O, and 1K is
1,024, thus the third C++ Millennium begins on January 1, 2048. Call it the Y2K2
problem.

Some programmers refer to Ar r ayNane[0] asthe zeroth element. Getting into this
habit isabig mistake. If Ar r ayNamne[0] isthe zeroth element, what is Ar r ay Nane

[1] , theoneth?If so, when you see Ar r ay Nane[24] , will you realize that it is not the
24th element, but rather the 25th? It isfar better to say that Ar r ayNane[0] isat offset
zero and isthe first element.

Generating the Solution

Now that you have an array to hold the solution, how do you add lettersto it? Y ou want to generate
letters at random, and you don't want the user to be able to guess the solution. The C++ library provides
amethod, r and() , which generates a pseudo-random number. It is pseudo-random in that it always
generates numbers in the same predictable order, depending on where it starts--but they appear to be
random.

Y ou can increase the apparent randomness of the numbers that are generated if you start the random
number generator with adifferent starting number (which we call a seed number) each time you run the
program.

You provider and() with aseed number by first caling srand() and passing inavalue. sr and
(seed random) gives the random number generate a starting point to work from. The seed determines the

first random number that will be generated.

If you don't call srand() first,rand() behavesasif you have called srand() with the seed value
1.

Y ou want to change the seed value each time you run the program so that you'll invoke one more library
function: t i me() . Thefunctiont i me returns the system time, expressed as alarge integer.

NOTE: Interestingly, it actually provides you with the number of seconds that have
elapsed since midnight, January 1, 1970, according to the system clock. This date,
1/1/1970, is known as the epoch, the moment in time from which all other computer dates
are calculated.

Thet i me() function takes aparameter of typet i me_t , but we don't care about this becauseit is
happy taking the NULL value instead:

srand((unsigned)tinme(NULL));

The sequence, then, istocall t i me() , passin NULL, cast the returned value to unsigned i nt , and pass
that result to sr and() . This provides areasonably random valueto sr and() , causing it toinitialize
rand() toanearly-random starting point.

NOTE: Let'stalk about casting avalue. When you cast a value to unsigned you say to the
compiler, "I know you don't think thisis an unsigned integer, but | know better, so just
treat it likeone." Inthiscase, ti me() returnsthevalue of typeti ne_t , but you know
from the documentation that this can be treated as an unsigned integer--and an unsigned
integer iswhat sr and() expects. Casting isalso called "hitting it with the big hammer."
It works great, but you've disconnected the sprinklers and disabled the alarms, so be sure
you know what you're doing.

Now that you have arandom number, you need to convert it into aletter in the range you need. To do
this, you'll use an array of 26 characters, the letters a-z. By creating such an array, you can convert the
value 0 to a, thevalue 1 to b, and so on.

Quick! What isthe value of z? If you said 25, pat yourself on the back for not making the fence post
error of thinking it would be 26.

WEe'I call the character array al pha. You want this array to be available from just about anywherein
your program. Earlier we talked about local variables, variables whose scope is limited to a particular
method. We aso talked about class member variables, which are variables that are scoped to a particular
object of aclass. A third alternativeisaglobal variable.

global variable--A variable with no limitation in its scope--visible from anywhere in your
program

The advantage of global variablesisthat they are visible and accessible from anywhere in your program.
That is aso the bad news--and C++ programmers avoid global variables like the plague. The problemis
that they can be changed from any part of the program, and it is not uncommon for global variablesto
create tricky bugs that are terribly difficult to find.

Here's the problem: Y ou're going along in your program and everything is behaving as expected.
Suddenly, aglobal variable has a new and unexpected value. How'd that happen? With global variables,
itisdifficult to tell because they can be changed from just about anywhere.

In this particular case, although you want al pha to be visible throughout the program, you don't want it
changed at al. Y ou want to create it once and then leave it around. That isjust what constants are for.
Instead of creating a global variable, which can be problematic, you'll create a global constant. Global
constants are just fine:

const char al pha[] = "abcdef ghij kl mopqr st uvwxyz";

global constant--A constant with no limitation in its scope--visible from anywhere in
your program.

This creates a constant named al pha that holds 27 characters (the characters a-z and the terminating
NULL). With thisin place,

al pha[0]
evaluatesto a, and
al pha[25]

evaluatesto z

NOTE: WEell include the declaration of al pha in anew file caled definedValues.h, and
we'll #i ncl ude that filein any file that needsto access al pha. Thisway, we create one
place for al our global constants (all our defined values), and we can change any or al of
them by going to that onefile.

Listing 4.5 Adding Characters to the Array

0: for (i =0; i < howManyPositions;)

1. |

2: I nt nextValue = rand() % (howManylLetters);
3: char c¢ = al pha[next Val ue];

4: if (! duplicatesAllowed && i > 0)
5: {

6: I nt count = howwvany(sol ution, c);
7: if (count > 0)

8. conti nue;

9: }

10: // add to the array

11: solution[i] = c;

12: | ++;

13: }

14: solution[i] = "\0";

15:

16: }

Online 0 you create af or loop to run once for each position. Thus, if the user has asked for a code with
five positions, you'll create five letters.

Online2you cal r and() , which generates arandom value. Y ou use the modulus operator (%9 to turn
that value into onein therange O to howivanyLet t er s- 1. Thus, if howvanyLett ers is7, this

forcesthevaluetobeO, 1, 2, 3,4, 5, or 6.

Let's assume for the purpose of this discussion that r and() first generatesthe value 12, and that
howvanylLet t er s is7. How isthevalue 12 turned into avaluein the range O through 6? To
understand this, you must start by examining integer division.

Integer division is somewhat different from everyday division. In fact, it is exactly like the division you
originally learned in fourth grade. "Class, how much is 12 divided by seven?' The answer, to afourth
grader, is"One, remainder five." That is, seven goesinto 12 exactly once, with five "left over.”

integer division--When the compiler divides two integers, it returns the whole number
value and loses the "remainder."

When an adult divides 12 by 7, the result is areal number (1.714285714286). Integers, however, don't
have fractions or decimal parts, so when you ask a programming language to divide two integers, it
responds like afourth grader, giving you the whole number value without the remainder. Thus, in
integer math, 12/7 returnsthe value 1.

Just as you can ask the fourth grader to tell you the remainder, you can use the modulus operator (%9 to
ask your programming language for the remainder in integer division. To get the remainder, you take 12
modulus 7 (12 % 7), and the result is 5. The modulus operator tells you the remainder after an integer
division.

Thisresult of a modulus operator is aways in the range zero through the operand minus one. In this
case, zero through seven minus one (or zero through six). If an array contains seven letters, the offsets
are 0-6, so the modulus operator does exactly what you want: It returns avalid offset into the array of
letters.

On line 3 you can use the value that is returned from the modulus operator as an offset into al pha,
thus returning the appropriate letter. If you set howivanyLet t er s to 7, the result will be that you'll
always get a number between zero and six, and, therefore, aletter in the range a through g--exactly what
you want!

Next, on line 4 you check to see whether you're allowing duplicates in this game. If not, enter the body
of thei f statement.

Remember, the bang symbol (!) indicates not, so

if (! duplicatesAllowed)

evaluatest r ue if dupl i cat esAl | owed evaluatesf al se. Thus, if not, dupl i cat esAl | owed
means "if we're not allowing duplicates." The second half of the and statement isthat i is greater than
zero. There is no point in worrying about duplicates if thisisthefirst letter you're adding to the array.

On line 6 you assign to the integer variable count the result of the member method howivany () . This
method takes two parameters--a character array and a character--and returns the number of times the
character appearsin the array. If that value is greater than zero, this character is already in the array and
thecont i nue statement causes processing to jump immediately to the top of thef or loop, on lineO.
Thistestsi, which is unchanged, so proceed with the body of thef or loop on line 2, where you'll
generate anew value to try out.

If howvany () returns zero, processing continues on line 11, where the character is added to

sol uti on at offseti . The net result of thisisthat only unique values are added to the solution if
you're not allowing duplicates. Next, i isincremented (i ++) and processing returnsto line 0, wherei is
tested against howivanyPosi ti ons. Wheni isequal to howianyPosi ti ons, thef or loopis
completed.

Finally, on line 14 you add a NULL to the end of the array to indicate the end of the character array. This
enables you to passthis array to cout , which prints every character up to the NULL.

NOTE: TodesignateaNULL i n a character array, usethespecia character
"\ 0' . Todesignate NULL otherwise, use the value O or the constant NULL.

Examining the Defined Values File
Take alook at Listing 4.6, in which we declare our constant array of charactersal pha.

Listing 4.6 definedValues.h

#i f ndef DEFI NED_VALUES
#def i ne DEFI NED_VALUES

#i ncl ude <i ostreanr
usi ng nanespace std;

aRLdDRO

6 const char al pha[] = "abcdef ghij kl mopqr st uvwxyz";
7.

8 const int mnPos = 2;

9: const int maxPos = 10;

10: const int mnLetters = 2;

11: const int maxLetters = 26;

12:

13: #endif

Thislisting introduces several new elements.On line O you see the precompiler directive #i f ndef . This
isread "if not defined," and it checksto see whether you've already defined whatever follows (in this
case, the string DEFI NED_VALUES).

If thistest fails (if the value DEFI NED_VALUES is already defined), nothing is processed until the next
#endi f statement, on line 13. Thus, the entire body of thisfileis skipped if DEFI NED_VALUES is
aready defined.

If thisisthe first time the precompiler reads thisfile, that value will not yet be defined; processing will
continue on line 2, at which point it will be defined. Thus, the net effect isthat thisfileis processed
exactly once.

The#i f ndef / #def i ne combination is called an inclusion guard, and it guards against multiple
inclusions of the same header file throughout your program. Every header file needs to be guarded in
thisway.

NOTE: Inclusion guards are added to header files to ensure that they are included in the
program only once.

We intend to include the definedValues.h header fileinto all our other files so that it constitutes a global
set of definitions and declarations. By including, for example, iostream.h here, we don't need to include
it elsewhere in the program.

On line 6 you declare the constant character array that was discussed earlier. On lines 8-11 you declare a
number of other constant values that will be available throughout the program.

(4 Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

5
Playing The Game

Inline Implementation
Constant Member M ethods
Geek SpeakThis entire section needs to be moved to later in this chapter. Thanks. -| The Signature
Passing by Reference and by Value

o References and Passing by Reference
Pointers

o What is apointer?

o Memory Addresses

o Dereferencing

o Getting the Operators Straight
Arrays
Excursion: Pointers and Constants

o Arrays as Pointers

o Passing the Array as a Pointer
Using ASSERT

o How ASSERT Works
Excursion: Macros

o Why All the Parentheses?

o Macros Versus Functions
String Manipulation

o Stringizing

o Concatenation

. Predefined Macros
. Through the Program Once, by the Numbers

The declaration of the Gane object builds on the material we've covered so far, and it adds afew new
elements you'll need to build arobust class. Let's start by taking alook at the code (see Listing 5.1) and
then discussing it in detail.

Listing 5.1 Game.h

1: #i f ndef GAME_H

2: #defi ne GAME_H

3:

4: #i ncl ude "defi nedVval ues. h"

oS!

6: cl ass Gane

7: {

8: public:

9: Gane() ;

10: ~Gane() {}

11: void D splay(const char * charArray) const
12: {

13: cout << charArray << endl;

14. }

15: void Play();

16: const char * Cet Sol ution() const
17: {

18: return sol ution;

19: }

20: voi d Score(const char * thisCGuess, int & correct, int &
posi tion);

21:

22: private:

23: I nt howivany(const char *, char);
24 char sol uti on[maxPos];

25: I nt howManylLet ters;

26: I nt howMvanyPosi ti ons;

27: I nt round,

28: bool dupli cates;

29: };0nce again, you seeinclusion guards on line 1, and you now see the naming pattern that I'll use
throughout this book. The inclusion guard will typically have the name of the class or file, in all
uppercase, followed by the underscore (_) and the uppercase letter H. By having a standard for the
creation of inclusion guards, you can reduce the likelihood of using the same guard name on two
different header files.

On line 4, we include definedValues.h. As promised, thisfile will be included throughout the program.
On line 6, we begin the declaration of the Gane class. In the public section we see the public interface
for this class. Note that the public interface contains only methods, not data; in fact, it contains only
those methods that we want to expose to clients of this class.

On line 9, we see the default constructor, as described in Chapter 4, "Creating Classes,” and on line 10,

we see the destructor. The destructor, asit is shown here, has an inline implementation, asdo Di spl ay
() (lines11to 14) and Get Sol ut i on (lines 16 to 19).

Inline Implementation

Normally, when afunction is called, processing literally jumps from the calling function to the called
function.

The processor must stash away information about the current state of the program. It stores this
information in an area of memory known as the stack, which is a'so where local variables are created.

NOTE: The stack is an area of memory in which local variables and other information
about the state of the program are stored.

The processor must also put the parameters to the new function on the stack and adjust the instruction
pointer (which keeps track of which instruction will execute next), asillustrated in Figure 5.1. When the
function returns, the return value must be popped off the stack, the local variables and other local state
from the function must be cleaned up, and the registers must be readjusted to return you to the state you
were in before the function call.

Figure5.1 Theinstruction pointer.

An alternative to anormal function call is to define the function with the keyword i nl i ne. In this case,
the compiler does not create areal function: It copies the code from the inline function directly into the

calling function. No jump ismade. It isjust asif you had written the statements of the called function
right into the calling function.

Note that inline functions can bring a heavy cost. If the function is called 10 times, the inline code is
copied into the calling functions each of those 10 times. The tiny improvement in speed you might
achieve is more than swamped by the increase in size of the executable program. Even the speed
increase might be illusory. First, today's optimizing compilers do aterrific job on their own, and thereis
almost never abig gain from declaring a function inline. More importantly, though, the increased size
brings its own performance cost.

If the function you are calling is very small, it might still make sense to designate that function asinline.
There are two ways to do so. Oneisto put the keyword i nl i ne into the definition of the function,
before the return value:

inline int Gane:: howivany()

An dternative syntax for class member methods s just to define the method right in the declaration of
the classitself. Thus, on line 19 you might note that the destructor's implementation is defined right in
the declaration. It turns out that this destructor does nothing, so the braces are empty. Thisis a perfect
use of inlining: Thereis no need to branch out to the destructor, just to take no action.

Constant Member Methods

Takealook at Di spl ay onlines11-14. After the argument list is the keyword const . This use of
const means, "I promise that this method does not change the object on which you invoke this
method," or, in thiscase, "l promisethat Di spl ay() won't change the Gane object on which you call

D splay() ."

const methods attempt to enlist the compiler in helping you to enforce your design decisions. If you
believe that a member method ought not change the object (that is, you want the object treated asiif it
were read-only), declare the method constant. If you then change the object as aresult of calling the
method, the compiler flags the error, which can save you from having a difficult-to-find bug.

Geek SpeakThis entire section needs to be moved to later in
this chapter. Thanks. -jThe Signature

On line 20, we see the signature for the member method Scor e(') . The signature of a method isthe
name (Scor e) and the parameter list. The declaration of a method consists of its signature and its return
value (in thiscase, voi d).

signatur e--The name and parameter list of a method.

Before we examine this signature in detail, let's talk about what this method does and what parametersiit
needs. The responsibility of this method is to examine the player's guess (an array of characters) and to
score it on how many letters he correctly found, and of those letters, how many were in the right place.

Let'stake alook at how thiswill be used. Listing 5.2 showsthe Pl ay() method, which calls Scor e() .

Listing 5.2 The Play Method

0: wvoid Gane:: Play()

1. |

2: char guess| 80];

3: int correct = O;

4: I nt position = O;

5:

6: /...

7: cout << "\ nYour guess: ";
8: Di spl ay(guess);

9:

10: Scor e(guess, correct, position);
11: cout << "\t\t" << correct << " correct, " << position
12: << " in position." << endl;
13. }

I've elided much of this method (indicated by the/ / . . . marks), but the code with which we are
concerned is shown. We ask the user for his guess and store it in the character array guesson line 2.
Wedisplay guess by calling Di spl ay() online 8 and passing guess in as a parameter. We then we
score it by calling Scor e() online 10 and passing inguess and two integer variables. cor r ect
(declared on line 3) and posi t i on (declared on line 4). Finally, we print the valuesfor cor r ect and
positiononlineslland12.

Scor e() adjuststhevaluesof correct and posi ti on. To accomplish this, we must passin these
two variables by reference.

Passing by Reference and by Value

When you pass an object into a method as a parameter to that method, you can passit either by reference

or by value. If you passit by reference, you are providing that function with access to the object itself. If
you pass it by value, you are actually passing in a copy of the object.

passing by refer ence--Passing an object into a function.

passing by value--Passing a copy of an object into a function.

Thisdistinction iscritical. If wepasscor r ect and posi ti on by value, Scor e() cannot make
changes to these variables back in Pl ay () . Listing 5.3 illustrates a very simple program that shows this
problem.

Listing 5.3 lllustrating Pass by Value

0: #include <iostreanp

1: using nanespace std;

2:

3: class Gane

4. {

5: public:

6: Game(){};

7 ~Gane() {}

8: void Play();

9: voi d Score(int correct, int position);

10:

11: private:

12: i nt howihnylLetters;

13: I nt howivhnyPosi ti ons;

14: };

15:

16: void Gane::Score(int correct, int position)
17 |

18: cout << "\ nBeginning score. Correct: ";
19: cout << correct << " Position: " << position << endl;
20: correct = 5;

21: position = 7;

22: cout << "Departing score. Correct: ";

23: cout << correct << " Position: " << position << endl;

25:
26: void Gane: : Pl ay()

27 |

28: int correct = O;

29: I nt position = O;

30:

31: cout << "Beginning Play. Correct: ";

32: cout << correct << " Position: " << position << endl;
33: correct = 2;

34 position = 4;

35: cout << "Play updated values. Correct: " ;

36: cout << correct << " Position: " << position << endl;
37: cout << "\nCalling score..." << endl;

38: Score(correct, position);

39: cout << "\ nBack from Score() in Play. Correct: ";

40: cout << correct << " Position: " << position << endl;
41: '}

42

43: int main()

44: |

45:

46: Gane theGane;

47: t heGane. Pl ay();

48: return O;

49: }

50: Beginning Play. Correct: 0 Position: O

51: Play updated values. Correct: 2 Position: 4

52:

53: Calling score...

o4

55: Begi nning score. Correct: 2 Position: 4

56: Departing score. Correct: 5 Position: 7

o7

58: Back from Score() in Play. Correct: 2 Position: 4

The very first thing to note is that 1've moved everything into one file: Decryptix.cpp. Thisisfor
convenience only. In areal program, the declaration of Gane would be in Game.h, the implementation
of Game would be in Game.cpp, and so forth.

L et's examine the code. On line 6, you see that we've simplified the constructor to take no action, and
we've implemented it inline. For the purpose of thisillustration, we don't need to focus on anything
except the invocation of Scor e() fromPl ay() . Online9, you might notice that I've ssimplified the
signature of Scor e() : , eliminating the array of characters. We'll come back to how to pass an array

into afunction later, but for now | want to focus on the two integer variables, cor r ect and
posi ti on. Notethat in thisillustration the ampersand (&) is gone: We're now passing by value, not by
reference.

Program flow beginsin mai n() , toward the bottom of the file on line 43. On line 46 we create an
instance of a Gane object, and at (16) we invoke (or call) the method Pl ay() on that method.

Thiscall to Pl ay() causes program flow to jump to the beginning of Pl ay() online 26. We start by
initializing both cor r ect and posi ti on to 0, online 28. We then print these values on line 32,
which is reflected in the output on line 50.

Next, on lines 33 and 34 we change the valuesof corr ect and posi ti on to2 and 4, respectively,
and then on line 36 we print them again, which is shown in the output on line 51.

On line 38 we invoke Scor e() , passingincor rect and posi ti on. This causes the program flow
to jump to the implementation of Scor e() , whichis shown on lines 16-24.

The signature of Scor e() at itsimplementation matchesthat of Scor e() in the class declaration, as
it must. Thus, correct andposi ti on arepassedin by value. Thisisexactly asif you had declared
local variablesin thisfunction and initialized them to the valuesthey had in Pl ay() .

Online19weprintcorrect andpositi on and, asthe output shows on line 55, they match the
valuesthey had in Pl ay() .

On lines 20 and 21, we change these valuesto 5 and 7, and then on line 23 we print them again to prove
that the change occurred; this appears in the output at line 56.

Scor e() now returns, and program flow resumes on 39; the values are printed again, as shown in the
output on line 58.

Until this moment, everything has proceeded according to plan; however, the values back in Pl ay ()

are not changed, even though you know they werein Scor e() . Step through thisin your debugger, and
you'll find that the values are changed in Scor e() , but when you are back in Pl ay() , they are
unchanged.

Asyou have probably already guessed, thisis the result of passing the parameters by value. If you make
one tiny change to this program and declare the values to be passed by reference, this program works as
expected (seeListing 5.4).

Listing 5.4 Passing by Reference

OO RONMERO

21a:
22.
23:
24.
25:
26:
27:
28:
29:
29a:
30:
31:
32:
32a:
33:
34:
35:
35a:
36:
37:

#i ncl ude <i ostreanr
usi ng nanmespace std;

cl ass Gane

{
public:
Game() {}
~Gane() {}
void Play();
void Score(int & correct, int & position);
private:
i nt howihnyLetters;
I nt howivhnyPosi ti ons;
b
void Gane:: Score(int & rCorrect, int & rPosition)
{
cout << "\ nBeginning score. Correct: << rCorrect
<< " Position: " << rPosition << endl;
rCorrect = 5;
rPosition = 7;
cout << "Departing score. Correct: "; << rCorrect;
cout << " Position: " << rPosition << endl;
}
voi d Gane: : Pl ay()
{
int correct = O;
I nt position = O;
cout << "Beginning Play. Correct: " << correct;
cout << " Position: " << position << endl;
correct = 2;
position = 4;
cout << "Play updated values. Correct: " << correct;
cout << " Position: " << position << endl;
cout << "\nCalling score..." << endl;
Score(correct, position);
cout << "\ nBack from Score() in Play. Correct: << correct;
cout << " Position: " << position << endl;
}

38: int main()

39: |

40:

41: Gane t heGne;
42: t heGane. Pl ay();
43: return O;

44: '}

45: Beginning Play. Correct: 0 Position: O

46: Pl ay updated values. Correct: 2 Position: 4

47:

48: Calling score...

49:

50: Beginning score. Correct: 2 Position: 4

51: Departing score. Correct: 5 Position: 7

52:

53: Back from Score() in Play. Correct: 5 Position: 7

The only change in thisversion isto the signature of Scor e() (online9), which is matched in the
implementation (on line 16). The parameter names (for example, r Cor r ect) need not match between
the declaration and the implementation.

NOTE: The parameter names are actually optional at the declaration. If you leave them
off, the program compiles without error. As ageneral programming practice, however, be
sure to include good parameter names even though they are not required. They serve as
documentation and make your source code easier to understand.

Theinvocation of Scor e() online 34 doesnot change at all. The client of Scor e() doesn't haveto
manage the fact that you are now passing cor r ect and posi ti on by reference.

The output illustrates on line 53 that the change to the valuesin Scor e() did change the values back
in Pl ay () . This happens because this time no copy was made--you were changing the actual values.

References and Passing by Reference
The change in the signature is a change in type. Y ou have changed cor r ect from the integer

I nt correct

into areference to an integer:
int & rCorrect

A referenceis a specia type that acts as an alias.

NOTE: A referenceis atype that acts as an dias to an existing object.

The referencesr Cor rect andr Posi ti on areused within Scor e() exactly asif they were normal
integer variables, but the values assigned to them are actually assigned to the original variables--
correct andposition--backinPl ay() .

NOTE: Thenamel'vegivenit, r Cor r ect , isaclueto methat thisisareference. | tend
to prepend reference variables with the letter r and pointers (discussed later) with the letter
p, but the language does certainly not require this. Y ou can name the variablesin Scor e
() andthevariablesin Pl ay() using exactly the same names, but it makes the source
code abit more difficult to understand.

prepend--Programmers use the term prepend to indicate that you add something to the
beginning of aterm or variable. Thus, we prepend the letter p to variable names for
pointers. The Free Online Dictionary of Computing (ht t p: / / www. i nst ant web.
com f ol doc/ fol doc. cgi ?quer y=pr epend) defines prepend as follows:. /pree
pend/ (by analogy with append) To prefix or add to the beginning.

It isimportant to distinguish between passing by reference and passing a reference. There are two ways
to pass by reference. So far we've examined one way: using areference. Let's take alook at the
alternative--pointers.

Pointers

Y our throat tightens, your pulse quickens, and a cold, sickening dread grows in the pit of your stomach.
Nothing unnerves new C++ programmers as does working with pointers. Well, relax. When you
understand that a pointer is nothing more than a variable that holds the address in memory of another
variable, pointers are a piece of cake.

What is a pointer?
When you create objectsin your program, you create them in memory.

When you create the local variable cor r ect inthemethod Pl ay(), correct iskeptin memory.
Later you'll examine where in memory variableslive, but for now it doesn't matter. What does matter is
that cor r ect isin memory, and every location in memory has an address. Normally, you don't care
about the specific address of an object because you have alabel (or name), for example, corr ect . If
you need to get to cor r ect , you can do so with its label.

Y ou can get the address of cor r ect by using the address of operator (&):

&correct;

NOTE: The address-of operator (&) uses the same ampersand that we used to identify
references. The compiler can tell which you want by context.

When you have the address of cor r ect , you can stash that addressin apointer. A pointer isavariable
that holds the address of some object in memory.

pointer--A variable that holds the address of an object.

Memory Addresses

Y ou can imagine that each memory location is ordered sequentially, as an offset from some arbitrary
starting point. Picture, if you will, a series of cubbyholes, all aligned and numbered, perhaps as shown in
Figure 5.2.

Figure5.2 Memory as cubbyholes.

Every integer, character, or object you create is stored in these addresses. Because each cubby holds one
byte, a 4-byte integer such ascor r ect takes up four such locations.

correct 'saddressisjust thefirst byte of that storage location. Because the compiler knows that an
integer is 4 bytes, if its addressis0x001, the compiler knows it occupies0x001, 0x002, 0x003, and
0x004, and therefore puts the next integer at 0x005-0x008.

NOTE: These addresses are in hexadecimal, which is abase-16 numbering system. If you
are curious about this, please see Appendix A, "Binary and Hexadecimal."

There are two perspectives on what is stored in these locations. One is the bit perspective, whichis
pretty close to how the compiler "thinks" about memory (see Figure 5.3).

Figure 5.3 How the compiler thinks about data in memory.

From this perspective, the four bytes are filled with binary digits. How these values are interpreted is
irrelevant to the compiler. The bits might represent an integer, a character, or an address somewhere else
in memory. Well return to that ideain a moment.

The point is that the compiler doesn't know or care how to interpret the bits--it just knows what is stored
at agiven location. To the programmer, however, this memory is conceived somewhat differently (as
shown in Figure 5.4).

Figure5.4 How programmers think about data in memory.

To the programmer, the value 5 is stored at thislocation like a letter in a mailbox. The programmer
doesn't much care how the bits are configured, he just knows that the value is stashed away at a
particular location.

Let'sreturn to the ideathat you can store a memory address. Thisis a powerful idea. We show here that
the value 5 is stored at memory location 0x001. What if you take that address, 0x001 (which in binary
iIs00000000 00000000 00000000 00000001), and you stash that pattern at another addressin
memory: 0x1101 (see Figure 5.5).

Figure5.5 Soring the address.

NOTE: There are some simplifying assumptions here that do not distort the point of this
discussion. For example, these are not real memory locations, and values are often stored
in memory in adlightly different order than is shown. In addition, compilers often store
values at even boundaries in memory.

Here you see that at location 1101, you have stored the value 0x001: the memory location at which
you stored the value 5.

At that pointed to address, you hold the value 5 asillustrated in Figure 5.4. Y ou can now assign this
address to a variable that holds an address--a pointer. Y ou declare a pointer by indicating the type of
object it pointsto (in thiscase, i nt), followed by the pointer operator (*), followed by the name of the
variable:

int * pCorrect;

ThisdeclarespCor r ect to be apointer to an integer. Y ou can then assign the address of any integer, in
thiscasecor r ect , to that pointer:

pCorrect = &correct;
Thus, pCor r ect now contains the address of the score, as shown in Figure 5.6.
Figure5.6 pCor r ect pointstocorrect.

pCor r ect isapointer to an integer. The integer itself, cor r ect , isstored at 0x001, and pCor r ect
stores the address of that integer.

The pointer does not have to be in the same method as the variable. In fact, by passing the addressinto a
method and manipulating it with a pointer, you can achieve the same pass by reference effect you
achieved using references. Listing 5.5 illustrates this point by rewriting Listing 5.4 using pointers.

Listing 5.5 Using Pointers

0 #i ncl ude <i ostreanp
1 usi ng nanespace std;
2:

3 cl ass Gane

4: |

5 public:

6: Game() {}

7 ~Gane() {}

8: void Play();

9: void Score(int * correct, int * position);

10:

11. private:

12: i nt howianylLetters;

13: I nt howivhnyPosi ti ons;

14: };

15:

16: void Gane::Score(int * pCorrect, int * pPosition)
17 |

18: cout << "\ nBeginning score. Correct: " << * pCorrect
18a: << " Position: " << * pPosition << endl;

19: * pCorrect = 5;

20: * pPosition = 7,

21: cout << "Departing score. Correct: " << * pCorrect
21a: << " Position: " << * pPosition << endl;

22 }

23:

24: void Gane::Play()

25: |

26: int correct = O;

27: I nt position = O;

28:

29: cout << "Beginning Play. Correct: " << correct
29a: << " Position: " << position << endl;

30: correct = 2;

31: position = 4;

32: cout << "Play updated values. Correct: " << correct
32a: << " Position: " << position << endl;

33: cout << "\nCalling score..." << endl;

34 Score(&correct, &position);

35: cout << "\ nBack from Score() in Play. Correct: " << correct
35a: << " Position: " << position << endl;

36: }

37:

38: int main()

39: |

40:

41: Gane t heGane;

42: t heGane. Pl ay();

43: return O;

44: '}

45: Beginning Play. Correct: 0 Position: O

46: Pl ay updated values. Correct: 2 Position: 4
47:

48: Calling score...

49:

50: Begi nning score. Correct: 2 Position: 4

51: Departing score. Correct: 5 Position: 7

52:

53: Back from Score() in Play. Correct: 5 Position: 7

The signatureto Scor e() haschanged again, as shown on lines9 and 16. Thistime, pCor r ect and
pPosi t i on aredeclared to be pointersto i nt : They hold the address of an integer.

Online34, Pl ay() callsScore() andpassesinthe addressesof correct andposi tion usng
the address-of operator (&). There is no reason to declare a pointer here. All you need is the address, and
you can get that using the address-of operator.

The compiler puts this address into the pointers that are declared to be the parametersto Scor e() .
Thus, on line 34, the variables pCor r ect and pPosi ti on arefilled with the addresses of cor r ect
and posi ti on, respectively.

Dereferencing

On line 18 you want to print the values of cor r ect and posi ti on. You don't want the values of
pCor rect and pPosi t i on because these are addresses. Rather, you want to print the values at the
variables whose addresses these pointers hold.

Similarly, on line 19 and 20 you want to set a new value into the variable whose address is stored in
pCor r ect . You do not want to write

pCorrect = 5;

because that assigns 5 to pCor r ect , and pCor r ect needs an address, not a simple integer value.

NOTE: Thiswill compile, but it stores the address 5 to this pointer, which is a disaster
waiting to happen.

The dereference operator (*) isused. Again, thisisthe pointer operator, but its meaning is understood
In context.

der efer ence oper ator --The dereference operator is used to access the object to which the
pointer points.

The dereference operator returns the object whose address is stored in the pointer. Thus
*pCorr ect

returns the variablecor r ect . By writing

*pCorrect = 5;

we storethevalue5 incorrect.

NOTE: | read the statement

*pCorrect =5

NOTE: as"set thevalueat pCor r ect to5." That is, assign 5 to the variable whose
addressisstoredin pCor r ect .

Getting the Operators Straight

There are two hurdles for a novice programmer--syntax and semantics--and pointers challenge you on
both. The syntax is different because the same symbols (& and *) are used for many different purposes.

The asterisk is used for multiplication, for the declaration of a pointer, and for dereferencing:

z =x *vy;, Il z equals x nultiplied by y
int * ptr; // declare a pointer

*ptr = 7; // assign 7 to the dereferenced pointerSimilarly, the ampersand is used for references, for the
address-of operator, and for logical AND:

If (x &y) // if x and also y
ptr = &; // address-of operator

int & x =y; // initialize areferenceM ore important than the confusing syntax is the difficulty with

semantics. When | assign thevalue 5 on line 19, realize that I'm assigning 5 tocor rect inPl ay()
indirectly through the pointer that is passed into Scor e() .

Arrays

Listing 5.6 reproduces the excerpt of Pl ay() that we were examining in Listing 5.2 when we went off
on the discussion of pointers. Remember that on line 10 we call Scor e() with three parameters, the
first of which isour array of characters--guess. We've considered the two other parameters, cor r ect
and posi ti on, which are passed by reference using references. How isguess passed?

Listing 5.6 Play

0: wvoid Gane:: Play()

1. |

2: char guess| 80];

3: int correct = O;

4: I nt position = O;

5:

6: /...

7: cout << "\ nYour guess: ";

8: Di spl ay(guess);

9:

10: Scor e(guess, correct, position);
11: cout << "\t\t" << correct << " correct, " << position
lla: << " in position." << endl;
12: }

Y ou must always pass arrays by reference; thisisfairly easy to accomplish because C++ supports a
close symmetry between arrays and pointers.

Excursion: Pointers and Constants

Every nonstatic member method has, as a hidden parameter, a pointer called thet hi s pointer. The
t hi s pointer has the address of the object itself. When you write

const char * Gane:: Get Sol uti on()

{
}

return sol ution;

the compiler invisibly turnsit into

const char * Gane:: Get Sol ution(Gane * this)
{

}

return this->solution;

You arefreeto usethet hi s pointer explicitly: you can write your code as follows

const char * Gane:: Get Sol uti on()

{
}

return this->solution;
but thereislittle point in doing so. That said, there are times when you will usethet hi s pointer
explicitly to obtain the address of the object itself. We'll discuss this later in the book.

When you declare the member method const , the compiler changesthet hi s pointer from a pointer to
an object into a pointer to a constant object. Thus, the compiler turns the following code

const char * Gane:: Get Sol uti on() const

{
}

return sol ution;

into

const char * Gane:: Get Sol uti on(const Gane * this) const

{
}

return this->solution;

The constant t hi s pointer enforces the constancy of class et hod.

Arrays as Pointers

The name of an array (in our case, guess) isthought of as a pointer to the first element in the array.
Y ou can access elements of an array using the offset operator ([]), or by using the name of the array
and what is called pointer arithmetic. Listing 5.7 illustrates this relationship between pointers and arrays.

pointer arithmetic--You can determine how many objects are in arange by subtracting
the address of one pointer from another.

Listing 5.7 Relationship Between Pointers and Arrays

0: #include <iostreanp

1: using nanespace std,

2:

3: int main()

4. |

5: char nmyString[80];

6: strcpy(nyString,"Hello there");

7: cout << "nyString is " << strlen(nyString)
7a: << " characters long!" << endl;

8: cout << "nyString: " << nyString << endl;
9: char c1 = nyString[1];

10: char ¢c2 = *(nyString + 1);

11: cout << "cl: " << cl << " ¢2: " << c2 << endl;
12: char * pl = nyString;

13: char * p2 = nyString + 1,

14: cout << "pl: " << pl << endl;

15: cout << "p2: " << p2 << endl;

16: cout << "nyString+l: " << nyString+l << endl;
17: nyString[4] = "a';

18: cout << "nyString: " << nyString << endl;
19: *(nyString+4) ="'b';

20: cout << "nyString: " << nyString << endl;
21: pl[4] = "'c';

22: cout << "nyString: << nyString << endl;

23: *(pl+4) = 'd';

24 cout << "nyString: " << nyString << endl;
25: nyString[4] = 'o0o';

26: nyString[5] = "\0";

27: cout << "nyString: " << nyString << endl;
28: return O;

29: }

30: nyString is 11 characters | ong!
31: nyString: Hello there
32: cl: e c2: e

33: pl: Hello there

34: p2: ello there

35: nyString+l: ello there
36: nyString: Hella there
37: nyString: Hellb there
38: nyString: Hellc there
39: nyString: Helld there
40: nyString: Hello

On line 5, we create a character array that is large enough to hold the string. On line 6 we use the old-
fashioned C-style string library routine st r cpy to copy into our array a null-terminated string with the
words Hello there.

On line 7 we use the C-style library routine st r | en to obtain the length of the string. This measures the
number of characters until the first NULL and returns that value (11) as an integer, which is printed by
cout and shown on line 30.

On line 8 we pass the array to cout , which treats the name of the array (my St r i ng) as a pointer to the
first byte of the string. cout knows that when it is given an array nameit isto print every character
until the first NULL. Thisis shown on line 30.

On line 9 we create a character variable, c1, which isinitialized with the character at offset 1--that is,
the second character in the array, e.

Online 13 wetreat ny St ri ng asapointer and add one to it. When you add one to a pointer, the
compiler looks at the type of the object that is pointed to, which inthiscaseischar . It usesthetypeto
determine the size of the object, which in this case is one byte. It then returns the address of the next
object of that size. If thiswere apointer toi nt , it would return the address of the next i nt , four bytes
later in memory.

Take the address that isreturned (my St r i ng+1) and dereference it; this returns the character at that
address. Then initialize a new character variable, c2, with that character. Note that c2 is not a pointer;

by dereferencing, you're actually getting a character, and that iswhat isassigned to c2.
We print these two characters on line 11, and the printout is on line 32.

On line 12 we create a pointer to a character and assign it to ny St r i ng. Because the name of the array
acts as a pointer to the first byte of the array, p1 now also pointsto the first byte. On line 13 we create a
second pointer and point it to the second character in the array. These are printed on lines 14 and 15 and
shown at lines 33 and 34). Thisillustrates that in each case cout acts as expected, printing the string
beginning at the byte that is pointed to and continuing until the first NULL. These have the same printout
ason line 18, which uses the string offset directly and which is shown on line 35.

On line 21 we use the offset operator to change the character that is stored at offset 4 (the fifth
character). Thisis printed, and the output appears on line 36.

Y ou can accomplish the same thing on line 16 by using pointer arithmetic and dereferencing the address
that is returned; see the output on line 37. Because p1 is pointing to ny St r i ng, you can use the offset
operator on the pointer on line 21. Remember that the name of the array is a pointer to the first element--
and that is exactly what p1 is. The effect on line 38 isidentical.

Similarly, on line 23 we can use pointer arithmetic on p1 and then dereference the resulting address, just
as we did with the array name. The resulting printout is shown on line 39.

On line 25 we change the value back to ' 0' using the offset operator, and then we insert anull at offset
5. Y ou can do the same thing with pointer arithmetic, but you get the point. As you probably remember,
cout printsonly to thefirst null, so the string hel | o is printed; nothing further in the array is printed,
however, even though the word there still remains. Thisis shown on line 40.

Passing the Array as a Pointer

We said earlier that guess is passed by reference, as a pointer. What you see passed in Listing 5.6 is
the name of the array, which is a pointer to the first element in the array:

Score(guess,cor r ect ,posi ti on);InScor e() thisfirst parameter must be declared as a pointer to
character, which itis. Listing 5.8 reproduces Listing 5.1, the declaration of the Gane class.

Listing 5.8 Reproducing Listing 5.1

0 #i f ndef GAME_H

1. #define GAME_H

2:

3 #i ncl ude "defi nedVval ues. h"

cl ass Gane

4

5

6: {

7: public:

8: Gane() ;

9: ~Gane() {}

10: voi d Display(const char * charArray)const{ cout << charArray
<<

10a: endl ; }

11: void Play();

12: const char * GetSolution() const { return solution; }
13: voi d Score(const char * thisCGuess, int & correct, int &
position);

14:

15. private:

16: i nt howMvany(const char *, char);

17: char sol uti on[maxPos] ;

18: i nt howianyLetters;

19: I nt howivhnyPosi ti ons;

20: i nt round;

21: bool dupli cates;

22: };

23:

24. #endif

Y ou can see on line 13 that the first parameter to Scor e() isdeclared asapointer to char , just aswe
require. Listing 5.9 shows the implementation of the Scor e() method.

Listing 5.9 Implementing Score()

0:voi d Gane: : Score(const char * thisCGuess, int & correct, int &
posi tion)
{

correct = O;

position = 0;

for (int i =0; I < howhnylLetters; i ++)
{
i nt howiMvanyl nGuess = howMany (thisCGuess, alphali]);
I nt howiMvanyl nAnswer = howivany (sol ution, alphali]);
correct += howihnyl nGuess < howivanyl nAnswer ?
howivanyl nGuess : howMvanyl nAnswer ;

RPRpoo~NoO R

12: }

13:

14. for (int j =0; J < howhnyPositions; j++)
15: {

16: if (thisGuess[j] == solution[j])

17: posi ti on++;

18: }

19:

20: }

The signature on the implementation agrees, as it must, with the declaration. t hi sGuess isapointer to
char andisthesamearray asguess in Pl ay() . Because guess was passed by reference (as arrays
must be), thisis the same array, and changes to this array are reflected back in Pl ay.

Because you must pass by reference but you do not want to allow Scor e() to changethisarray (and
thereis no reason for it to do so), declare the parameter to be a pointer to a constant char rather than a
pointer to char . Thiskeyword const saysto the compiler, "l don't intend to change the object that is
pointed to, so tell meif | do." Thisway, the compiler taps you on the shoulder if you attempt to make
such a change and says, "Excuse me, sir, but you've changed an object when you promised you wouldn't.
Not cricket, sir." (Your compiler's error message might vary).

Let'swalk through thisimplementation of Scor e() lineby line. Onlines 2 and 3, we initialize both
integers, correct andposi tion, toO0. If wetake no other action, the score is zero correct and
zero in position.

Online5 we begin af or loop that will run once for each letter int hi sGuess. The body of thef or
loop consists of three statements.

Online7 alocal variable--nowvany | nGuess--isinitialized to store the result of calling the private
member method howivany (). When we call howMany, we pass inthe pointer to the array
asthefirst parameter and the letter at al pha[i] asthe second parameter.

Thisisaclassic C++ statement, which does at |east three things at once. Let's take the statement apart.

Thefirst thing that happensisthat al pha[i] isreturned. The first time through thisloop, al pha[0]
isreturned, whichis' a' . The second time through, ' b' isreturned, and so forth.

Thisletter becomes the second parameter to the call to howivany () . If you look back at the declaration
of Gane, you'l find that howivany () isa private method that takes two parameters. a pointer to a
constant char (the guessfrom Pl ay()) and acharacter. Listing 5.10 shows the implementation of
howivany() .

Listing 5.10 Implementing Game::HowMany/()

0: inline int Gane::howMany(const char * theString, char c)
1. {

2: I nt count = O;

3: for (int i =0; I <strlen(theString); i++)

4. {

5: If (theString[i] == c)

6: count ++,;

7: }

8: return count,

9: } The purpose of this method isto return the number of times an individual letter occursin an array of
characters. On line 2 the counter isinitialized to zero. On line 3 we begin af or loop that iterates
through every posi t i on inthe array.

On line 5 wetest each character to see whether it matches the character that was sent in to be tested; if
so, we increment the counter. Note that the braces at lines 4 and 7 are not technically necessary, but as
Donald Xie pointed out when editing this book, they do make the code much easier to read.

Finally, on line 8 we return that value.

In Listing 5.9, on line 7, we now have a value on the right side of the assignment that represents how
many timesal phali] occursint hi sGuess: thatis, inthe array that is passed infrom Pl ay() .

On line 8, we compute the same value for the solution. The value of cor r ect isthe lesser of these two,
which we accomplish on lines 9 and 10 by using the ternary operator to find the smaller value.

An example makes this clearer: If the solution has aabba and the guess has ababc, we examine the first
letter a. howivlny () returns 2 for the guess and 3 for the solution, so the player has the lesser, 2,
correct.

On lines 14-18, we iterate again through the loops, this time testing on line 16 to see whether the
character at a specific offset int hi sGuess isthe same as the character at the same offset in the
solution. If so, another letter isin the right position.

Becausecor rect and posi ti on were passed in as references, the changes that are made in Scor e
() arereflected back in Pl ay() .

Using ASSERT

Before moving on, | want to demonstrate how this code can be made both more reliable and more
understandabl e through the use of ASSERT.

The purpose of ASSERT isto test your assumptions when you are debugging your code, but to have no
effect at all when you release your final production version.

When you are debugging your code, you signal your compiler to enter debug mode. When you are ready
to release your program to the paying public, you rebuild in release mode. Debug mode brings along a
lot of debugging information that you don't want in release mode.

Thus, in debug mode, you can write

ASSERT (position <= correct)

Here you are ssmultaneously documenting your belief that posi t i on must never be larger than
correct . (You can never havefivein the correct position if you only have four correct letters!) You
are also testing that assertion each time the code runsto prove that you are right. In debug mode, if

posi ti on everislarger thancorr ect , thisASSERT statement fails and an error message is written.

When your program is ready to be released, the ASSERT macro magically disappears and has no effect
on the efficiency of your code.

How ASSERT Works

ASSERT istypically implemented as a macro. Macros are left over from C; they are type-unsafe
routines that are processed not by the compiler but by the precompiler, the same beast that handles your
#i ncl ude and #def i ne statements. In fact, amacro isa#def i ne statement.

macr o--A text substitution by the precompiler. Macros can act as small subprograms.

Excursion: Macros

A macro function isa symbol that is created using #def i ne, which takes an argument much like a
function does, and which replaces the macro and its argument with a substitution string. For example,
you can define the macro TW CE asfollows:

#define TWCE(x) ((x) * 2)

Then in your code you write

TW CE(4)

The entire string TW CE(4) isremoved and the value 4* 2 is substituted. When the precompiler sees

TWICE(4) , it substitutes((4) * 2). Thatisjust what you want because 4* 2 evaluates to 8, so
TW CE will have done just the work you expected.

A macro can have more than one parameter, and each parameter can be used repeatedly in the
replacement text. Two common macros are MAX and M N:

#define MAX(Xx,y) ((x) > (y) ? (x) @ (y))
#define MN(x,y) ((x) < (y) ? (x) : (y))

MAX returns the larger of two values (x andy), and M N returns the lesser. Thus, MAX(7, 5) is7, and
M N(7,5) isb5.

NOTE: In amacro function definition, the opening parenthesis for the parameter list must
immediately follow the macro name, with no spaces. The preprocessor is not as forgiving
of white space asisthe compiler.

Why All the Parentheses?

Y ou might be wondering why there are so many parentheses in these macros. The preprocessor does not
demand that parentheses be placed around the arguments in the substitution string, but the parentheses
help you avoid unwanted side effects when you pass complicated values to a macro. For example, if you
define MAX as

#define MAX(X,y) X >y ?2 X . Yy

and passin the values 5 and 7, the macro works as intended. If you pass in amore complicated
expression, however, you'll get unintended results, as shown in Listing 5.11.

Listing 5.11 Unintended Macro Results

#i ncl ude <i ostream h>

#define CUBE(a) ((a) * (a) * (a))
#define THREE(a) a * a * a

o RWNREO

i nt main()
{
|l ong x = 5;
| ong y = CUBE(X);

10: | ong z = THREE(X) ;
11:
12: cout << "y: " <<y << endl;
13: cout << "z: " << z << endl;
14:
15: long a =5, b =7,
16: y = CUBE(a+b);
17: z = THREE(a+b);
18:
19: cout << "y: " <<y << endl;
20: cout << "z: " << z << endl;
21: return O;
22 }
***Pl ease Insert Qutput icon herey: 125
z: 125
y: 1728
z: 82

On line 1, we use the old-fashioned iostream.h so that we can avoid using namespaces. Thisis perfectly
legal in C++, and it is common in writing very short demonstration programs.

On line 3, the macro CUBE is defined, with the argument x put into parentheses each timeit is used. On
line 4, the macro THREE is defined, without the parentheses. It is intended for these macros to do
exactly the same thing: to multiply their arguments times themselves, three times.

In the first use of these macros, on line 16, the value 5 is given as the parameter and both macros work
fine. CUBE(5) expandsto((5) * (5) * (5)),whichevaluatesto 125, and THREE(5)
expandsto5 * 5 * 5, whichalsoevaluatesto 125.

In the second use, on line 17, the parameter is5 + 7. Inthiscase, CUBE(5+7) evaluatesto

((5+7) * (5+7) * (5+7))

which evaluates to

((12) * (12) * (12))

whichinturn evaluatesto 1, 728. THREE(5+7) , however, evaluates to
5+7*5+7%*5+7

Because multiplication has a higher precedence than addition, this becomes
5+ (7*5) +(7*5) +7

which evaluates to

5+ (35 + (35 + 7

which finaly evaluatesto 82.

Macros Versus Functions

Macros suffer from four problemsin the eyes of a C++ programmer. First, because all macros must be
defined on one line, they can be confusing if they become large. Y ou can extend that line by using the
backslash character (\), but large macros quickly become difficult to manage.

Second, macros are expanded inline each time they are used. This means that if a macro is used a dozen
times, the substitution appears 12 times in your program, rather than appearing once as a function call
does. On the other hand, they are usually quicker than afunction call because the overhead of afunction
call is avoided.

The fact that they are expanded inline leads to the third problem, which is that the macro does not appear
in the intermediate source code that is used by the compiler, and therefore it is not visible in most
debuggers. By the time you see it in the debugger, the substitution is already accomplished. This makes
debugging macros tricky.

Thefinal problem, however, isthe largest: Macros are not type-safe. Although it is convenient that
absolutely any argument can be used with a macro, this completely undermines the strong typing of C++
and so is anathemato C++ programmers.

That said, the ASSERT macro is agood example of atime when thisis not a bug, but afeature: One
ASSERT macro can test any condition, mathematical or otherwise.

String Manipulation

The preprocessor provides two special operators for manipulating strings in macros. The stringizing
operator (#) substitutes a quoted string for whatever follows the stringizing operator. The concatenation
operator (##) bonds two strings together into one.

NOTE: The stringizing operator (#) substitutes a quoted string for whatever follows the
stringizing operator.

The concatenation operator (##) bonds two strings together into one.

Stringizing

The stringizing operator(#) puts quotes around any characters that follow the operator, up to the next
white space. Thus, if you write

#defi ne WRI TESTRI NG x) cout << #x
and then call

VWRI TESTRING This is a string);

the precompiler turnsit into

cout << "This is a string",;

Notethat thestring This i s a string isputintoquotes, asisrequired by cout .

Concatenation

The concatenation operator (##) enables you to bond together more than one term into a new word. The
new word is actually atoken that can be used as a class name, a variable name, or an offset into an
array--or anywhere else a series of |etters might appear.

Assume for amoment that you have five functionsnamed f OnePr i nt ,f TwoPri nt,
f ThreePrint,fFourPrint,andfFi vePri nt.Youcanthen declare

#define fPRINT(x) f ## x ## Print

and then use it with f PRI NT(Two) to generatef TwoPr i nt , and withf PRI NT(Thr ee) to generate
f ThreePrint.

Predefined Macros

Many compilers predefine a number of useful macros, including_ DATE _, TIME _, LINE
and __FI LE__. Each of these namesis surrounded by two underscore characters to reduce the
likelihood that the names will conflict with names you've used in your program.

When the precompiler sees one of these macros, it makes the appropriate substitutes. For _ DATE __,
the current Date is substituted; for __ TI ME__, the current timeissubstituted. LI NE__ and

__FI LE__ arereplaced with the source code line number and filename, respectively. Note that this
substitution is made when the source is precompiled, not when the program is run. If you ask the
programto print __ DATE__, you do not get the current date; instead, you get the date the program was
compiled. These defined macros are very useful in debugging.

Although many compilers do provide an ASSERT macro, it will be instructive to create our own, shown
in Listing 5.12.

Listing 5.12 An ASSERT Macro

0: #define DEBUG

1:

2. #ifndef DEBUG

3: #def i ne ASSERT(x)

4: #el se

5: #defi ne ASSERT(x) \

6: Lt (! (x)) \

7: {\

8: cout << "ERROR!'! Assert " << #x << " failed\n"; \
9: cout << " online " << LINE << "\n"; \
10: cout << " in file " << FILE << "\n"; \
11: }

12: #endif

On line 0, we define the value DEBUG, which wetest on line 2. In the production version we'll remove
the definition of DEBUG, and the test on line 2 will fail. When the test fails, this macro defines ASSERT
(x) todo nothing, as shown on line 3. If the test succeeds, asit will while we are debugging, this macro
defines ASSERT as shown on line 5.

In amacro, any line ending with\ continues on the next line asif both were on the sameline. The
entire set of linesfrom line 5 to line 11 is thus considered a single line of the macro. On line 6, whatever
IS passed to the macro (x) istested; if it fails, the body of thei f statement executes, writing an error
message to the screen.

On line 8, we see the stringizing macro at work, and the following lines take advantage of the
__FILE__and__ LI NE__ macrosthat are supplied by the compiler vendor.

| don't show ASSERT macros everywhere they might appear in this book because they can detract from
the point that is being made; at other times, however, they can greatly clarify the program. For example,
I'd rewrite Scor e() asshowninListing 5.13.

Listing 5.13 Rewriting Score with ASSERT

0:voi d Gane:: Score(const char * thisCGuess, int & correct, int &

posi tion)

1o A

2 correct = O;

3 position = 0;

4.

5: ASSERT (strlen(this@Gess) == howianyPositions)

6: ASSERT (strlen(solution) == howvanyPositions)

7

8 for (int i =0; I < howhnylLetters; i ++)

9: {

10: i nt howiMvanyl nGuess = howiany (thisCGuess, alphali]);
11: i nt howiMvanyl nAnswer = howivany (sol ution, alphali]);
12: correct += howiMhnyl nGuess < howMvanyl nAnswer ?
12a: howivanyl nGuess : howMvanyl nAnswer ;

13: }

14:

15: for (i =0; I < howwhnyPositions; i++)

16: {

17: if (thisGuess[i] == solution[i])

18: posi ti on++;

19: }

20:

21: ASSERT (position <= correct)

22:

23. }

The ASSERT on line 5 documents and tests my assumption that the string passed in ast hi sGQuess is

exactly howivanyPosi t i ons long. The ASSERT on line 6 does the same for the solution. Finally, the
ASSERT on line 21 documents and tests my assumption that the number in the correct position can

never be greater than the number of cor r ect letters.

Through the Program Once, by the Numbers

Listing 5.14 provides the complete listing of this program. Let's walk through one round, line by line.

Listing 5.14 Using ASSERT (DefinedValues.h)

1: #i f ndef DEFI NED

2: #def i ne DEFI NED

3.

4. #1 ncl ude <i ostreanp

5: usi ng nanespace std;

6.

7: const char al pha[] = "abcdef ghij kl mopqr st uvwxyz";

8: const int mnPos = 2;

9: const int maxPos = 10;

10: const int mnlLetters = 2;

11: const int maxLetters = 26;

12:

13: #def i ne DEBUG

14:

15: #1 f ndef DEBUG

16: #def i ne ASSERT(x)

17: #el se

18: #defi ne ASSERT(x) \

19: if (! (x)) \

20: {\

21: cout << "ERROR!'! Assert " << #x << " failed
\n"; \

22: cout << " on line " << LINE << "\n";
23: cout << " in file " << _FILE << "\n";
24 }

25: #endi f

26:

27: #endi f

28: #i f ndef GAME _H

29: #defi ne GAME H

30:

31: #i ncl ude "Defi nedVal ues. h"

32:

33: cl ass Gane

34 {

35: public:

36: Gane() ;

37: ~Ganme() {}

38: voi d Display(const char * charArray) const
39: {

40: cout << charArray << endl;

41: }

42: void Play();

43: const char * GetSolution() const { return solution; }
44 voi d Score(const char * thisCGuess, int & correct, int &
position);

45:

46: private:

47: i nt HowMvany(const char *, char);

48: char sol uti on[maxPos+1];

49: i nt howihnylLetters;

50: I nt howivanyPosi ti ons;

51: i nt round;

52: bool dupli cates;

53: };

o4

55: #endi f

Game.cpp

56: #i ncl ude <tine. h>

57: #i ncl ude " Gne. h"

58:

59: voi d Gane:: Score(const char * thisGuess, int & > rCorrect, int
& > r Posi tion)

60: {

61: rCorrect = O,

62: rPosition = O;

63:

64 ASSERT (strlen(thisGuess) == howvanyPosi ti ons)

65:
66:
67:
68:
69:
70:
71:
12:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
endl ;
105:
106:

ASSERT (strlen(solution) == howvanyPositi ons)

i < howManylLetters; i++)

howivanyl nGuess = HowMany (thi sGQuess,
howivanyl nAnswer = Howiany (sol uti on,

al phali]);
al phal[i]);
rCorrect += howManyl nGuess < howManyl nAnswer ?

howivanyl nGuess : howvanyl nAnswer ;

= 0; i < howManyPositions; i++)

if (thisGuess[i] == solution[i])

rPosition <= rCorrect)

while (howvanylLetters < mnlLetters ||

howvanylLetters > nmaxLetters)

<< "How many letters? (";

<< mnLetters << "-" << maxlLetters <<

cin >> howManylLetters;

(howMvanyLetters < minLetters ||
howvanylLetters > nmaxLetters)

int i;
for (1 = 0
{
I nt
I nt
}
for (i
{
rPosition ++;
}
ASSERT (
}
Gane: : Gane() :
round(1),
howvanyPosi ti ons(0),
howvanyLet t er s(0),
dupl i cat es(fal se)
{
bool valid = fal se;
while (! valid)
{
{
cout
cout
i f
cout
}

<< "pl ease enter a nunber between "
cout << mnLetters << " and " << maxLetters <<

"y -

107: whil e (howMvanyPositions < m nPos ||

107a: howMvanyPosi ti ons > maxPos)

108: {

109: cout << "How many positions? (";

110: cout << mnPos << "-" << maxPos << "): ";
111: ci n >> howManyPosi ti ons;

112: i f (howManyPositions < m nPos |

112a: howMvanyPosi ti ons > maxPos)
113: cout << "please enter a nunber between ";
114: cout << mnPos <<" and " << maxPos << endl;
115: }

116:

117: char choice ="' ';

118: while (choice !'="y" &% choice !="n")
119: {

120: cout << "Allow duplicates (y/n)? ";
121: cin >> choi ce;

122: }

123:

124: duplicates = choice == "'y' ? true : false;
125:

126: if (! duplicates && howManyPositions >
howianylLetters)

127: {

128: cout << "l can't put " << howiMhnylLetters;
128a: cout << " letters in ";

129: cout << howivhnyPosi ti ons;

130: cout << " positions wthout duplicates!
131: cout << Please try again.\n";

132: howianylLetters = O;

133: howianyPosi ti ons = O;

134: }

135: el se

136: valid = true;

137: }

138:

139: int i;

140: for (i =0; I < maxPos; i1++)

141: solution[i] = O;

142:

143: srand((unsigned)tinme(NULL));

144:

145: for (1 = 0; I < howvanyPositions;)

146: {

147: i nt nextValue = rand() % (howManyLetters);
148: char ¢ = al pha[next Val ue] ;

149: if (! duplicates & i > 0)

150: {

151: i nt count = HowMany(solution, c);

152: if (count > 0)

153: conti nue;

154: }

155: /1 add to the array

156: solution[i] = c;

157: | ++;

158: }

159: solution[i] ="'\0";

160:

161: }

162:

163: void Gane: : Pl ay()

164: {

165: char guess| 80];

166: int correct = O;

167: I nt position = O;

168: bool quit = false;

169:

170: while (position < howvanyPositions)

171: {

172:

173: cout << "\nRound " << round << ". Enter ";
174: cout << howiMvhnyPositions << " |etters between ";
175: cout << alpha[0] << " and ";

175a: cout << al pha[howanyLetters-1] << ": ";
176:

177: cin >> guess;

178:

179: if (strlen(guess) != howvanyPositions)
180: {

181: cout << "\n ** P|ease enter exactly ";
182: cout << howiMhnyPositions << " |etters. **\n";
183: conti nue;

184: }

185:

186:

187: round++;

188:
1809:
190:
191:
192:
193:
194.
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
2009:
210:
211:
212:
213:
214:
215:
216:

i nli

}

Decryptix.cpp

217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:

cout << "\ nYour guess: ";

Di spl ay(guess);

Scor e(guess, correct, position);
cout << "\t\t" << correct << " correct,

cout << position << "

cout << "\ n\nCongratul ati

If (round <= 6)
cout << "only ";

if (round-1 == 1)

cout << "one round!"
el se

cout << round-1 << "

in position." <<

ons! It took you "

<< endl ;

rounds." << endl ;

endl ;

ne i nt Gane::HowMany(const char * theString, char c)

i nt count = O;

for (int i =0; I < strl
if (theString[i] == ¢)
count ++;

return count;

#i ncl ude " Defi nedVal ues. h"
#i ncl ude " Gane. h"

I nt

{

mai n()

en(theString); i++)

cout << "Decryptix. Copyright 1999 Liberty

cout << "Associ ates, Inc.
bool playAgain = true;

while (playAgain)
{

Version 0.3\n\n"

<< endl ;

228: char choice ="' ';

229: Gane theCGane;

230: t heGane. Pl ay();

231:

232: cout << "\ nThe answer: ";

233: t heGane. Di spl ay(t heGane. Get Sol ution());
234: cout << "\n\n" << endl;

235:

236: while (choice !'="y" &% choice !="n")
237: {

238: cout << "\nPlay again (y/n): ";

239: cin >> choi ce;

240: }

241

242: pl ayAgain = choice == "'y' ? true : false;
243: }

244.

245: return O;

246: }

We begin by loading this program in the debugger and placing a break point on line 222, asillustrated in
Figure 5.7. Your particular debugger might look somewhat different, but the essentials are probably the
same. Choose Run to break point (in Microsoft Visua Studio, thisis F5).

Figure 5.7 Examining a break point.

By the time the program has stopped at this break point, it has loaded the two header files,
definedVaues.h and Game.h.

Loading def i nedVal ues bringsusto line 1, where the inclusion guards are checked and we find that
DEFI NED has not yet been defined. Thus, the body of def i nedVal ues isread, which bringsin
| ost r eam(line 4) and which declares (line 5) that we are using the standard namespace.

The global constants are defined on line 7, and ASSERT is defined on line 18.

Including Game.h brings us to line 31, where we attempt to include def i nedVal ues. Thisbrings us
back to line 1, where the inclusion guards protect us by determining that DEFI NED has already been
defined, so the rest of definedValues.h isignored. Returning to line 33, we find the declaration of the
Gane class.

The constructor and destructor are declared lines 36 and 37. Lines 38-41 arethe Di spl ay routine,
which prints to the screen any character array that is passed in. On line 42 is the heart of the class: the

Pl ay() method. On line 43 I've added a new method, Get Sol ut i on() , which simply returns the
solution as a pointer to a constant character--exactly what is needed by Di spl ay() . Finally, Online
44) we seethe Scor e() method, which takes an array of characters (passed in by reference as a pointer
to a constant character), and two references to integers.

NOTE: Part of the private interface--not exposed to the public but used by the class's
methods to aid in implementation--are several state variables (such as

howivanyLet t er s online 49 and howivanyPosi t i ons on line 50) that indicate
which round we're playing (on line 51) and whether we're allowing duplicates (on line 52).

In addition, line 48 shows the array that holds the solution to the game; line 47 shows a hel per function,
which is used by other methods of this class to determine how many instances of a particular character
are found within any array of characters. You'll see how all the methods work as we step through the
code.

Our break point on line 222 causes the program to stop before it prints to the screen. See your debugger's
documentation for how to step over afunction call; in Microsoft's debugger it is F10. Pressing step-over
causes the copyright notice to print, and then the Boolean value. pl ayAgai n isinitializedtot r ue.
Thisisused in the test on line 226, and of course this test passes because the value was just initialized
oneline earlier.

This brings us into the body of thewhi | e statement, where we create an instance of a Gane object on
line 229. This causes program flow to jump to the constructor of the Gane object on line 85. We see
that the member variables are initialized, and we enter the whi | e loop on line 93. On lines 95 and 96
we test whether howvanyLet t er s (initialized to 0) islessthan m nLet t er s (set in definedValues.
hto 2). Because this proves true, the second half of the OR statement (howiVanylLetters >

maxLet t er s) isnot even evaluated; instead, we enter the whi | e loop on line 98.

The user is prompted to enter how many letters he'll be guessing in this instance of the game. Welll
choose 4; that value is stored in the member variable howManyLet t er s online 100.

On line 101 wetest to ensure that we have alegal value; if not, we print areminder to the player.
Program flow loops back up to line 95, where the value is checked; if we have avalid value we proceed
on line 107, where the same logic is applied to the number of positions. We'll choose 3.

On line 121 we prompt the user to tell us whether he wants to allow duplicates. Note that thisis not
robust code: If the user enters Y rather than y (that is, uppercase rather than lowercase), thewhi | e
statement continues to prompt him until he getsit right. We'll fix that up in the next version. For now,

well enter n.

Online 124 we test the value that isreceived; if itis' y' , wesetdupl i cat es tot r ue; otherwise, we
setittof al se. Inthiscase wesetittof al se becauseweveentered' n' .

Take alook at the member variables, as shown in Figure 5.8.
Figure 5.8 Examining member variables.

Notice, in the variables window in the lower-left corner, that choi ce hasthevalue' n' , andinthe
watch window in the lower-right, that you have howivanyLet t er s 4, and howivanylLetters 3.
Also note, in the variables window, that dupl i cat es isshown as0. My debugger cannot handle
bools, soitshowstrue as1 andf al se as0. Thisislegal in C++ (0 does evaluatef al se and all
other integers evaluate t r ue), but it might be better if the debugger showed the actual Boolean value.

NOTE: Theseimages are from the Visual C++ debugger. In other environments you may
find adifferent display, but you should be able to see the same values and information.

On line 126 we test the logic of the user's choices. If he asks for three lettersin four positions without
duplicates, we point out that thisis impossible.

On line 140 we iterate through the entire array, setting every member to zero. It isinteresting to put

sol ut i on into awatch window in the debugger and step through this loop watching as each offset
member of the array is changed to zero. Note that thisis zero the numeric value, not 0 the character. InC
++, 0 isthe value of NULL, so thisloop sets our character array to contain nothing but NULLSs.

At line 143 we use sr and to seed the random number generator. Y ou might find it interesting to step
into thecall tot i me, but thisis not relevant to our discussion here.

On line 145 we begin the work of populating the sol ut i on array. First, thelocal counter variablei is
initialized to zero.

NOTE: You might find that many C++ programmers use the variablesi ,j , k, | ,andm
as counter variablesin f or loops, and many can't even tell you why. Why not a? Why
not count er ?

Thisis a perfect example of historical anachronisms living on past the time they make any
sense. Back in the ancient days of mainframe computing, early versions of FORTRAN
(FORmula TRANSd ator) used only the variablesi ,j , k, | , and maslegal counting
variables. My second computing language was FORTRAN 1V, which | learned in high
school in 1971. ("Y ou had zeros? We had to use os!") Old habits die hard.

Just as an aside, my first programming language was M onrobot machine language (1s and
0s), which we programmed using paper tape. The computer on which we ran this also had
an assembler called QuickComp, which was used by the programming students. To use
QuickComp, you had to load a machine language "loader" by running the appropriate tape
before running your program. A few of us hacked the QuickComp tape so that on loading
it printedgo away, |' m sl eepi ng and then shut down the system. In those days,
programming, and my sense of humor, were alot ssimpler.

On line 147 we examine the result of applying the modulus operator to the result of callingr and() and
howanyLet t er s. If you want to see this a work, rewrite thisline as follows:

/1 int nextValue = rand() % (howManylLetters);
I nt randResult = rand();
I nt nextVal ue = randResult % (howManylLetters);

Thisway you can seetheresult fromr and() (storedinr andResul t), and then the effect of the
modulus operator.

Thefirst time | ran thison my machine, r andResul t was 17,516. | note that howivanyLett ers is
4.17,516 divided by 4 isequal to exactly 4,379. Thus, thereis no remainder, so the value that is
returned by the modulus operator is 0.

On line 148 the character variable c is set to the letter at offset Oinapha(' a').

On line 149 wetest the value of dupl i cat es (inthiscase, f al se) and whether i is greater than zero.
Inthiscase, i iszero, sothei f statement isskipped. Online 156 sol uti on[O] issettoa. Theni is
incremented to 1 and is compared with howivanyPosi t i ons at 41. (Notice that we do not do the
increment in the body of thef or loop.) Thisis because we only want to increment i if wegettoline
156. WE'll see the alternative in just a moment.

On line 147 we generate next Val ue again. On my computer this generatesar andResul t of
14846 and anext Val ue of 2. Doesthis make sense? howvanyLet t er s is4. It turns out that
14,846 divided by 4 is 3,711, with aremainder of 2. (3,711 times 4 is 14,844). Thus the modulus
operator returns 2, and the character ¢ isassigned al pha[2] orc.

Thistimethei f statement at line 149 returnst r ue, and we enter the body of thei f statement. On line
151 we assign the result of calling HowiMany to the variable count , passing in the solution array and
the letter c.

Program flow branchesto line 209. The array is now represented as a pointer. On line 211 the local
variable count isinitialized to zero. On line 212 we iterate through the string that is passed in (the
solution), and each time through the loop we test whether the value at the current offset is equal to the
character that is passed in .

Thistime,strl en(theString) isl. You can test this by inserting aline between, rewriting line
212 asfollows:

int stringLength = strlen(theString);
for (int i =0; i < stringLength; i++)

C++ programmers snicker at this kind of code, with lots of temporary variables, but I've come to believe
strongly that thisisthe right way to do things. By introducing the temporary variable st ri ngLengt h,
you can examine this value in the debugger in away that is not possible with the more compact version
of thiscode (inwhichstr | enisusedinthef or loop test).

We see that thisfirsttimest ri ngLengt hiis1, sothef or loop runsonly once. Becauset heSt ri ng
[0] is'"a" andourcharactercis' c' ,thei f statement failsand count isnot incremented. The

f or loop then ends, and the value O isreturned. Program flow now resumes at the line immediately
following line 151, where the returned value (count) istested. Because it is not greater than zero, the
cont i nue statement does not execute, and program flow continues on line 156 where the character

' ¢' Isaddedtothe array and, once again, i isincremented.

The third time through the f or loop at on line 145, my computer generates the value 5, 092, which is
also exactly divisible by four, returning a nextValue of O and a character of * a' . Thistime, when we
enter howivany, the character matches, so the counter isincremented and the value 1 isreturned from
howany. In this case, when the flow resumes at the line just after the call to howivany on line 151, the
| f statement returnst r ue (1isgreater than 0), so thecont i nue statement executes. This causes the
program flow to immediately return to line 145, where we will generate and test a new value.

Thisiswhy you don't want to increment i : After al, you have not yet put avalueinto sol ut i on[2] .
Thus, i remainsat 2, but the call on line 147 generates a different value; thistime, thevalueis 1, 369,
which setsnext Val ue to 1 and the character valuec to' b' . Because' b' does not yet appear in our
array, itisadded, and i isincremented.i isnow 3, thetest on line 145 fails (3 is not less than 3), and
we fall through to line 159 where sol ut i on[3] issettonull.

Theresult of all thisisthat sol ut i on lookslikethis:

sol ution[0]:
solution[1]:
solution[2]: 'Db
solution[3]: O

The constructor now ends, and we resume on line 230 back in mai n() . Thisimmediately cals Pl ay
(), so processing branches to the implementation of Pl ay() online 163. The local variables
correct andposi tion areinitialized to O (check your local variables window in your debugger),
and the user is prompted to enter aguess on line 173. That guessis stored on line 177 in the array you
created on line 165.

WEe'l guessabc. Thisfailsthe test on line 179 because the string length of guess is 3, which is equal
to howvanyPosi t i ons and thusfailsthe test of not being equal. Processing skips the body of thei f
statement and continues on line 187, where the member variable r ound isincremented from zero to 1.
On line 190 thisguessis passed to Di spl ay(), whereit is shown to the user; then, on line 192, it is
passed into Scor e() .

You can step over Di spl ay (in Visual C++, press F10) and then into Score (in Visual C++, press F11)
to follow those parts of the program that are of immediate interest. Stepping into Scor e() causes
program flow to branch to line 59.

Weimmediately set the values that are referenced by r Cor r ect andr Posi ti on to 0. We then assert
that our assumptions about the sizes of these arrays are correct. On line 67, we enter af or loopin
which welll iterate through each array, testing every possible letter and creating a count of how many are
correct.

Thefirst timeinthisloop, i is0 and therefore passes the test of being lessthan howivanyLett er s
(whichis 3). Thefirst call to Howivany () passesin the current guess (abc), and the letter a (al pha
[0]) and returnsthe value 1. The second call passes in the solution (acb) and the character ' a' and
asoreturnsl.

The next line tests whether howivany | nGuess (whichis 1) islessthan howivanyl nAnswer (also
1). Thisisfalse, so it returns the third part of thisternary operator: howivanyl nAnswer (which, again,
iIs1). Thisvalueof 1 isaddedtor Cor r ect , incrementing it from O to 1.

We repeat thisfor all three lettersin the two arrays. Next, on line 75, wereset i to O and test whether

t hi sGuess[0] isequaltosol ution[0].thisGuess[O0] is'a',andsol uti on[0] isaso
‘a',sor Posi tionisincremented from O to 1. On the second time through the loop, t hi sGuess
[1] is' b ,butsol ution[1] is'c',sorPositi on isnotincremented. On the third time through,
t hi sGuess[2] is' c¢' andsol ution [1] is'b',soagan, r Posi ti on isnotincremented.

There is no need to return a value from this method (which iswhy it is marked voi d) because the
variablesr Posi ti on andr Count er arereferencesto thelocal variables back in Pl ay() . When we
return from Scor e() , these values are printed and we see that correct is 3 and positionis 1.

Thisreturns usto the top of thewhi | e loop on line 170; posi ti on (now 1) is compared with
howvanyPosi t i ons (currently 3). Becauseit is still smaller, we're not yet done, and we repeat the
loop, offering the user a second guess.

Thistimelet'sguessach. The score we receive is three correct and three in position, and thiswhi | e
loop ends. Program flow resumes on line 197, where we print a congratulatory message. Pl ay() then
returns, dropping uson line 232 in mai n() , where the answer is displayed and you are offered (on line
236) the opportunity to play again.

If you decide not to play again, the value O is returned to the operating system on line 245 and the
program ends.

On line 230 weinvoke the Pl ay() method.

This causes program flow to jump to line 163. To see this, step into this method from line 230. Y our
debugger brings you to line 163. A few local variables are created and initialized, and then on line 170
we check the value of posi t i on (whichiszero) to seeif it islessthan howManyPosi ti ons.

(4 Comtents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

6
Using Linked Lists

Dynamic Data Structures
o The Standard Template Library
Linked Lists
o Understanding Linked Lists
A Simple Driver Program
The HowMany() Method
Insert() in Detail
Excursion: Understanding the Stack
The Stack and Functions
Using new
o new and delete
Using Our Simple Linked List in Decryptix!
Run it!
Playing the Game
Solving the Problem with a Member Method
Operator Overloading
o How You Accomplish Operator Overloading
Passing Objects by Value
o Why Isit a Reference?

The problem with using arrays is that you must declare their size at compile time rather than at runtime.

compile time--When you compile the program

runtime--When you run the program

This means that you must guess, in advance, how much memory you need to alocate. If you guess
wrong and you allocate too little, you run out of room and your program breaks. If, on the other hand,
you allocate more than you need, you waste memory.

In Decryptix! thisisn't avery big problem because we create only two arrays: one to hold the solution
and one to hold the guess. We can just create a pair of arrays large enough to hold the biggest legal
solutions and the largest possible guess, and let it go at that.

In other programs, however, fixed size arrays are so wasteful of memory as to be unusable. Software
designers are often asked to consider how their program will scale: How will they perform as they
become larger and handle more data? Programs that use fixed size arrays rarely scale well.

Scaling a program refers to the capability to do more: to handle larger and more complex
data sets, more users, or more frequent access. When a program scales, it becomes bigger
and typically more complex, and all the weaknesses in performance and maintainability
surface.

To solve the problem of fixed size arrays, we need the capability to store datain some form of data
structure or collection that grows dynamically, which means that it grows as it needs to while the
program runs.

Dynamic Data Structures

Over the years, computer scientists have struggled with thisissue. In the past, procedural programmers
created complex data structures to hold data efficiently. Object-oriented programmers talk about
collection classes, classes that are designed to hold collections of other objects.

collection class—-A class designed to hold a collection of other objects

Collection classes are built on top of traditional data structures as higher-level abstractions, but the
problem they are solving is the same: How do we efficiently deal with large sets of data or objects?

We need a variety of collection classes because our needs and priorities differ from program to program.
Sometimes we care about adding objects to the collection quickly. Other times, we don't mind if thereis
adight delay adding objects, but we want the capability to find objects quickly. In other programs, the
emphasisis on using little memory or little disk space.

The Standard Template Library

The C++ Standard Library now offers a suite of collection classes called the Standard Template Library
(STL), which is described in coming chapters. The STL classes are designed to hold collections of
objects, including built-in objects such as characters and more complex (and dramatically larger) user-
defined objects. Most importantly, the STL code has been optimized, debugged, and tested so that you
don't have to do thiswork yourself.

Before considering the STL in detail, however, it is helpful to create our own rather simple collection
class, at least once, to see what isinvolved.

WEell rewrite Decryptix! to use alinked list rather than an array. A linked list isavery ssimple data
structure that consists of small containers that can be linked together as needed, and each of which is
designed to hold one object.

linked list--A simple data structure in which each element in the list points to data and to
the next element in the list

Each individual container is caled anode. Thefirst node in thelist is called the head, and the last node
inthelist is called the tail.

node--An element in adata structure

head--Thefirst nodein alinked list

tail--Thelast nodein alinked list

Lists come in three fundamental forms. From simplest to most complex, they are

. Singly linked
. Doubly linked
. Trees

Inasingly linked list, each node points forward to the next one, but not backward. To find a particular
node, start at the top and go from node to node, as in atreasure hunt (" The next node is under the sofa’).
A doubly linked list enables you to move backward and forward in the chain. A treeis a complex
structure built from nodes, each of which can point in two or three directions. Figure 6.1 shows these
three fundamental structures.

Figure 6.1 Sngly linked, doubly linked, and tree structures.

Linked Lists

WE'll build the smplest form of linked list, asingly linked list that is not sorted. Characters are added in
the order in which they are received (just asthey arein an array).

WEe'll actually create the linked list three times. The first time we'll take arather smplistic, traditional
approach just to get a good sense of how alinked list works. The second time we'll design a somewhat
more object-oriented linked list and see whether we can add some solid object-oriented design heuristics
to our solution. Finally, we'll use the linked list to illustrate the concept of abstract data types.

Understanding Linked Lists

Our simplest linked list consists of nothing but nodes. A node is atiny object with two members. The
first member is a pointer to the thing we're storing, in our case a single character. The second member is
a pointer to another node. By stringing nodes together, we create alinked list.

When there are no more nodes in the list, the last node pointsto NULL. Figure 6.2 shows what our linked
list looks like. The first node in the list (the head node) pointsto its data (A) and also to the second node

in the list. This second node in turn points to its data and also to the third node. The third node is the tail
node, and it points to its data and to null, signifying that there are no more nodes in the list.

Figure 6.2 Smplelinked list.
Let'simplement this linked list and then see how we might use it, instead of an array, to hold our

solution. To get started, however, we need only create the Node class and fill it with alist of characters.
Listing 6.1 has the declaration for our Node class.

NOTE: During the development of a program, I'm often confronted with anew
technology, in this case the linked list. Rather than trying to figure out how to useit in my
program while also figuring out how to implement it, | usually first implement the
technology with asimple driver program. That is, I'll take it out of context and create a
very simple program that does nothing but exercise the new technology. Afteritis
working, I'll go back and integrate it into the real program.

Listing 6.1 The Node Class Declaration

0 cl ass Node

1o A

2 public:

3: Node(char c);

4: ~Node() ;

5: voi d Di spl ay () const ;
6 I nt Howivany (char c¢) const ;
7 voi d | nsert (char c¢);

8:

9: private:

10: char Get Char 0);

11: Node * Get Next 0);

12: char nyChar;

13: Node * next Node;

14: };

Let's start by looking at the constructor on line 3. A node is created by passing in a character by value.
Rather than keeping a pointer to the character, our Node class keeps a copy of the character on line 12.
With atiny one-byte object, thisis sensible. With larger objects, you'll want to keep a pointer to avoid
making a copy.

NOTE: In C++, pointers are typically 4 bytes. With a 1-byte object, it is cheaper to keep a
copy (one byte of memory used) than to keep a pointer (4 bytes of memory used). With
large user-defined types, it can be far more expensive to make the copy, in which case a
pointer or referenceis used.

Node provides three methods in addition to its constructor and destructor. On line5we see Di spl ay
(), whosejob it isto print the characters that are stored in the list. The method Howivany () also takes
a character and returns the number of times that character appearsin thelist. Finally, | nsert () takesa
character and insertsit into the list. Listing 6.2 shows the implementation of these simple methods.

Listing 6.2 Implementing Node

0: #include <iostreanp

1: using nanespace std;

2:

3: #include "Node. h"

4.

5: Node: : Node(char c):

6: myChar , next Node(0)

7. A

8. }

9:

10: Node: : ~Node()

11. |

12: I f (next Node)

13: del et e next Node;
14. }

15:

16:

17: void Node::Display() const
18:

19: cout << nyChar;

20: I f (next Node)

21: next Node- >Di spl ay();
22: '}

23:

24:

25: int Node:: Howvany(char theChar) const

26: {

27: i nt myCount = O;

28: if (myChar == theChar)

29: my Count ++;

30: I f (next Node)

31: return nmyCount + next Node- >Howivany(t heChar);
32: el se

33: return nmyCount,;

34: }

35:

36: void Node::Insert(char theChar)

37 |

38: If (! nextNode)

39: next Node = new Node(t heChar);
40: el se

41: next Node- >l nsert (t heChar);

42: '}

The constructor on line 5 receives a character and initializesits my Char member variable on line 6. The
constructor aso initializesitsnext Node pointer to zero--that is, to null. When the Node is created, it
points to nothing further along in the list.

The destructor on line 10 tests the pointer on line 12, and if the pointer is not NULL, the destructor
deletesit.

NOTE: The destructor takes advantage of the C++ idiom that any nonzero valueis
considered t r ue. Thus, if next Node isnull, itsvalueis0 and, therefore, f al se, and
thei f statement does not execute. If next Node does point to another node, itsvalueis
nonzero and thust r ue, and that object is deleted.

Di spl ay(),online 17, prints the character that is held by the current node on line 19, and then calls
D spl ay() onthenext Node inthelist, if any (on line 20). In thisway, by telling the first node to
display itself, you cause every node in the list to display itself.

A Simple Driver Program

On line 25, Howvany () takes acharacter and returns the number of times that character existsin the
list. The implementation of thisistricky and instructive because this type of implementation is common

in C++. Explaining how this works in words is much less effective than tracing it in the debugger. To do
that, we need a driver program, shown in Listing 6.3.

Listing 6.3 Driver Program

CoNOIORWNERO

16:

#i ncl ude "Defi nedVal ues. h"
#i ncl ude "List0601 Node. h"

I nt

{

}

mai n()

Node head('a');
head. I nsert('b');
i nt count = head. HowMany('a');

cout << "There are " << count << " instances of a\n";
count = head. Howwvany(' b');
cout << "There are " << count << " instances of b\n";

cout << "\n\nHere's the entire list: ";
head. Di spl ay();
cout << endl;

return O;

There are 1 instances of a
There are 1 instances of b
Here's the entire list: ab

Before we examine Howivany, let'slook at the driver. Itsjob isto generate two letters and add them to
thelist. To do this, it creates afirst node, called the head node, on line 5, and initializes it with the
value' a' . It then tellsthe head node to insert one more letter (' b'), starting on line 6.

Our linked list now looks like Figure 6.3.

Figure 6.3 With two nodes.

Online0Owe#i ncl ude DefinedValues.h, shown in Listing 6.4.

Listing 6.4 DefinedValues.h

1
2
3.
4

#i f ndef DEFI NED
#def i ne DEFI NED

#i ncl ude <i ostreanp

5: #1 ncl ude <vector>
6: #1 ncl ude <iterator>
7: #i ncl ude <al gorithnp
8 #1 ncl ude <tine. h>

9: #include <utility>

10:

11: usi ng nanmespace std;

12:

13: const char al pha[27] = "abcdef ghij kl mopqgr st uvwxyz";
14:

15: const int mnPos = 2;

16: const int maxPos = 10;

17: const int mnlLetters = 2;

18: const int naxLetters = 26;

19: const int SecondslnM nute = 60;

20: const int Secondsl nHour = SecondslnM nute * 60;
21: const int SecondslnDay = Secondsl nHour * 24;
22: const int GQUESSES PER SECOND = 10000;

23:

24 const int szlnt = sizeof(int);

25: const int szChar = sizeof(char);

26: const int szBool = sizeof(bool);

27:

28: #endi f

Thisfile servesto include the necessary STL header files, and also to define constants we'll need in this
program. We will use this same defineVaues file throughout all the sample code for the rest of the book.

Let'snot examinehow | nsert () worksjust yet, but rather assume that the letter b isin fact inserted
into the list. WE'l return to how this works in just amoment, but let's first focus on Howivany () works.

The HowMany() Method

On line 7 we ask how many instancesof ' a' there are, and on line 9 we ask the same about how many
instancesof ' b' there are. Let'swalk through the call to howivany on line 9. Put a break point on this
line, and run the program to the break point.

The program runs as expected and stops at the following line:
count = head. Howivany('b');

Stepping into thisline of code brings you to the top of Howivany () :

I nt Node: : Howivany(char theChar) const
{

Let'sstep line by line. Thefirst step initializes my Count to O, which you can probably seein the local
variables window of your debugger.

Which node are we looking at? We'll be entering the Howivany () method once for each node. How can
we tell where we are? Remember that every nonstatic member method has a pointer called thet hi s
pointer, which holds the address of the object itself.

Y ou can examine the value of thet hi s pointer in your debugger. Take note of the address of thet hi s
pointer while you are here in Howivany () . On my machine, it isOx0012f f 6c, but yours might be
different. The particular value doesn't matter--just write down whatever you have. Thisis the address of
the node we're examining.

Step to the next line, where my Char is compared with t heChar . Examine the my Char member
variable (' a') and thelocal variablet heChar (' b'), againin your local variables window.

NOTE: You might need to expand your t hi s pointer to see the member variables, or
you might need to click on a different debugger window to find them.

Clearly, these values are not the same, sothei f statement fails. my Count remainsat O.

Step againtothenexti f statement. The next Node pointer should be nonzero. On my machine, itis
0x004800a0. Your value will differ; again, although the absolute value doesn't matter, write down
whatever you get.

Because next Node isnonzero, thei f statement evaluatest r ue, and you step to the following line:
return nyCount + next Node->HowMvany(t heChar);

What do you expect to happen if you step into thisline? The first thing to be evaluated is

next Node- >Howivany(t heChar) ;

This calsthe howivany () method through the next Node pointer. This, in fact, callshowMvany() on

the object to which next Node points. Remember that next Node had avalue, the address of the next
nodeinthelist. Let'sstepin.

The debugger appears to go to the top of the same method. Where are we? Examinethet hi s pointer in
your debugging window (you might first have to step to the first line of the method). On my machine,
thet hi s pointer has changed to 0x004800a0, which was exactly the value previously held in the
next Node pointer. Ahal We're now in the second node in the list. We can imagine that our list looks
like Figure 6.4.

Figure 6.4 Nodes with addresses.

We are running Howivany in the second node. Once again, Howivany () begins by initializing the local
variable myCount , online 27, to 0. Be careful here, the ny Count we're looking at now islocal to this
iteration of Howivainy () . The my Count back in the first node hasits own local value.

Howiany () then teststhe character that is passed in against the character it is storing on line 28; if they
match, it increments the counter. In this case, they do match, so we compare nyChar (' b') with
t heChar (also' b'). They match, so myCount isincremented.

Stepping again bringsusto thenext i f statement:
30: I f (next Node)

Thistime next Node isNULL (you should see @l zerosin its value in your local variables window). As
expected, the second node's next Node pointsto NULL. Thei f statement fails and the el se statement
executes, returning nmy Count , which hasthe value 1.

We step into this line and appear to be right back at ther et ur n statement. Examinethet hi s pointer,
however, and you'll find that we're back in the first node. The value that isreturned (1) is added to the
valuein nmyCount er (now 0), and it isthis combined value that is returned to the calling function,

mai n() .

Asan exercise, try revising mai n() toinsert thevaluesa, b, ¢, b, and b. This produces the linked list
that is shown in Figure 6.5. Make sure you understand why Howivany () returnsthe value 3 when
passedin' b' .

Figure6.5 Linked list with abcbb.

Insert() in Detail

Now is the time to examine the implementation of | nsert (), asshownonline36in Listing 6.2 and

reproduced here for your convenience:

36: void Node::Insert(char theChar)
37 |

38: I f (! nextNode)

39: next Node = new Node(t heChar);
40: el se

41: next Node- >l nsert (t heChar);
42: }

The godl of this method isto insert a new character (t heChar) into the list.

Note that on line 39 we use the keyword newto create anew Node object. Thisisexplained in full in
just afew pages, for now, all you need to know is that this creates a new object of type Node.

Let's start over, creating the linked list from Figure 6.5, using the code shown in Listing 6.5.

Listing 6.5 Decryptix Driver Program

0: #include "DefinedVal ues. h"

1: #include "List0601 Node. h"

2.

3: int main()

4. {

5: Node head('a');

6: head. I nsert (' b');

7: head. I nsert('c');

8: head. I nsert (' b');

9: head. I nsert (' b');

10: i nt count = head. HowMany('a');
11: cout << "There are " << count
12: count = head. Howivany('b');

13: cout << "There are " << count
14. cout << "\n\nHere's the entire |ist:
15: head. Di spl ay() ;

16: cout << endl;

17:

18: return O;

19: }

There are 1 instances of a
There are 3 instances of b
Here's the entire list: abcbb

I nstances of a\n";

I nst ances of b\n";

On line 5 we create the first Node object, which we call head. Set a break point on that line and run to
the break point. Stepping in takes you to the constructor of the Node object:

Node: : Node(char c):
myChar , next Node(0)

{
}

This does nothing but initialize the member variables. We now have a node whose ny Char character
variable contains' a' and whose next Node pointer isNULL.

Returning to mai n() , we step into the call to
head. I nsert('b');
Step into this code from Listing 6.2, which is once again reproduced for your convenience:

36: void Node::Insert(char theChar)

37 |

38: If (! nextNode)

39: next Node = new Node(t heChar);
40: el se

41: next Node- >l nsert (t heChar);
42: '}

On line 38 we test to see whether next Node isNULL. Inthiscaseit is, SO we must create a new node.
The last time we created a node, we simply declared it and passed in the valueto store (" @'). Thistime
we do something different, calling the new operator. Why?

Until now, all the objects you've created were created on the stack. The stack, you'll remember, iswhere
al local variables are stored, along with the parameters to function calls. To understand why creating
your new node object on the stack won't work, we need to talk a bit more about what the stack is and
how it works.

Excursion: Understanding the Stack

The stack is a specia area of memory that is allocated for your program to hold the data required by
each of the functionsin your program. It is called a stack because it isalast-in, first-out (LIFO) queue,
much like a stack of dishes at a cafeteria (see Figure 6.6).

Figure 6.6 A LIFO stack.

LIFO means that whatever is added to the stack last will be the first thing that is taken off. Other queues
aremore like aline at atheater, which iscalled first in, first out (FIFO): Thefirst one on lineisthe first
one off.

LIFO--Last in, first out, like plates on a stack
FIFO--First in, first out, like people on line to buy tickets at a theater

Interestingly, most airplanes board and unboard coach like a FIFO stack. The people at the
rear of the plane are the first to board and the last to get off. Of course, first classisa
FIFO structure--first class passengers are the first ones in and the first ones out.

When data is pushed onto the stack, the stack grows; as datais popped off the stack, the stack shrinks. It
isn't possible to pop a dish off the stack without first popping off al the dishes placed on after that dish,
and it isn't possible to pop data off a stack without first popping al the data added above your data.

A stack of dishesisafine analogy asfar asit goes, but it is fundamentally wrong. A more accurate
mental pictureis of aseries of cubbyholes, aligned top to bottom. The top of the stack is whatever cubby
the stack pointer happens to be pointing to. The stack pointer isjust a pointer whose job is to keep track
of the top of the stack.

stack pointer--A pointer that keeps track of the top of the stack

Each of the cubbies has a sequential address, and one of those addresses is kept in the stack pointer
register. Everything below that magic address, known as the top of the stack, is considered to be on the
stack. Everything above the top of the stack is considered to be off the stack, and therefore invalid.
Figure 6.7 illustrates this idea.

Figure 6.7 The instruction pointer.

When datais put on the stack, it is placed into a cubby above the stack pointer, and then the stack
pointer is moved up to indicate that the new datais now on the stack.

When data is popped off the stack, all that really happensis that the address of the stack pointer is
changed because it moves down the stack. Figure 6.8 makes this rule clear.

Figure 6.8 Moving the stack pointer.

The Stack and Functions

Here's what happens when a program that is running on a PC under DOS branches to a function:

1. The address in the instruction pointer is incremented to the next instruction past the function
call. That addressis then placed on the stack, and it will be the return address when the function
returns.

2. Room is made on the stack for the return type you've declared. On a system with two-byte
integers, if the return typeis declared to bei nt , another two bytes are added to the stack, but no
valueis placed in these bytes.

3. The address of the called function, which is kept in a special area of memory that is set aside
for that purpose, isloaded into the instruction pointer, so the next instruction executed will be in
the called function.

4. The current top of the stack isnoted and is held in a special pointer called the stack frame.
Everything that is added to the stack from now until the function returns is considered local to the
function.

5. All the arguments to the function are placed on the stack.

6. Theinstruction that is now in the instruction pointer executes, thus executing the first
instruction in the function.

7. Local variables are pushed onto the stack as they are defined.

8. When the function is ready to return, the return value is placed in the area of the stack that is
reserved at step 2.

9. The stack is then popped all the way up to the stack frame pointer, which effectively throws
away all the local variables and the arguments to the function.

10. Thereturn value is popped off the stack and assigned as the value of the function call itself.

11. The address that is stashed away in step 1 isretrieved and put into the instruction pointer.

12. The program resumes immediately after the function call, with the value of the function
retrieved.

Some of the details of this process change from compiler to compiler, or between computers, but the
essential ideas are consistent across environments. In general, when you call afunction, the return
address and parameters are put on the stack. During the life of the function, local variables are added to
the stack. When the function returns, these are al removed by popping the stack.

For our purposes, the most important thing to note about this process is that when a function returns, all
the local variables are popped off the stack and destroyed.

As was described previoudly, if we create the new nodein| nser t Node on the stack, when the
function returns, that node is destroyed. Let'stry it. We'l just change |l nsert to create alocal node,
and we'll stash away the address of that local Node in next Node. Listing 6.6 illustrates the change.

WARNING: These changes compile and link, but will crash when you run the program.

Listing 6.6 Local Nodes

next Node- >l nsert (t heChar) ;

0: void Node::Insert(char theChar)
1. |

2: If (! nextNode)

3: {

4: Node | ocal Node(t heChar);
5: next Node = & ocal Node;
6: }

7: el se

8:

9:

When | run this program, it quickly crashes. Here's what happens: When we create the head Node, its
next Node pointer isnull. Whenwecall | nsert () onthe head node, thei f statement returnst r ue,
and we enter the body of thei f statement on line 4. We create al ocal Node object and assign its
addressto next Node. Wethen return from | nser t . At that moment, the stack unwinds, and the local
node we created is destroyed.

Now, all that happens when that local node is destroyed is that its destructor runs and the memory is

marked as reusable. Sometime later, we might assign that memory to a different object. Still later, we
might use the next Node pointer and bang! the program crashes.

Using new

Thisis aclassic example of when you need to create an object on the heap. Objects that are created on
the heap are not destroyed when the function returns. They live on until you delete them explicitly,
which isjust what we need.

Unlike objects on the stack, objects on the heap are unnamed. Y ou create an object on the heap using the
new operator, and what you get back from newis an address, which you must assign to a pointer so that
you can manipulate (and later delete) that object.

Let'slook againat | nsert () fromListing 6.2:

36: void Node::Insert(char theChar)

37 {

38: i f (! nextNode)

39: next Node = new Node(t heChar);
40: el se

41: next Node- >l nsert (t heChar);
42: }

The logic of this code is that we test to see whether the next Node pointer is pointing to an object on
line 38; if it is not, we create a new object on the heap and assign its addressto next Node.

When we create the new object, we call new, followed by the type of the object we are creating (Node)
and any parameters we need to send to the constructor (in this case, t heChar).

If this object does point to another node, weinvoke | nsert on that object, passing along the character
we're trying to solve. Eventually we reach the end of the list--a node that does not point to any other
node--and we can create a new node and tag it to the end of thelist.

new and delete

Many details are involved in using new effectively, which we'll discuss as we come to them. Thereis
one, however, that | want to discuss immediately. When you create an object on the heap using new,
you own that object, and you must clean it up when you are done with it. If you create an object on the
heap and then lose the pointer, that object continues to use up memory until your program ends, but you
can't access that memory.

When you have an object that you can't access anymore but that continues to consume memory, we say
it has leaked out of the program. Memory leaks are of significant concern to C++ programmers. Y ou
solve memory leaks by the judicious application of del et e() . We seethisin the destructor in Listing
6.2, copied here:

10: Node: : ~Node()

11: {

12: I f (next Node)

13: del et e next Node;
14. }

When we are ready to destroy the linked list, we call del et e on the head node (implicitly by returning
from the function in which the head node was created on the stack, or explicitly if the head node was
created on the heap). The destructor examines its own next Node, and if the next Node pointer is not
null, the destructor deletes the node to which it points. This mechanism knocks down all the dominoes,
each object deleting the next object as part of its own sequence of destruction.

Let'smodify mai n() to create the head node on the heap, and we'll delete it explicitly when we're done
with the list. To make all this clear, we'll add printouts to the constructors and destructors to see our
progress. Listing 6.7 is the entire program, which we'll walk through in some detail.

Listing 6.7a Node.h

1: cl ass Node

2: {

3: public:

4: Node(char c);

5: ~Node() ;

6:

7: voi d D spl ay () const ;
8: I nt Howiany (char c¢) const ;
9: voi d | nsert (char c¢);

10:

11: private:

12: char nmyChar ;

13: Node * next Node;

14. };

Listing 6.7b[em]Node.cpp

15: #i ncl ude <i ostream h>
16: #i ncl ude "List0603a_Node. h"

17:

18: Node: : Node(char theChar):

19: nmyChar (t heChar), next Node(0)

20: {

21: cout << "In constructor of Node(" << this << ")\n";
22: }

23:

24 Node: : ~Node()

25: {

26: cout << "In destructor of Node(" << this << ")\n";;
27: I f (next Node)

28: del et e next Node;

29: }

30:

31:

32: voi d Node: : D spl ay() const

33: {

34 cout << this << ": " << nyChar << endl;
35: I f (next Node)

36: next Node- >Di spl ay();

37: }

38:

39:

40: I nt Node: : Howvany(char theChar) const

41: {

42: i nt myCount = O;

43: I f (myChar == theChar)

44. my Count ++;

45: I f (next Node)

46: return nmyCount + next Node- >Howivany(t heChar);
47: el se

48 return nmyCount,;

49: }

50:

51: voi d Node: :Insert(char theChar)

52: {

53: If (! nextNode)

54 next Node = new Node(t heChar);

55: el se

56: next Node- >l nsert (t heChar);

57: }

Listing 6.7c Driver.cpp

58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94.
95:
96:
97:
98:
99:

#i ncl ude <i ostream h>
#i ncl ude "List0603a_Node. h"

I nt

{

mai n()

Node *

pHead

pHead- >l nsert

=n
("b
pHead- >l nsert('c

ew Node('a');

w
)i
)i

pHead->I nsert('b');
pHead->I nsert('b');

I nt count
cout <<

count

cout <<

count

cout <<
cout <<

cout
del ete
cout
return

}

<< count

pHead- >Howiany(' b');

"There are

<< count

pHead- >Howiany(' c');

"There are

<< count

= pHead- >HowMany(' a');
"There are

<<

<<

<<

I nstances of a\n";
I nst ances of b\n";

I nst ances of c\n";

"\'n\nHere's the entire list:\n";
pHead- >Di spl ay();

pHead;

0;

I n
I n
I n
I n
I n

constructor
constructor
constructor
constructor
constructor

of
of
of
of
of

Node(0x00430060)
Node(0x00431DB0)
Node(0x00431D70)
Node(0x00431D30)
Node(0x00431CFO0)

There are 1 I nstances of a
There are 3 instances of b
There are 1 instances of c

entire |ist:

Here's the

0x00430060: a
0x00431DB0O: b
0x00431D70: c
0x00431D30: b
0x00431CFO: b

Del eting pHead. ..
I n destructor of Node(0x00430060)
I n destructor of Node(0x00431DB0)

<< "Del eting pHead..." << endl;

<< "Exiting main()..." << endl;

100: I n destructor of Node(0x00431D70)

101: I n destructor of Node(0x00431D30)
102: I n destructor of Node(0x00431CFO0)
103: Exiting main()...

The best way to follow the progress of this code isto put the code in the debugger and set a break point
inmai n() atline 63. Run the program to the break point and note that we are going to create a new
node and initialize it to hold the letter ' a' . The address of this new node is stashed away in the Node
pointer pHead. Now, step in at line 63. Y ou might step into the new operator. If so, just step back out
and step in again, which brings you to the constructor for Node on line 18.

Sure enough, the character ' a' was passed in (now designated t heChar), and this character is used to
initialize the member variable my Char . The node's second member variable, next Node, whichisa
pointer to a Node object, isaso initialized with the value 0 or NULL. Finally, asyou step through the
constructor, amessage is printed on line 21, the effect of which is shown on line 81.

Notice that thet hi s pointer is not dereferenced, so its actual valueis printed: That is, the address of the
Node object on the heap whose constructor we are now discussing.

If you continue stepping, you'll return from the constructor back to mai n() on line 64, where we intend
tocall thel nsert () method onthat Node. We do so indirectly, using the pointer that holds its
address, andwe pass' b' tothel nsert method in the hope that anew Node will be created and
appended to the list to hold this new value.

Step in at on line 30 and you enter thel nsert () method of Node on line 51, where the parameter

t heChar holdsthevalue' b' . Online 53 you test the Node's next Node pointer, which is NULL (or
0), the value to which you initialized it just amoment ago. Thei f statement returnst r ue. Takea
moment and reflect on why.

If apointer has a nonzero value, it evaluatest r ue. With a0 value, it evaluatesf al se. Thus, asking if
apointer isfalseisthe ssmeasasking if it isnull.

Thenot operator turnsfalsetotrue. Thus, (! next Node) will evaluatet r ue if next Node iszero
(fal se). Thus

I f (! nextNode)

will evaluatet r ue and thei f statement will execute aslong as next Node points only to NULL
(zero).

To most programmers, thisis so idiomatic that

If (! nextNode)

really means" i f next Node doesn't yet point to anything..." and we don't much think through all the
convoluted logic that makes that work.

Inany case, thei f statement executes by calling newNode, passing int heChar , and assigning the
address that results to next Node. Calling newimmediately invokes the constructor, so stepping into
thisline brings us to the Node constructor on line 18. Once again, a message is printed on line 82), and
we return from the constructor, assigning the address that is returned from newto the next Node
pointer of the first node.

Beforeleaving | nsert, let'sexaminethet hi s and the next Node pointers. Y ou should find that

t hi s hasan address that is equal to the first address printed because we are now back in that first node.
Y ou should find that the next Node pointer has the address of the object we just created. Sure enough,
we now have alinked list with two objectsinit.

Continuing causes usto return from | nsert () back to mai n() , where the same logic is repeated to
insert' ¢',' b',andonceagain' b' .

If you don't want to work your way through the logic repeatedly, continue to step over these lines until
you reach line 70. We are now ready to determine how many instancesof ' b' exist in the program.

Step into this line of code. Thistakesyou into Node: : Howivany() on |ine 40, inwhichthe
parameter t heChar hasthevalue' b' . Online 42 well initialize my Count to 0. On line 43 we test
my Char , which hasthevaue' a' , againstt heChar , which hasthevaue' b' . Thistest fails, so we
fall through to line 45, where we test to see whether next Node isnonzero; it is. This causes us to
execute the body of thei f statement:

return nyCount + next Node->HowMany(t heChar);

Step into thisline. Y ou find yourself in Howivany () for the second node. Continue stepping. my Char
iIs' b' thistime, and it thus matchest heChar . We increment my Count and test next Node. Again it
IS nonzero, so again we step in, thistime to the third node in the list.

In the third node, myChar is' ¢’ , so it does not match my Char ; but next Node is nonzero, so we step
into the fourth node.

In the fourth node, nychar is' b' , and we increment myCount to 1. Why isit setto 1 and not to 2,
given that thisisthe second node with' b' ? The answer isthat my Count islocal to thisinvocation of
Howiany () and therefore can't know about the previous values. Again, next Node is nonzero, so we
now step into the fifth node.

Take alook at thet hi s pointer and expand it in your local variables window. Y ou are now looking at
the local member variables for the fifth node object. myChar is' b' , and next Poi nt er is0. Thus,
we increment nmy Count ; then the test for next Poi nt er fails, so we return ny Count .

We thus return the value 1 to the call from the fourth node. This value is added to the my Count
variable (also 1), summing to 2, and this value is now returned to the third node. The third node's

my Count isO0, so the value 2 is now returned to the second node. Itsmy Count variableis1,so 3 is
returned to the first node. The first node's ny Count is0, so 3 isreturned to mai n() .

It is very important that you understand how this was accomplished. Y ou might find that using pencil
and paper and drawing a picture (see Figure 6.9) makes this easier to understand.

Figure 6.9 Walking the list to get the answer.

Asyou continue to step out of the function calls, you'll find yourself popping up through the calls to
Howiany () , unwinding your way from Node 5 to 4, 3, 2, and back to Node 1. Step into and out of this
set of calls repeatedly until you can match what is happening in your debugger to the diagram in Figure
6.9.

When thisis comfortable, continue stepping over code lines until you get to the call to Di spl ay online
74. Hereyou are caling Di spl ay() onpHead. Step into this method call and you'll bein Di spl ay
() foryour first node on line 32. Step into the method and note the address of the t hi s pointer, which
confirms that you arein the first Node inthelist. myChar isprinted online 34 (printing' a'), and the
next Node pointer ischecked on line 45. It returnst r ue, so Di spl ay() iscalled on the second node
inthelist.

Step into this call, and you are back at line 32. Step in and notice that thet hi s pointer now reflects the
address of the second node, as you'd expect. On line 34, the member variable nyChar isprinted (' b'),
and once againwecall Di spl ay() , thistime on the third node.

This continues until the fifth node printsits value. Because the fifth node does not point to another node,
thei f statement fails, and we return through the various Di spl ay() method invocations, back to
mai n() .

Online 77 we call del et e on pHead. To see what this does, place a break point on line 24 and go
until the break point. Y ou find yourself in the destructor of the head node. On line 26 we print the
address of the first (head) node, and then on line 27 we test next Node, which points to the second
node. We delete that object, causing us to come to the destructor for the second node, where the logicis
repeated. The second node del etes the third node, the third Node del etes the fourth Node, and the fourth
node del etes the fifth.

The client of the linked list, in thiscase mai n() , never had to call Howiany() or Di spl ay() on

any node except the head node, and it doesn't have to delete any node except the head node. The
maintenance of the list is managed by thelist itself. Commands such asDi spl ay() or del et e are
passed along the list as required, each node falling like adomino into the next in the list.

Using Our Simple Linked List in Decryptix!

We are just about ready to change the type of the member variable sol ut i on in the Gane class. Until
now, it has been an array; we want it to be alinked list.

Let's examine all the placeswe use Sol ut i on to see what our linked list must be able to accomplish,
and whether our list of Nodesis up to the task.

Following are the linesin Gane in which we refer to the solution:

t heGane. Di spl ay(t heGane. Get Sol ution());
I nt howMvanyl nAnswer = howivany (sol ution, alphali]);
If (thisGuess[i] == solution[i])

That is, we must have the capability to retrieve the solution and display it, count the instances of a
particular character in the solution, and retrieve the character at a given offset.

Rather than expose the workings of the Node object to the Gane, I've chosen to create a small class that
will serve as an interface to the nodes, which I'll call Li nkedLi st . Listing 6.8 shows the declaration
of theLi nkedLi st class.

Listing 6.8 LinkedList Declared

1:

2: class LinkedLi st

3

4: public:

5: Li nkedLi st ();

6: ~Li nkedLi st () ;

7: bool Add (char c, bool dupes = true);
8: voi d D spl ay () const ;

9: I nt HowVany (char c¢) const;
10: char operator|[] (int offset);

11: private:

12: Node * headNode;

13: };

Totheclient (in thiscase, Gane), Li nkedLi st isthelinked list structure. The client is obliviousto
the existence of nodes (note that headNode is private).

The best way to understand the implementation of these methods is to see them in action. Let's change
Gane touseali nkedLi st asitssol uti on, asshowninListing 6.9.

Listing 6.9 The Game Class Declaration

0: #include "List0606 LL.h"

1:

2: class Gane

3

4: public:

5: Gane 0);

6: ~Cane () {}

7: voi d D spl ay (const LinkedLi st * pList) const
7a: { pList->Display(); }

8: const LinkedList & GetSolution () const { return
sol ution; }

9: voi d Pl ay 0);

10: voi d Score (const char * thisGuess, int &
10a: correct, int & position);

11:

12: private:

13: I nt HowMany (const char * theString, char theChar),;
14:

15: bool dupl i cat es;

16: I nt howMvanylLetters;

17: I nt howianyPosi ti ons;

18: I nt round,

19: Li nkedLi st sol uti on;

20: };

Gane isunchanged except for the last line, where the sol ut i on member variable is changed to type
Li nkedLi st.

NOTE: When one class contains another, as Ganre containsLi nkedLi st , it can do so
by value or by reference. Li nkedLi st contains Node by reference (see Figure 6.10).

Figure 6.10 Containing the node by reference.

NOTE: Gane, on the other hand, containsLi nkedLi st by value and is diagrammed in
the UML as shown in Figure 6.11. Thefilled in diamond indicates by value.

Figure 6.11 Containing linked list by value.

Run it!

Let's run through one play of Decryptix! and see how the Li nkedLi st isused. Our driver programis
unchanged, as shown in Listing 6.10. We begin by instantiating a Ganme object, which brings us into
Gane's constructor as shown in Listing 6.11.

When you make an instance of an object, you are said to instantiate it.

NOTE: To saveroom, I'veleft out the beginning of Gane's constructor, in which the
member variableshowiVanyLet t er s, howManyPosi ti ons, anddupl i cat es are
set because thislogic is unchanged.

Listing 6.10 Decryptix!.cpp

{

while (choice !'="y" &% choice !="n")

0: #include "DefinedVval ues. h"

1: #include "List0607_Gane. h"

2:

3: int main()

4. {

5: cout << "Decryptix. Copyright 1999 Liberty";

9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:

}

cout << Associates, Inc. Version 0.4\n\n" << endl:
bool

pl ayAgain = true;

while (playAgain)

{

}

char choice = :
Gane t heGne;

t heGane. Pl ay();

cout << "\nThe answer: “;

t heGane. Get Sol ution(). D spl ay();
cout << "\n\n" << endl;

while (choice !'="y" &% choice I="n")
{

cout << "\nPlay again (y/n): ",

cin >> choi ce;

}

pl ayAgain = choice =="y

? true : false;

return O;

Listing 6.11 Implementing Game

COoNIO RN R

Gane: : Gane() :

round(1),
howvanyPosi ti ons(0),
howvanyLetters(0),
duplicates(fal se)

I, ..

srand((unsigned)time(NULL));

for (int i =0; i < howhnyPositions;)

{

I nt nextValue = rand() % (howManylLetters);
char c¢ = al pha[next Val ue];
I f (solution.Add(c, duplicates))

17: | ++;

18: }

19:

20: cout << "Exiting constructor. List: ";
21: sol ution. Di splay();

22:

23: }

We pick up the logic on line 14, within the f or loop in which we create our random numbers, turn them
into characters on line 20, and then add them to sol ut i on online 21. It is here, when we call

sol uti on. add(), that thelogic of the Li nkedLi st comesinto play. Thisinvokes

Li nkedLi st: : Add() , asshowninListing 6.12.

Listing 6.12 Implementing LinkedList

1.

2: bool LinkedList::Add(char theChar, bool dupes)
3 {

4. bool inserted = fal se;

5:

6: if (! headNode)

7: {

8: headNode = new Node(t heChar);

9: | nserted = true;

10: }

11: else if (dupes || Howwvany(theChar) == 0)
12: {

13: headNode- >l nsert (t heChar);

14. | nserted = true;

15: }

16:

17: return inserted;

18: }

19:

20: int LinkedList::Howvany(char theChar) const
21: |

22: return headNode- >HowMany(t heChar) ;

23 }

24.

25: char LinkedList::offset(int offSetVal ue)
26: |

27 Node * pNode = headNode;

28: for (int i =0; I < offSetValue & pNode; i ++)

29: pNode = pNode- >Get Next () ;

30:

31: ASSERT (pNode);

32: char ¢ = pNode->Cet Char();

33: return c;

34: }

35:

36: char LinkedList::operator[](int offSetVal ue)
37 |

38: Node * pNode = headNode;

39: for (int i =0; i < offSetValue & pNode; i ++)
40: pNode = pNode- >Get Next () ;

41

42: ASSERT (pNode);

43: char ¢ = pNode->GCet Char();

44 return c;

45: }

Online6, Li nkedLi st checksto see whether it already has aheadNode. To do this, it checksits
headNode pointer, which wasinitialized to NULL in Li nkedLi st 'sconstructor. If that is pointer is
still NULL, no headNode exists, so oneis now created, passing in the character to be stored.

The constructor to Node was considered earlier (refer to Listing 6.3). Remember that the Node's
member variable my Char isinitialized with the character passed in (t heChar), and its member
variable next Node isinitialized with NULL as shown in Listing 6.13.

Listing 6.13 Node Constructor

0 Node: : Node(char theChar):

1 myChar (t heChar), next Node(0)
2: |

3}

This effectively adds the character to the linked list, storing it in the head node.

If there already isaHeadNode, (that is, the pointer isnot NULL), we have alist already and must
decide whether we want to add the character. If we are accepting duplicates or if the character does not
appear inthelist aready (line 11), we add it by calling | nser t ontheheadNode (line 13). | aready
described HeadNode() : : I nsert inListing 6.3.

We determine whether the character isin thelist on line 11 by calling Li nkedLi st : : Howivany(),
asshown in Listing 6.14.

Listing 6.14 LinkedList's HowMany Method

I nt Li nkedLi st:: Howiany(char theChar) const
{

}

return headNode- >HowMany(t heChar) ;

WP

Asyou can see, Li nkedLi st does nothing but pass along the character to the headNode, calling the
logic that was considered earlier (in Listing 6.3). The Li nkedLi st method Howivany () isconsidered
awrapper method: It wraps around the Node: : Howvany () method, encapsulating its interface, but
delegating all the work to the encapsulated method.

wr apper--A classisawrapper for another when it provides a public interface but
delegates all the work to the contained class.

method--A method is awrapper for another method when it provides an encapsulating
interface to that method but delegates all the work to the wrapped method.

Playing the Game

After thesol ut i on member linked list is populated, the Gane object isfully constructed and the next
lineinmai n() isacal tothe Gane'sPl ay() method. Thiswas considered earlier, and you probably
remember that Pl ay () solicits aguess from the player and then calls Gane: : Scor e().

Gane: : Scor e() wasalso considered earlier, but because solution is now alinked list, thisis worth
another look. I've reproduced Gane: : Scor e() inListing 6.15 for your convenience.

Listing 6.15 The Score Method

0:voi d Gane:: Score(const char * thisCGuess, int & correct, int &

posi tion)

1. |

2: correct = O;

3: position = 0;

4.

5:

6: for (int i =0; I < howhnylLetters; i++)

7: {

8: i nt howiMvanyl nGuess = HowiMany(thi sGuess, al pha[i]);
9: i nt howivanyl nAnswer = sol uti on. Howivany(al phal[i]);
10: correct += howihnyl nGuess < howMvanyl nAnswer ?

10a: howivanyl nGuess : howMvanyl nAnswer ;

11: }

12:

13: for (i =0; i < howhnyPositions; i++)

14. {

15: If (thisGuess[i] == solution[i])

16: posi ti on++;

17: }

18:

19: ASSERT (position <= correct)

20:

21 }

On line 9, we must determine how many times each character appearsin sol ut i on. We do this by
calling Howivany () onsol uti on, passing in each character inturn. ThiscallsLi nkedLi st : :
HowiMany () , which, aswe just saw, callsNode: : Howivany() .

On line 15, we compare the letter at each offset intot hi sGuess with the letter at the same offset in
sol uti on. The Node class does not provide an offset operator, but the Li nkedLi st classmust if
we are to make this comparison.

Solving the Problem with a Member Method

Y ou can solve this problem by implementing an of f set method and calling that method by changing
line 15 to read

15: If (thisQuess[i] == solution.offset(i))
The implementation of the of f set method is shown in Listing 6.16.
Listing 6.16[em]The offset Operator

char LinkedList::offset(int offSetValue)

0
1.

2: Node * pNode = headNode;

3: for (int i =0; I < offSetValue && pNode; i ++)
4: pNode = pNode->Get Next () ;

5

6 ASSERT (pNode);

7: char ¢ = pNode->Cet Char();
8. return c;

9: }

The offset is passed into this method as a parameter. We make a new, local pointer, pNode, and we
assign to that pointer the address that is currently held in headNode. Thus, both pointers now point to
the same object on the heap, as shown in Figure 6.12.

The goal of thef or loop online3in Listing 6.16 isto tick through the linked list, starting at the head
node, and find the node that correspondsto of f Set Val ue.

Aswe tick through each node, we must also check that pNode continues to point to avalid node (that
IS, we have not reached the end of the list). This protects us from trying to get an offset that istoo large
for thelist.

We put the test for whether the offset continues to point to avalid Node right into the f or loop by
adding it to the test condition:

| < of fSetVal ue && pNode;

Thistests that the counter i is not greater than the offset value that was passed in (that is, we're still
ticking through the list) and that pNode has a nonzero (that is, non-NULL) value.

On line 4 we assign to pNode the address returned by Get Next () . Thecall to Node: : Get Next ()
simply returns the address that is stored in that node's next Node pointer. The net effect of thisis that
pNode now points to the next node in the list.

Thisf or loop continues until i isno longer lessthan of f Set Val ue. Thus, if of f Set Val ue is5,
thisf or loop causes pNode to point to the sixth node in the list, just as you want it to.

On line 6, we assert that we are still pointing to avalid object (belt and suspenders!), on line 7 we extract
from that node the character it holds, and on line 8 we return that character.

The net effect of al thisisthat if you call of f set (5) , you get back the character at the fifth offset:
that is, the sixth character in the list.

Thisworks great, but it isn't how arrays work. Y ou never write

nyArray. of fset (5);

You write

nyArrayl[5] ;

It would be niceif our linked list supported the same syntax.
Operator Overloading

C++ provides the capability for the designer of a classto give that class the same operators that are
availlablein the built-in class, such as +, - , ==, <, >, and so forth. Thisis called operator overloading.
The goal of operator overloading isto allow your class to behave asif it were a built-in type.

oper ator overloading--The ability to program operators such as plus (+) or assignment
(=) for classes

How You Accomplish Operator Overloading

C++ has a specific syntax dedicated to creating operators for your classes. We'll examine how the offset
operator ([]) is overloaded because that is what we need right now in the code; we'll return to operator
overloading throughout the book, however, because it is a powerful technique with many subtleties.

To create the offset operator, you use the following syntax:
char operator[](int offSetVal ue);

When you writesol ut i on[5] , the compiler automatically convertsthisto sol ut i on. oper at or

[1(5).

The implementation for this overloaded operator isidentical to the offset method shown in Listing 6.14,
asillustrated in Listing 6.17. The only difference isin the signature of the method.

Listing 6.17 LinkedList's offset Operator

0 char LinkedList::operator[](int offSetVal ue)

1. {

2: Node * pNode = headNode;

3: for (int i =0; I < offSetValue & pNode; i++)

pNode = pNode- >Get Next () ;

ASSERT (pNode);
char ¢ = pNode->Cet Char();
return c;

OO~ O R

}

Asyou can see, the body isidentical; it isjust the signature on line O that is different:
0: char LinkedList::operator[](int offSetVal ue)

Once again, the return valueisachar , but this time we see the keyword oper at or , followed by the
operator we're overloading, and then the parameter that is needed by that operator.

Y ou invoke this method by writing

sol ution[5];

which the compiler trandates into

sol ution. operator[](5);

setting the parameter of f set to the value passed in (5).

With thisimplementation in place, the Pl ay () method can test the value of sol uti on[i], andthus
the Pl ay() method remains unchanged from when we were using arrays.

Passing Objects by Value

After the Ganre isfully constructed, we return to mai n() , wherethe Pl ay () method isinvoked.
When we return from Pl ay() , we seethisline:

t heGane. Get Sol ution(). Di splay();

This causes the Gane's Get Sol ut i on() method to be called, returning areferenceto a
Li nkedLi st ; then the method Di spl ay() iscalled onthat referencetoali nkedLi st object.

It is clearer to write

const LinkedLi st & |i nkedLi st Const ant Ref erence =
t heGane. Get Sol uti on();

| i nkedLi st Const ant Ref erence. Di spl ay();
This compiles equally well and makes a bit more explicit what we're up to.

Wedeclarel | nkedLi st Const ant Ref er ence to be areferenceto aconstant Li nkedLi st
object because that iswhat Get Sol ut i on() isdeclared to returnin Game.h:

cl ass Gane

{
I, ..
const LinkedList & GetSolution () const { return solution; }
I, ..
}
Let's pick this apart:

. const, Li nkedLi st , and & together represent the return value: areference to a constant
Li nkedLi st object.

. CGet Sol uti on isthe name of the method, Get Sol ut i on.
. () isthe parameter list, which in this case is empty.
. const declaresthis member method to be constant.

. return sol ution istheinlineimplementation, in which we return the member variable
sol uti on.

Because the return value is declared to be a constant referenceto aLi nkedLi st , we actually don't
return sol ut i on itsalf. Instead, we return a constant referenceto sol ut i on.

NOTE: The fact that we return areference to a constant object limits what you can do
with that object. For example, you can only call constant member methods using that
reference. If the reference is to a constant object, you can't change that object, and calling
amethod that is not constant risks changing the object. The compiler enforces this
constraint. We're fine here because the only method we call with thisreferenceis

Di spl ay(), whichisaconstant member method of Li nkedLi st .

Why Is it a Reference?
Why bother returning the Li nkedLi st object by reference at al? Why not just return it by value?
Li nkedLi st GetSolution () const { return solution; }

This has the advantage of not being constant: Y ou can do anything you want with this object. Because it
isacopy of the original, you won't affect sol ut i on at all. The net effect in this case is the same: You
can till call Di spl ay, only thistime you'll call it on the copy.

The answer isthat it is more expensive to make a copy, but to understand why, we must examine what
happens when you pass an object by value, thisis the subject of the next chapter, " Creating Object-
Oriented Linked Lists."

(4 Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

oue

C++ From Scratch

8

Using Polymorphism

« Inthis Chapter
. Specidization
o Benefits from Specialization
o Polymorphism
o Abstract Data Types
o How ThisIsImplemented in C++
o The Syntax of Inheritance
. Overriding Functions
. Virtua Methods
o How Virtual Functions Work
o Virtua Destructors
. Implementing Polymorphism
o Adding a Second L etter
o Appending 'b'.Examining operator(]

In this Chapter
. Speciaization

. Overriding Functions

. Virtua Methods
. Implementing Polymorphism

The linked list class works, but it cries out for a bit of improvement. Each node in the list is forever
checking to see whether there is a next node in the list before taking action:

voi d Node::Insert(char theChar)

{
I f (! nextNode)
next Node = new Node(t heChar);
el se
next Node- >l nsert (t heChar);
}

This creates code that is a bit more difficult to maintain. As an object-oriented designer, | notice that I'm
asking each node to be capable of being the head node in the list, an internal node in the list, or the tail
of the list. There is nothing special about these positions--they are just nodes.

Because any node can be internal or thetail, it can't know whether it has a next node, so it must test. If a
node knew that it was an internal node, it would always know that there was a next node ("If I'm not the
tail, there must be at least one after me"). If it knew that it was the tail, it would know there was no next

node (such is the meaning of being the tail node; objectslive avery existential existence, and they often

major in epistemology).

Specialization

Thisleads meto aredesign. Init, | have three types of nodes: One is the head node, oneis thetail, and
the third is the internal node.

You've already seen that the Li nkedLi st classyou created can mark the head node position, and that
this class has special responsibilities such as supporting an offset operator. Let's break out the
| nt er nal Node fromthe Tai | Node.

When we say that the Li nkedLi st, | nt er nal Node, and Tai | Node are al nodes, thistells us that
we are thinking about a specialization/generalization relationship. The Li nkedLi st

| nt er nal Node, and Tai | Node are specializations of Node. TheLi nkedLi st hasthe special
requirement that it act as an interface to the list, which leads me to the design shown in Figure 8.1

Figure 8.1 Node Specialization.

In this design, shown herein UML notation, we indicate that the Li nkedLi st , | nt er nal Node, and
Tai | Node aredl kinds of Node. This brings us back to the conversation about specialization/
generdization in Chapter 1, "Introduction.”

The specialization relationship establishes an is-a relationship: That is, aTai | Node is-a Node.
Furthermore, the specialization relationship indicates that Tai | Node adds to the definition of Node. It
saysthat thisis aspecia kind of Node--one that marks the end of alist.

Similarly, I nt er nal Node specializes Node to mean a node that manages associated data and that, by
implication, does not mark thetail of thelist.

Finally, Li nkedLi st is-anode, avery special node that marks the head of the list and that provides an
interface to users of the list. We could have called this the head node, but we want to focus on the user's
perception: To the user, the head node is the linked list. Thus, we bridge the gap between the architect's
view (in which thisis the head node in alinked list) and the user's view (in which thisis the linked list)
by having it inherit from Node but calling it Li nkedLi st .

NOTE: The specialization/generalization relationship is reciprocal. Because

Li nkedLi st, Tai | Node, and | nt er nal Node specialize Node, Node inturn
becomes a generalization of the commonality between all three of these classes.
Programmers talk about factoring out common features from the derived classes up into
the base classes. Thus, you can factor out al the common responsibilities of the three
classes up into Node.

Benefits from Specialization

The first benefit you receive from this design is that Node can serve to hold the common characteristics
of Li nkedLi st, | nt er nal Node, and Tai | Node. The things they have in common in this design
are that any Node can exist in alist, that you can tell any Node to insert a new data object, and that you
can tell aNode to display itself.

In addition, by specializing Node, thisdesign of Tai | Node maintains the Node features but adds the
special capability to mark the end of the list. This specialization is manifest in the differences in how
Tai | Node respondsto arequest to | nser t data, which it handles differently than, for example, an

| nt er nal Nod e does.

Polymorphism

Theneedto handlel nsert () inaspecia way might be a good reason to create a new class, but you
can imagine that it would make your code much more complicated. Each Node would have to know
what it pointed to: If it pointed to an | nt er nal Node, it would call | nt er nal Nodel nsert , andif
it pointedtoaTai | Node, it would call Tai | Nodel nser t . What abother.

We want to say, "l have aNode, | don't know what kind. It might bean | nt er nal Node or it might be
aTai | Node. Whenl cal |l nsert (), want my Node to act oneway if itisan | nt er nal Node,
andin adifferent way if itisaTai | Node."

Thisis called polymorphism: poly means many and morph means form. We want the Node to take on
many forms. C++ supports polymorphism, which means that the client can call | nsert onthe Node
and the compiler will take care of making the right thing happen. In this case, the right thing means that
iIf the Nodeisreally an| nt er nal Node, | nt er nal Node: : | nsert () will be called; if the Nodeis
really aTai | Node, Tai | Node: : I nsert () will be called instead.

Abstract Data Types

Y ou want to create | nt er nal Node objects to hold your data, and you want to create asingle

Tai | Node object and asingleLLi nkedLi st object. You will never instantiate a Node object, though.
The Node object exists only as an abstraction so that you can say "1 will call the next node," and not
worry about which kind of nodeit is. The Node classis called an abstract data type (ADT) because it
exists only to provide an abstraction for the classes that inherit fromit.

The classes that are derived from your ADT (inthiscase, Li nkedLi st , | nt er nal Node, and

Tai | Node) can be concrete, and thus can have objects instantiated. Alternatively, you can derive
ADTsfrom other ADTSs. Ultimately, however, you must derive a concrete class so that you can create
objects.

Abstract Data Type--A class that provides a common interface to a number of classes
that derive fromit. Y ou can never instantiate an Abstract Data Type.

concr ete class-—-A class that is not abstract and that can therefore be instantiated.

How This Is Implemented in C++

Until now, we've not discussed aword about how all thisisimplemented in C++. That is because we
have rightly been focused on design, not implementation.

The design callsfor all three of these classes to specialize Node. Y ou implement that design concept of
specialization by using inheritance. Thus, you will have Li nkedLi st , Tai | Node, and
| nt er nal Node inherit from Node.

The Syntax of Inheritance

When you declare a class, you can indicate the class from which it derives by writing a colon after the
class name, the type of derivation (public or otherwise), and the class from which it derives. For now,
focus only on public inheritance because that is what implements the design concept of specialization/
generalization.

Thus, to indicate that | nt er nal Node isaspecialization of Node, or that | nt er nal Node derives
from Node, you write

cl ass I nternal Node : public Node

NOTE: When one class specializes another, we say that the specialized classis derived
from the more general class, and that the more general class is the base class.

The class from which you derive must have been declared already, or you receive a compiler error.

Overriding Functions

A Li nkedLi st object has access to al the member functionsin class Node, aswell as to any member
functions the declaration of the Li nkedLi st class might add. It can also override a base class
function. Overriding a function means changing the implementation of a base class function in aderived
class. When you instantiate an object of the derived class and call an overridden method, the right thing
happens.

NOTE: When aderived class creates a function with the same return type and signature
as amember function in the base class, but with a new implementation, it is said to
override that method.

Thisisvery handy because it allows an | nt er nal Node to specialize how it handles some methods
(suchasl nsert ()) and smply inherit the implementation of other methods.

When you override afunction, its signature must be identical to the signature of the function in the base
class. The signature is the function prototype, other than the return type: the name, the parameter list,
and the keyword const (if it isused).

Virtual Methods

| have emphasized the fact that an | nt er nal Node object is-a Node object. So far that has meant only
that the | nt er nal Node object has inherited the attributes (data) and capabilities (methods) of its base
class. In C++, however, the is-a relationship runs deeper than that.

C++ extends its polymorphism, allowing pointers to base classes to be assigned to derived class objects.
Thus, you can write

Node * pNode = new | nt er nal Node;

This createsanew | nt er nal Node object on the heap and returns a pointer to that object, which it
assigns to a pointer to Node. Thisisfine because an | nt er nal Node is-aNode.

In fact, thisis the key to polymorphism. Y ou can create all kinds of Windows--they can each have a

dr awm() method that does something different (the list box draws arectangle, the radio button draws a
circle). You can create a pointer to a Window without regard to what type of Window you have, and
when you call

pW ndow >Dr aw() ;
the Window is drawn properly.

Similarly, you can have a pointer to any kind of Node, aLi nkedLi st ,an| nt er nal Node, ora
Tai | Node, andyou cancall | nsert () onthat node without regard to what kind of Node itis. The
right thing will happen.

Here's how it works: Y ou use the pointer to invoke a method on Node, for examplel nsert () . If the
pointer isreally pointing toaTai | Node, and if Tai | Node hasoverridden | nsert (), the overridden
version of | nsert iscalled. If Tai | Node does not overridel nsert (), it inherits this method from
its base class, Node, and Node: : | nsert () iscalled.

Thisis accomplished through the magic of virtual functions.

NOTE: C++ programmers use the terms method and function interchangeably. This
confusion comes from the fact that C++ has two parents: the object-oriented languages
such as Small Talk, which use the term method, and C, which uses the term function.

How Virtual Functions Work

When aderived object, such asan | nt er nal Node object, is created, first the constructor for the base
classis called, and then the constructor for the derived classis called. Figure 8.2 shows how the

| nt er nal Node object looks after it is created. Note that the Node part of the object is contiguousin
memory with the | nt er nal Node part.

Figure8.2 Thel nt er nal Node object after it is created.

When avirtual function is created in an object, the object must keep track of that function. Many
compilers build a virtual function table, called a v-table. One of these tablesis kept for each type, and
each object of that type keeps a virtual table pointer (called avptr or v-pointer) that points to that table.
(Although implementations vary, all compilers must accomplish the same thing, so you won't be too
wrong with this description.)

v-table--The virtual function table used to achieve polymorphism

vptr or v-pointer--The Virtual Function Table Pointer, which is provided for every object
from aclass with at least one virtual method

Each object's vptr points to the v-table that, in turn, has a pointer to each of the virtual functions. When
the Node part of the | nt er nal Node is created, the vptr isinitialized to point to the correct part of the
v-table, as shown in Figure 8.3.

Figure 8.3 The v-table of a node.
When the |l nt er nal Node constructor is called and the | nt er nal Node part of this object is added,

the vptr is adjusted to point to the virtual function overrides (if any) inthel nt er nal Node object (see
Figure 8.4).

Figure8.4 Thev-tableof al nt er nal Node.

When a pointer to a Node is used, the vptr continues to point to the correct function, depending on the
"real" type of the object. Thus, when | nsert () isinvoked, the correct (I nt er nal Node) version of
the function isinvoked.

Virtual Destructors

It islegal and common to pass a pointer to a derived object when a pointer to a base object is expected.
What happens when that pointer to a derived subject is deleted? If the destructor is virtual, asit should
be, the right thing happens. The derived class's destructor is called. Because the derived class's
destructor automatically invokes the base class's destructor, the entire object is properly destroyed.

The rule of thumb isthis: If any of the functionsin your class are virtual, the destructor needs to be
virtual aswell.

The ANSI/ISO standard dictates that you can vary the return type, but few compilers support this. If you
change the signature--the name, number, or type of parameters or whether the method isconst --you
are not overriding the method, you are adding a new method.

It isimportant to note that if you add a new method with the same name as another method in the base
class, you hide the base class method and the client can't get to it. Take alook at Listing 8.1, which
illustrates this point.

Listing 8.1 Hiding the Base Class Method

0: #include <iostreane

1. using nanespace std;

2.

3: class Base

4. |

5. public:

6: Base() { cout << "Base constructor\n"; }

7: virtual ~Base() { cout << "Base destructor\n"; }

8: virtual void MethodOne() { cout << "Base MethodOne\n"; }
9: virtual void MethodTwo() { cout << "Base MethodTwo\n"; }
10: virtual void MethodThree()

11: { cout << "Base MethodThree\n"; }

12: private:

13: };

15: class Derived : public Base

16: {

17. public:

18: Derived() { cout << "Derived constructor\n"; }
19: virtual ~Derived() { cout << "Derived destructor\n"; }
20: virtual void MethodOne() { cout << "Derived Met hodOne\n"; }
21: virtual void MethodTwo() { cout << "Derived MethodTwo\n"; }
22: virtual void MethodThree(int nmyParam

23: { cout << "Derived MethodThree\n"; }

24: private:

25: };

26:

27 int main()

28 {

29:

30: Base * pb = new Base;

31: pb- >Met hodOne() ;

32: pb- >Met hodTwo() ;

33: pb- >Met hodThr ee() ;

34. |/ pb- >Met hodThr ee(5) ;

35: del et e pb;

36: cout << endl;

37:

38: Base * pbd = new Derived;

39: pbd- >Met hodOne() ;

40: pbd- >Met hodTwo() ;

41: pbd- >Met hodThr ee() ;

42: |1 pbd- >Met hodThr ee(5) ;

43: del et e pbd;

44: cout << endl;

45:

46: Derived * pd = new Derived,;

47: pd- >Met hodOne() ;

48: pd- >Met hodTwo() ;

49: |/ pd- >Met hodThr ee() ;

50: pd- >Met hodThr ee(5) ;

51: del et e pd;

52:

53: return O;

54: }

Base constructor
Base Met hodOne
Base Met hodTwo

Base Met hodThr ee
Base destructor
Base constructor
Deri ved constructor
Deri ved Met hodOne
Deri ved Met hodTwo
Base Met hodThr ee
Deri ved destructor
Base destructor
Base constructor
Deri ved constructor
Deri ved Met hodOne
Deri ved Met hodTwo
Deri ved Met hodThr ee
Deri ved destructor
Base destructor

In this example, we create aBase classand aDer i ved class. The Base class declares three methods
virtual on lines 8-10, which will be overriddenin the Der i ved class.

The overridden Met hodThr ee differs from the base class's version in that it takes an extra parameter.
This overloads the method (rather than overridesit) and hides the base class method. What is the effect?
Let'ssee.

On line 30 we declare a pointer to a Base object, and we use this pointer to invoke Met hodOne,
Met hodTwo, and both versions of Met hodThr ee. The second, shown on line 34, won't compile and
so is commented out. It won't compile because Base objects know nothing about this overload version.

The output shows that a Base constructor is called, followed by the three Base methods, ending with a
call to the Base destructor. Pretty much as we might expect.

On line 38 we declare apointer to aBase and initialize it withaDer i ved. Thisisthe polymorphic
form: We assign a specialized object to a pointer to a more general object. We call Met hodOne,

Met hodTwo, and Met hodThr ee, and they compile fine until we try to compile the version that takes
ani nt . Becausethisisapointer to aBase, it can't find this method and won't compile.

Let'slook at the output. We see the Base constructor, and then the Der i ved constructor. That is how
derived objects are constructed: base first. Wethen seeacall tothe Deri ved Met hodOne.
Polymorphism works! Here we have a Base pointer, but because we assigned aDer i ved object toit,
when we call avirtual method, the right method is called. Thisisfollowed by acall to Der i ved

Met hodTwo, and thento Base Met hodThr ee! Asfar asthe Base pointer is concerned, Base

Met hodThr ee has not been overridden, so Der i ved inheritsthe Base method. Finally, the object is

destroyed in the reverse order in which it was created.

Thefinal set of code beginson line 46, where we createaDer i ved Poi nt er and initializeit with a
Der i ved object. Thistime we can't call the version of Met hodThr ee that was declared in Base
because our new Der i ved object hidesit. This provesthe rule: If you overload a base classin the
derived class, you must explicitly implement every version of the method (in this case you'd have to
implement the version with no parameters) in the derived class, or it is hidden from your derived objects.

The output reflects the fact that thisDer i ved object calls (of course) only derived methods.

To avoid the hiding, we can move the version of the method that takes an integer up into Base, or at a
minimum we can implement the version with no parameters in the derived class. If we choose the first

option, we can use both methods polymorphically. If we choose the latter, at |east we can access the base

method using a derived object.

We can, actually, overcome many of these problems with abit more magic. Let's take them inturn. To
solve the first problem (shown on line 34), we have only to overload Met hodThr ee in Base:

3
4
5
6.
7.
g
9
1
1

12:
13:

0:
1.

cl ass Base

{

publ i c:
Base() { cout << "Base constructor\n"; }
virtual ~Base() { cout << "Base destructor\n"; }
virtual void MethodOne() { cout << "Base MethodOne\n"; }
virtual void MethodTwo() { cout << "Base MethodTwo\n"; }
virtual void MethodThree()

{ cout << "Base MethodThree\n"; }
virtual void MethodThree(int param
{ cout << "Base MethodThree(int)\n"; }
private:
}

To solve the problem on lines 42 and 49, we need only invoke the base class's method directly:

42:

/1

pbd- >Base: : Met hodThr ee(5);

Here we use the Base class name, followed by the scoping operator (: :), to invoke the Base version
of this method. Hey! Presto! Now we've "unhidden” it, and we can call it.

Implementing Polymorphism

All thisisfine in theory, but it remains highly abstract until you see it implemented in code. Let's take a
look at the implementation of the newly object-oriented Li nkedLi st (seeListing 8.2).

Listing 8.2 LinkedList

0: #ifndef LINKEDLIST H

1: #define LINKEDLI ST H

2.

3: #include "DefinedVal ues. h"

4.

5. class Node // abstract data type

6: {

7: public:

8: Node() {}

9: virtual ~Node() {}

10: virtual void D splay() const { }

11: virtual int HowMany(char c) const = O;
12: virtual Node * Insert(char theCharacter) = O;
13: virtual char operator[](int offset) = 0O;
14. private:

15. };

16:

17: class Internal Node: public Node

18: {

19: public:

20: | nt er nal Node(char theCharacter, Node * next);
21: virtual ~Internal Node();

22: virtual void D splay() const;

23: virtual int HowMany(char c) const;

24 virtual Node * Insert(char theCharacter);
25: virtual char operator[](int offset);

26:

27: private:

28: char nyChar;

29: Node * next Node;

30: };

31:

32: class Tail Node : public Node

33: |

34: public:

35: Tai | Node() {}

36: virtual ~Tail Node(){}

37: virtual int HowMany(char c) const;

38: virtual Node * Insert(char theCharacter);

39: virtual char operator[](int offset);
40:

41: private:

42

43: };

44

45: class LinkedList : public Node

46: |

47: publi c:

48: Li nkedLi st ();

49: virtual ~LinkedList();

50: virtual void Display() const;

51: virtual int HowMany(char c) const;
52: virtual char operator[](int offset);
53:

54: bool Add(char c);

55: voi d Set Dupl i cat es(bool dupes);
56:

57: private:

58: Node * Insert(char c);

59: bool dupli cates;

60: Node * next Node;

61: };

62:

63: #endif

Thisanalysis begins on line 5 with the declaration of the Node class. Note that all the methods, with the
exception of the constructor, are virtual.

Constructors cannot be virtual; destructors need to be virtual if any method is virtual; and I've made the
rest of the methods virtual because | expect that they can be overridden in at |east some of the derived
classes.

Note that the first three methods--the constructor, the destructor, and Di spl ay () --all haveinline
implementations that do nothing. Howivlany () (line 11), however, does not have an inline
implementation. If you check Listing 8.2, which has the implementation for the classes that are declared
in Listing 8.1, you will not find an implementation for Node: : Howivany() .

That is because Node: : Howvany () isdeclared to be apure virtual function by virtue of the
designation at the end of the declaration, = 0. Thisindicates to the compiler that this method must be
overridden in the derived class. In fact, it is the presence of one or more pure virtual functions in your
class declaration that creates an ADT. To recap: In C++, an abstract datatypeis created by declaring one

or more pure virtua functionsin the class.

Pure Virtual Function--A member function that must be overridden in the derived class,
and which makes the classin which it is declared an Abstract Data Type. Y ou create a
pure virtual function by adding = 0 to the function declaration.

The Node classis, therefore, an ADT from which you derive the concrete nodes you'll instantiate in the
program. Every one of these concrete types must override the Howivany () and | nsert () methods, as
well as the offset operator. If aderived type fails to override even one of these methods, it too is abstract,
and no objects can be instantiated from it.

Online 17, you see the declaration of the | nt er nal Node class, which derives from Node. Asyou
can see on lines 23-25, this class does override the three pure virtual functions of Node; thus, thisisa
concrete class from which you can instantiate objects.

Although we put the keyword vi r t ual onlines22-25, it is not necessary. When a method is virtual, it
remains virtual al the way down the hierarchy of derived classes. So we could have left this designation
out here, aswe did on line 21.

| nt er nal Node adds two private variables: nyChar and next Node. Itisclear why myChar can't
bein Node: Only | nt er nal Node classes have a character for which they are responsible. Why not
put next Node up in the base class, then? After all, nodes exist in alinked list. You'd expect all nodes
to have anext Node.

Thisistrue of all nodes except for Tai | Node. Because Tai | Node does not have anext Node, it
doesn't make sense for this attribute to be in the base class.

Y ou can put this pointer in the base and then give Tai | Node anull next Node pointer. That might
work, but it doesn't map to the semantics of aNode. A Node isan object that livesinalinked list. Itis
not part of our definition that aNode must point to another Node, only that it must bein the list.

Tai | Nodes areinthelist, but they don't point to anext Node. Thus, this pointer is not an intrinsic
aspect of aNode, so I'veleft it out of the base class.

The declaration for Tai | Node begins on line 32, and once again you can see that the pure virtual
functions are overridden. The distinguishing characteristics of Tai | Node are shown in the
implementation of these methods, which we'll consider in a moment.

Finally, on line 45 you see Li nkedLi st declared. Again, the pure virtual methods are overridden, but

thistime, on lines 54 and 55, you see new public methods: Add and Set Dupl i cat es. These methods
support the functionality of this class, to provide an interface for the Li nkedLi st to the client classes.

Note also that on line 58 we've moved | nsert () to the private section of Li nkedLi st . Theonly
Node class that any non-Node interacts with isthisone, and | nsert isnot part of the Li nkedLi st
class's public interface. When a client wants to add a character to thelit, it callsLi nkedLi st : : Add
(), whichis shown on line 54.

Node'sl nsert () method is public, however--when nodes interact with one another (for example,
when Li nkedLi st isadding objectsto an | nt er nal Node), thel nsert Met hod isused.

Let'slook at the implementation of Li nkedLi st inListing 8.3, adding Gane in Listings 8.4 and 8.5,
and the driver program Decryptix! in Listing 8.6. This enables us to step through afew methods using
the new object-oriented linked list.

Listing 8.3 Linked List Implementation

0: #include "LinkedLi st.h"

1:

2: I nternal Node: : I nt ernal Node(char theCharacter, Node * next):
3: nyChar (theCharacter), next Node(next)

4. {

5. }

6:

7: I nternal Node: : ~I nt er nal Node()

8: {

9: del et e next Node;

10:. }

11:

12: void Internal Node:: D splay() const

13.

14. cout << nyChar; nextNode->Di splay();

15 }

16:

17: int Internal Node:: HowiMany(char theChar) const
18:

19: i nt myCount = O;

20: i f (myChar == theChar)

21: my Count ++;

22: return nmyCount + next Node- >Howivany(t heChar);
23. }

25: Node * Internal Node::Insert(char theCharacter)
26: {

27: next Node = next Node- >l nsert (t heCharacter);
28: return this;

29: }

30:

31: char Internal Node::operator[](int offSet)
32: |

33: if (offSet == 0)

34 return nyChar;

35: el se

36: return (*next Node)[--offSet];
37: }

38:

39:

40: int Tail Node: : Howivany(char theChar) const
41: |

42: return O;

43: }

44

45: Node * Tail Node: :Insert(char theChar)

46: |

47: return new I nternal Node(theChar, this);
48: }

49:

50: char Tail Node::operator[](int offset)

51: {

52: ASSERT(f al se) ;

53: return ' ';

54: }

995:

56:

o7

58: LinkedLi st:: LinkedList():

59: duplicates(true)

60: {

61: next Node = new Tai | Node;
62: }

63:

64: LinkedLi st::~Li nkedLi st ()

65: {

66: del et e next Node;

67: }

68:
69:
70:
71:
12:
73:
74:
75:
76:
77
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:

voi d LinkedList:: D splay() const
{

}

I nt Li nkedLi st:: Howivany(char theChar) const
{

}

Node * LinkedList::Insert(char theChar)
{

next Node- >Di spl ay();

return next Node- >HowMany(t heChar) ;

next Node = next Node- >l nsert (theChar);
return next Node;

}

char LinkedList::operator[](int offSet)
{

}

return (*next Node)[offSet];

bool LinkedList::Add(char theChar)

{
if (duplicates || Howvany(theChar) == 0)
{
| nsert (t heChar);
return true;
}
el se
return fal se;
}

voi d Li nkedLi st:: Set Dupl i cat es(bool dupes)
{

}

dupl i cat es = dupes;

Listing 8.4 Game Header

0: #ifndef GAME H

1: #define GAVE H

2:

3: #include "definedVval ues. h"

4: #include "LinkedList.h"

S:

6: class Gane

7. A

8: public:

9: Gane() ;

10: ~Ganme() {}

11: voi d Di splay(const LinkedList * pList)const
12: {

13: pLi st->Di spl ay();

14. }

15:

16: void Play();

17: const LinkedList & GetSolution() const
18: {

19: return sol ution;

20: }

21:

22: voi d Scor e(

23: const char * thisCuess,
24: int & correct,

25: int & position

26:);

27:

28: private:

29: i nt HowMany(const char * theString, char theChar);
30: Li nkedLi st sol uti on;
31: i nt howianylLetters;

32: I nt howivanyPosi ti ons;
33: I nt round;

34 bool dupli cates;

35: };

36:

37: #endif

Listing 8.5 Game Implementation

0: #include <tinme. h>
1: #include "gane. h"

2. #include "definedval ues. h"

3.

4. Gane:: Gane():

5: round(1),

6: howvanyPosi ti ons(0),

7: howivanyLet t er s(0),

8: dupl i cat es(fal se)

9: {

10:

11: bool valid = false;

12: while (! valid)

13: {

14. while (howvanylLetters < mnlLetters

15: | | howianylLetters > naxLetters)

16: {

17: cout << "How nmany letters? (" ;

18: cout << mnLetters << "-" << maxLetters << "):
19: cin >> howManylLetters;

20: i f (howManylLetters < mnLetters

21: | | howianylLetters > naxLetters)

22: {

23: cout << "please enter a nunber between ";
24: cout << mnLetters << " and " << nmaxLetters <<
endl ;

25: }

26: }

27:

28: whil e (howMvanyPositions < m nPos ||

29: howivanyPosi ti ons > maxPos)

30: {

31: cout << "How many positions? (";

32: cout << mnPos << "-" << maxPos << "): ";
33: ci n >> howianyPosi ti ons;

34 i f (howManyPositions < m nPos |

35: howivanyPosi ti ons > maxPos)

36: {

37: cout << "please enter a nunber between ";
38: cout << mnPos <<" and " << maxPos << endl;
39: }

40: }

41

42: char choice =" ';

43: while (choice !'="y" &% choice !="n")

44 {

45: cout << "Allow duplicates (y/n)? ";
46: cin >> choi ce;

47: }

48:.

49: duplicates = choice == "'y' ? true : false;
50: sol ution. Set Dupl i cat es(duplicates);

o1:

52: if (! duplicates && howManyPositions >
howianylLetters)

53: {

54: cout << "l can't put " << howiMhnylLetters;
55: cout << " letters in ";

56: cout << howivhnyPositions ;

57: cout << "positions wthout duplicates! Please try again.
\n";

58: howianylLetters = O;

59: howivanyPosi ti ons = O;

60: }

61: el se

62: valid = true;

63: }

64:

65:

66: srand((unsigned)tinme(NULL));

67:

68: for (int i =0; I < howhnyPositions;)

69: {

70: i nt nextValue = rand() % (howManyLetters);
71: char theChar = al pha[next Val ue];

72: i f (solution. Add(theChar))

73: | ++;

74 }

75:

76: cout << "Exiting constructor. List: ";

77: sol ution. Di spl ay();

78:

79: }

80:

81: inline int Gane::HowMvany(const char * theString, char theChar)
82: |

83: int count =

84 for (int i =0; I <strlen(theString); i++)

85: if (theString[i] == theChar)

86: count ++;

87: return count,;

88: }

89:

90: wvoid Gane::Play()

91: {

92: char guess| 80];

93: int correct = O;

94. I nt position = O;

95: bool quit = false;

96:

97: while (position < howvanyPositions)

98: {

99:

100: cout << "\nRound " << round,

101: cout << ". Enter " << howManyPositi ons;
102: cout << " letters between ";

103: cout << alpha[0] << " and ";

104: cout << al pha[howanyLetters-1] << ": ";
105:

106: cin >> guess;

107:

108: if (strlen(guess) != howvanyPositions)
109: {

110: cout << "\n ** P| ease enter exactly ";
111: cout << howiMhnyPositions << " |etters. **\n";
112: conti nue;

113: }

114:

115:

116: round++;

117:

118: cout << "\ nYour guess:. " << guess << endl;
119:

120: Scor e(guess, correct, position);

121: cout << "\t\t" << correct << " correct, ";
122: cout << position << " in position." << endl;
123: }

124.

125: cout << "\ n\nCongratulations! It took you ";
126:

127: If (round <= 6)

128: cout << "only ";

129:

130: if (round-1 == 1)

131: cout << "one round!" << endl;

132: el se

133: cout << round-1 << " rounds." << endl;
134.

135: }

136:

137:

138: void Gane:: Score(

139: const char * thisCuess,

140: int & correct,

141: int & position

142:)

143: {

144 correct = O;

145: position = 0;

146:

147:

148: for (int i =0; I < howhnylLetters; i++)

149: {

150: i nt howiMvanyl nGuess = HowiMany(thi sGuess, alpha[i]);
151: i nt howivanyl nAnswer = sol uti on. Howivany(al phal[i]);
152: correct += howihnyl nGuess < howMvanyl nAnswer ?
153: howivanyl nGuess : howvanyl nAnswer ;

154: }

155:

156: for (i =0; I < howhnyPositions; i++)

157: {

158: if (thisGuess[i] == solution[i])

159: posi ti on++;

160: }

161

162: ASSERT (position <= correct);

163:

164: }

Listing 8.6 Decryptix! Driver Program
0: #include "definedVal ues. h"

1: #include "gane. h"
2:

3: int main()

4. {

S:

6: cout << "Decryptix. Copyright 1999 Liberty Associ ates,";
7: cout << " Inc. Version 0.3\n\n" << endl;

8: bool playAgain = true;

9:

10: while (playAgain)

11: {

12: char choice ="' ';

13: Gane theGane;

14. t heGane. Pl ay();

15:

16: cout << "\ nThe answer: ";

17: t heGane. Get Sol ution(). D splay();

18: cout << "\n\n" << endl;

19:

20: while (choice !'="y" &% choice !="n")
21: {

22: cout << "\nPlay again (y/n): ";

23: cin >> choi ce;

24 }

25:

26: pl ayAgain = choice == "'y' ? true : false;
27: }

28:

29: return O;

30: }

NOTE: The Gane class declaration is unchanged from the previous version, and is
reproduced here only as a convenience.

Let's start the analysis with the construction of the solution member variable of Gane. Put a break point
on line 58 of Listing 8.2. When the break point is hit, the first thing you do is check the call stack to see
when in the execution of the program this constructor was called:

Li nkedLi st:: LinkedList() line 62
Gane: : Gane() line 10 + 58 bytes
main() line 14 + 8 bytes

Asyou can see, mai n() caled the Gane constructor, which in turn called the Li nkedLi st
constructor. Line 14 of mai n() lookslike this:

Gane t heGane;

It's just as you expected--the construction of a Ganme object. Line 10 of Gane isthe opening brace,
shown in the code asline 9 of Listing 8.4. Becausethe Li nkedLi st member variable (sol uti on)
was not initialized, the compiler callsits constructor just before entering the body of Gane's constructor.

Returning to Listing 8.2, line 58, note that the Li nkedLi st initializesitsdupl i cat es member
variableto t r ue (line 59); then, on line 61, it createsanew Tai | Node and setsits own next Node to
point to the Tai | . This creates an empty linked list, as shown in Figure 8.5.

Figure 8.5 Anempty linked list.

Li nkedLi st isthusautomatically initialized to afirst Node (Li nkedLi st) and alast Node
(Tai | Node); neither of them contains any data, but together they create the structure of the list.

If you continue stepping through the code, you find yourself in the body of the Ganme constructor (line
11 of Listing 8.4). Set abreak point on line 66 and run to that break point so that you skip examining the
initial user interface code that has not changed from previous chapters.

When you are prompted, choose five lettersin five positions. The break point is hit, and we generate a
seed for the random number generator, based on the time (as discussed in previous chapters). On line 70,
we generate a random number and use that as an offset into the al pha array to generate our first
character. By line 72 we have that first character, which in my caseis' d' .

Stepping into the Add method causes usto jump to line 92 of Listing 8.2. Online 94, dupl i cat es is
tested and fails (we're not alowing dupes); therefore, the call to HowiVany is made, passing in the
parameter.

Stepping in here bringsusto line 74. The Li nkedLi st implementation of thisisto return the value
that is generated by calling HowMany on whatever the Li nkedLi st pointsto. Step in, and you'll find
yourself in the Howivlny () method of Tai | Node. This makes sense; right now, Li nkedLi st points
to Tai | Node.

Because Tai | Node holds no data, it returns O regardless of what character it isgiven. Thisisreturned
toLi nkedLi st: : Howiany(), whichinturnreturnsitto Li nkedLi st : : Add() online94.
Because this satisfies the second condition in the OR statement, enter the body of thei f statement on
line 96.

Stepping intotheCal | tol nsert jumpsto line 80, the implementation of Li nkedLi st: : I nsert
() . Li nkedLi st 'sstrategy isto pass this request on to whatever it pointsto. Stepping in brings usto
line 47, the implementation of Tai | Node: : I nsert ().

Tai | Node alwaysinserts anode when it is asked to. It knows that it isthe tail, so it doesn't have to
check--it can just make the insertion. Thisisthe critical difference from the previous version. Y ou'll
remember that in Chapter 6, "Using Linked Lists," Node respondedto | nsert asfollows:

voi d Node: :Insert(char theChar)

{
If (! nextNode)
next Node = new Node(t heChar);
el se
next Node- >l nsert (t heChar);
}

That is, it was necessary to see whether there were any more Nodes in thelist. If not (if the current
Node wasthe Tai |), anew Node could be inserted. On the other hand, if the current Node was not
the Tai | , and thereforewasan | nt er nal Node, thel nsert request would be passed down the list.

The new design obviates the need for the test: The Tai | Node knowsthat it isthe tail, and it can just
make the insertion. This ssmple division of responsibility is, in asmall way, the very heart of object-
oriented software devel opment.

L et's examine the implementation in some detail. Line 47 returns the address of the new
| nt er nal Node that is created by passing in the character that is received as a parameter and the
t hi s pointer of the Tai | Node.

This jumps to the constructor for | nt er nal Node, shown on line 2. Here you see the creation of the
| nt er nal Node. The character isinserted into the | nt er nal Node's nyChar member variable, and
thet hi s pointer from the Tai | Node isstored in the next Node pointer of | nt er nal Node.

The address of this| nt er nal Node isthen passed back to the caller of Tai | Node: : | nsert (), and
In this case is assigned to the next Node member variable of Li nkedLi st (asshown on line 81).
Finally, thisaddressisreturned by Li nkedLi st: : | nsert, but the calling function--

Li nkedLi st: : Add() on line 96--makes no use of it, and it is thrown on the floor. On line 97, we
returnt r ue to the calling function on line 72 of Listing 8.4

We have now added afirst letter to the linked list, and it worked great. It takes alot longer to explain the
process than to perform it. Next, let's track the second letter, now that you have an | nt er nal Node in
the linked list.

Adding a Second Letter

Return to line 92 of Listing 8.2. Once again, this stepsyou into Li nkedLi st : : Howvany() (line 74),
thistime passingin' b' .

Thistime, Li nkedLi st 'snext Node pointsto an | nt er nal Node (the one holding* d'), sowe
now jump to line 17. Here alocal variable myCount isinitialized to zero. Thel nt er nal Node's
member variable myCount (* d') iscompared to the parameter t heChar (' b'). Because they are not
the same, my Count remains zero.

We now invoke Howivany (') on the node that is pointed to by this| nt er nal Node'snext Node
pointer. Right now, the pointer pointsto Tai | Node, which we examined previoudly; it simply returns
zero. That zero is added to ny Count (also zero) for atotal of zero, which isthe value that is returned to
Li nkedLi st:: Add().

This causes the second half of the OR statement on line 94 to returnt r ue (HowVany (' b') equals
zero), so the body of thei f statement executes. This causesthecall onl nsert () toexecute, with a
jump to line 80, which isthe implementation of Li nkedLi st:: 1 nsert().Agan,Li nkedLi st's
strategy isto pass this request on to whatever it pointsto, which inthiscaseis| nt er nal Node's

| nsert () method (as shown online 27). 1 nt er nal Node'sstrategy istocall | nsert () onthe
object to which itsnext Node pointer points (in this case Tai | Node), and then to set itsnext Node
pointer to whatever value is returned.

Because the next Node isthe Tai | Node, | nt er nal Node: : I nsert isnow called. Asyou saw
just amoment ago, it createsanew | nt er nal Node for' b' and tells that new node to point to the
tail. It then returns the address of the new node, which is now assigned to the next Node pointer of the
nodethat holds' d' . Thus,' b' isappended to the list, as shown in Figure 8.6.

Figure 8.6
Appending 'b'.Examining operator(]

Let'stakealook at Ganre: : Scor e, beginning on line 138 of Listing 8.4. Y ou've examined the
fundamental logic in detail in previous chapters. (We're particularly interested in the letter by letter
comparisons.) You've seen how Li nkedLi st : : Howivany () works; now take alook at the offset
operator asit isused on line 158.

Stepping in to thiscode stepsinto Li nkedl i st: : Operat or[] online 87 of Listing 8.2.

NOTE: Along the way, I've added test code at line 77 to print out the answer so that | can
examine the behavior of the system as | test it. Y ou want to remove both lines 76 and 77
before releasing this code.

Not surprisingly, al Li nkedLi st does hereisinvoke this same operator on the node to which it
points. Stepping in from line 87 bringsyou to line 31, | nt er nal Node: : oper at or [] . Takealook
at your auto member variables, and you'll find that myChar is' d' , just asyou might expect. The offset
that was passed in is now tested. If it is O, the call was for the first letter in thelist. Y ou will be at the
first letter in the list, and you can return my Char , which isthe case now. Theletter ' d' isreturned to
Li nkedLi st ; Li nkedLi st returnsit to the calling method, scor e() , which--on line 158 of
Listing 8.4--is compared with the value of the first character in the guess.

Thisisrepeated, but withi setto 1. A call tosol uti on[1] isinvoked, bringing us back into
Li nkedLi st: : operator[] online87 of Listing 8.2.

Stepping in from line 87 brings you back to | nt er nal Node: : oper at or[] online 31. Take alook
at your auto member variables, and you'll find that myChar isagain' d' --you're back at the first

| nt er nal Node inthelist. The offset that was passed in (1) is now tested. Because it is not zero, the
| f statement on line 33 fails and the body of the el se statement on line 36 executes:

36: return (*next Node)[--offSet];

Thisinvokes the offset operator on the next Node in thelist, passing in the decremented of f Set value.
Stepping in appears to bring us back to the top of the same method, but check your variables--rmy Char
iIsnow b, and of f set isnow zero. Perfect: You'll return the second letter in the list, exactly as you
wanted.

The linked list works as you want, and by using inheritance, you've delegated responsibility for
monitoring the head and tail of the list to specialized nodes. This simplifies the code and makes it easier
to maintain.

The problem with this linked list, however, isthat it can only be used by nodes that hold single
characters. What if you have other data that you want to insert into your linked list? Must you really
rewrite the linked list each time you change the kind of object that is contained? The next chapter,
"Implementing Templates," takes alook at modifying your linked list so that it can handle any kind of
data.

(4 Contents

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

