
C++ From Scratch

Table of Contents:

● Chapter 1 - Introduction
● Chapter 2 - Getting Started
● Chapter 3 - Program Flow
● Chapter 4 - Creating Classes
● Chapter 5 - Playing the Game
● Chapter 6 - Using Linked Lists
● Chapter 7 - The Canonical Methods
● Chapter 8 - Using Polymorphism
● Chapter 9 - Implementing Templates
● Chapter 10 - Leveraging Standard Template Library
● Chapter 11 - The Computer Guesses
● Chapter 12 - Delegating Responsibility
● Chapter 13 - Persistence
● Chapter 14 - Exceptions
● Chapter 15 - Next Steps
● Appendix A - Binary and Hexadecimal
● Appendix B - Operator Precedence

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

2

Getting Started

● Why Teach a Process that Is Only Good for Smaller Projects?
❍ Namespaces
❍ using namespace std
❍ Returning a Value
❍ main() Is More Equal than Others
❍ Using cout to Print to the Screen
❍ Variables
❍ Characters
❍ Built-In Types
❍ Constants

In This Chapter

● How Big Is a Small Project

● Bootstrapping Your Knowledge

● Creating the Project

● Examining the Code

● Code Spelunking

● Analyzing the Code

With a fairly simple program such as Decryptix!, my first goal is to get a version up and running--and to
keep it running. After it is working, I'll add features, redesigning on-the-fly as I go.

On a large project, this can be a fatally inefficient process. As features are added, the complexity of the
overall project grows, and without a good design you end up with code that is hard to maintain.

With a smaller project such as Decryptix!, however, the risk is minimal. If a new feature requires a
complete redesign and rewrite of the program, no problem: It only takes a couple of days to write it in
the first place.

How Big Is a Small Project?

How small must a program be to design it as you go? I'd argue that any program that takes one person
more than a few weeks to program ought to be subject to a more rigorous design process. Here's why:
Programs that evolve organically, rather than by design, often have to be rewritten at least once. If doing
so is painful, it is worth working out the design up front. If rewriting is trivial, however, nothing was lost
by diving right in.

Why Teach a Process that Is Only Good for Smaller Projects?

"Why," I hear you ask, "show an example of organic design if all large projects require formal design?"
The answer is fairly straightforward: There's a lot to learn in both programming and design. This book
aims to teach programming; you'll find lots of books (including a few I wrote) on object-oriented
analysis and design. You can't learn everything at once.

Nothing I teach in this book is inconsistent with good design; we just won't take the time to design
everything up front. I don't know about you, but I'm eager to dive into some code.

Bootstrapping Your Knowledge

In a classic C++ primer, I'd start with the structure of the program, introduce statements and expressions,
add variables and constants, and then turn to classes. I'd build skill upon skill, and I'd be about 600 pages
into the book before you could even begin to write your Decryptix! program.

This book is different. You're going to jump right in and wallow around awhile. Not all of it will make
sense at first, and I'll gloss over lots of detail only to return to it later in the book, but the essential flow
of the program can be explained pretty quickly. From time to time you'll take an "Excursion" to related--

but not strictly relevant--areas of C++.

Creating the Project

This book is designed to be of use regardless of which compiler you are using or what platform (for
example, Windows or Mac) you are developing for. From time to time, however, I'll demonstrate how
you can accomplish a specific task in Microsoft Visual C++ 6.0. Your compiler might be somewhat
different, but the principles are the same. With the knowledge that is provided here you can easily read
the documentation for your compiler and make the necessary adjustments.

I begin by creating a project. On the drive on which I installed my compiler I have created a directory
called Decryptix Projects. This will house all the versions of the program I will create.

First I start Visual C++ and tell it to create a new Win32 Console Application called Decryptix, as
shown in Figure 2.1.

Figure 2.1 Microsoft Visual C++ New Project.

If your compiler offers a wizard (a series of dialog boxes that helps you make these decisions), choose
whatever provides you with the simplest, text-based, non-windowed, ISO-standard environment. In this
case, I choose empty application.

After creating the project, Visual C++ drops me in the Integrated Development Environment (IDE). I
choose File, New, and enter a new C++ source file named Decryptix.cpp.

In other environments, for example a text editor in UNIX, I'd just open a new file and save it as
Decryptix.cpp. Often, in IDEs, saving the file with the .cpp extension signals that this is C++ source
code and turns on source code indentation support (and, sometimes, color-coded text!). Source code
indentation support means that when you type your source code the editor automatically indents it
properly for you. Thus, if you enter

if (someValue > thisValue)

and then press Enter, the editor automatically indents the next line. (Don't worry about what this code
does, it will all be explained in time.)

NOTE: To learn what support your editor provides, please check the documentation that
comes with your compiler.

Examining the Code

Now take a look at a preliminary version of Decryptix, in Listing 2.1. You can open a file in your
project, save it as Decryptix.cpp, and then enter this code, exactly as shown.

TIP: I strongly advise you to enter all the source code yourself because that is the best
way to learn. If you simply can't stand the thought of all that typing, however, you can
retrieve this code from the CD that accompanies this book, or you can download this
code--and all the code for this book--from my Web site (go to www.
libertyassociates.com and click on Books & Resources).

This program is quite advanced, and of course you won't understand much of what you are reading.
Don't be intimidated, however; this chapter and Chapter 3, "Program Flow," go over it line by line. You
might find, however, that you can get a pretty good idea of what the program is doing just by reading it
as prose.

Try running it and examining what it does, and then try matching the code to the output.

Listing 2.1 First Glimpse of Decryptix!

0: #include <iostream>
1:
2: int main()
3: {
4: std::cout << "Decryptix. Copyright 1999 Liberty ";
5: std::cout << "Associates, Inc. Version 0.2\n " << std::endl;
6: std::cout << "There are two ways to play Decryptix: ";
7: std::cout << " either you can guess a pattern I create, ";
8: std::cout << "or I can guess your pattern.\n\n";
9:
10: std::cout << "If you are guessing, I will think of a\n ";
11: std::cout << "pattern of letters (e.g., abcde).\n\n";
12:
13: std::cout << "On each turn, you guess the pattern and\n";
14: std::cout << " I will tell you how many letters you \n";
15: std::cout << "got right, and how many of the correct\n";
16: std::cout << " letters were in the correct position.\n\n";

17:
18: std::cout << "The goal is to decode the puzzle as quickly\n";
19: std::cout << "as possible. You control how many letters \n";
20: std::cout << "can be used and how many positions\n";
21: std::cout << " (e.g., 5 possible letters in 4 positions) \n";
22: std::cout << "as well as whether or not the pattern might\n";
23: std::cout << " contain duplicate letters (e.g., aabcd).\n\n";
24:
25: std::cout << "If I'm guessing, you think of a pattern \n";
26: std::cout << "and score each of my answers.\n\n" << std::endl;
27:
28: const int minLetters = 2;
29: const int maxLetters = 10;
30: const int minPositions = 3;
31: const int maxPositions = 10;
32:
33: int howManyLetters = 0, howManyPositions = 0;
34: bool duplicatesAllowed = false;
35: int round = 1;
36:
37: std::cout << "How many letters? (";
38: std::cout << minLetters << "-" << maxLetters << "): ";
39: std::cin >> howManyLetters;
40:
41: std::cout << "How many positions? (";
42: std::cout << minPositions << "-" << maxPositions << "): ";
43: std::cin >> howManyPositions;
44:
45: char choice;
46: std::cout << "Allow duplicates (y/n)? ";
47: std::cin >> choice;
48:
49: return 0;
50: }

Compile, link, and run this program. In Visual C++ you can do all this at once by pressing Ctrl+F5.
Here's the output:

Decryptix. Copyright 1999 Liberty Associates, Inc. Version 0.2
There are two ways to play Decryptix:
 either you can guess a pattern I create,
or I can guess your pattern.
If you are guessing, I will think of a

 pattern of letters (e.g., abcde).
On each turn, you guess the pattern and
 I will tell you how many letters you
got right, and how many of the correct
 letters were in the correct position.
The goal is to decode the puzzle as quickly
as possible. You control how many letters
can be used and how many positions
 (e.g., 5 possible letters in 4 positions)
as well as whether or not the pattern might
 contain duplicate letters (e.g., aabcd).
If I'm guessing, you think of a pattern
and score each of my answers.
How many letters? (2-10):

Analyzing the Code

The very first line of this program (Line 0) is

#include <iostream>

The goal of this line is to add to your current file the information it needs to support Input and Output
streaming: the capability to read from the keyboard (input) and write to the screen (output).

Input Stream--How data comes into your program; typically from the keyboard

Output Stream--How data leaves your program; typically to the display

Here's how it works: C++ now includes a group of supporting code called the standard library, which
provides objects to handle input and output. cin is an object that handles input from the keyboard, and
cout is an object that handles output to the screen. The details of how they work are not important at
this point, but to use them you must include in your program the file iostream, which provides their
definitions. The definition of an object tells the compiler what it needs to know in order for the object to
be used.

cin is pronounced see-in, and cout is pronounced see-out.

You include this file in your program with the #include statement. When your compiler is invoked,
the precompiler runs, reading through your program and looking for lines that begin with the # symbol.
When it sees #include, it knows it must read in a file. The angle brackets (< and >) say "look in the
usual place." When you installed your compiler, it should have set up "the usual place" to look for these
files.

Some folks pronounce # as hash, others as cross-hash. I call it pound, so I pronounce
this line of code pound include eye-oh-stream .

The net effect is that the file iostream is read into your program at this point, which is just what you
want. You can now use the cout object, as you'll see in a few moments.

NOTE: Using the angle brackets, <iostream> indicates that the precompiler is to "look
in the usual place." An alternative is to use double quote marks--for instance "myfile.
h"--which say "look in the current project directory and, failing that, look in the usual
place."

Namespaces

Unlike the code in Chapter 1, "Introduction," this version uses the new ANSI/ISO standard library
header file <iostream> rather than <iostream.h> (note that the new header doesn't use .h).

These headers support the new namespace protocols, which enable you to avoid conflicts in the names
of objects and methods when working with code you buy from other vendors. For example, there might
be two objects named cout. We solve this by "qualifying" the name with std::, as shown on lines 4-
26. This qualification with std:: indicates to the compiler that it is to use the cout object that is
defined in the standard (std) library, which comes with your compiler.

Unfortunately, this makes the code look much more complicated and difficult to read.

using namespace std

To simplify this code and to make it easier for us to focus on the issues we care about, I'll rewrite the
preceding example by adding the keywords

using namespace std;

This signals to the compiler that the code I'm writing is within the std (standard) namespace. In effect,
it tells the compiler that when it sees cout it is to treat it like std::cout.

NOTE: All the rest of the code in the book uses this trick, which makes the code much
easier to read and follow, at the cost of undermining the protection that namespaces afford.

When you write your commercial applications you might want to eschew the using
namespace idiom because you might want to ensure namespace protection.

Listing 2.1a is an exact replica of Listing 2.1, except that it takes advantage of the using namespace
idiom.

0: #include <iostream>
1: using namespace std;
2: int main()
3: {
4: cout << "Decryptix. Copyright 1999 Liberty ";
5: cout << "Associates, Inc. Version 0.2\n " << endl;
6:
7: cout << "There are two ways to play Decryptix: ";
8: cout << " either you can guess a pattern I create, ";
9: cout << "or I can guess your pattern.\n\n";
10:
11: cout << "If you are guessing, I will think of a\n ";
12: cout << "pattern of letters (e.g., abcde).\n\n";
13:
14: cout << "On each turn, you guess the pattern and\n";
15: cout << " I will tell you how many letters you \n";
16: cout << "got right, and how many of the correct\n";
17: cout << " letters were in the correct position.\n\n";
18:

19: cout << "The goal is to decode the puzzle as quickly\n";
20: cout << "as possible. You control how many letters \n";
21: cout << "can be used and how many positions\n";
22: cout << " (e.g., 5 possible letters in 4 positions) \n";
23: cout << "as well as whether or not the pattern might\n";
24: cout << " contain duplicate letters (e.g., aabcd).\n\n";
25:
26: cout << "If I'm guessing, you think of a pattern \n";
27: cout << "and score each of my answers.\n\n" << endl;
28:
29: const int minLetters = 2;
30: const int maxLetters = 10;
31: const int minPositions = 3;
32: const int maxPositions = 10;
33:
34: int howManyLetters = 0, howManyPositions = 0;
35: bool duplicatesAllowed = false;
36: int round = 1;
37:
38: cout << "How many letters? (";
39: cout << minLetters << "-" << maxLetters << "): ";
40: cin >> howManyLetters;
41:
42: cout << "How many positions? (";
43: cout << minPositions << "-" << maxPositions << "): ";
44: cin >> howManyPositions;
45:
46: char choice;
47: cout << "Allow duplicates (y/n)? ";
48: cin >> choice;
49:
50: return 0;
51: }

Code Spelunking

One of the most powerful ways to learn C++ is to use your debugger. I highly recommend that
immediately after entering this code into your project (or downloading it from my site), you compile,
link, and run it. You'll need to check your documentation for how to do this, but most modern IDEs offer
a menu choice to "Build the entire project."

If you are using Visual C++, you can simply point your cursor at the buttons on the toolbar until you
find the ones that compile and link or that build the entire project.

After it is working, set this book aside and pick up the documentation for your debugger, which you'll
find with the documentation for your compiler. Set a break point on the first line of code in main()
(see line 5 in Listing 2.1). In Visual C++ you just put your cursor on that line and press F9, or press the
break point toolbar button. Once the break point is set, run to the break point (in Visual C++, press F5).
Step over each line of code and try to guess what is going on. Again, you'll need to check your
documentation for how to step over each line of code (in Visual C++ it is F10).

The debugger is one of the last things most primers introduce; I feel that it needs to be one of the very
first things you learn. If you get stuck, see the exploration of debugging at the end of this chapter.

Every C++ program has a main() function (Listing 2.1, line 2). The general purpose of a function is to
run a little code and then return to whomever called you.

All functions begin and end with parentheses, as you can see on lines 3 and 51. A function
consists of a series of statements, which are all the lines that are shown between the
parentheses.

This is the essence of a structured program. Program flow continues in the order in which the code
appears in the file until a function is called. The flow then branches off to the function and follows line
by line until another function is called or until the function returns (see Figure 2.2).

In a sense, a function is a subprogram. In some languages, it is called a subroutine or a procedure. The
job of a function is to accomplish some work and then return control to whatever invoked the function.

Figure 2.2 When a program calls a fuction, execution switches to the function and then resumes at the
line after the function call.

When main() executes, we execute Statement1. We then branch to line 1 of Func1(). Func1's
three lines execute, and then processing returns to main(), where we execute Statement2. Func2
is then called, which in turn calls Func3(). When Func3 completes it returns to Func2(), which
continues to run until its own return statement, at which time we return to main() and execute
Statement3. We then call Func4(), which executes its own code and then returns to main(),
where we execute Statement4.

Returning a Value

When a function returns to whoever called it, it can return a value. You'll see later what the calling

function can do with that value.

Every function must declare what kind of value it returns: For example, does it return an integer or a
character? If a function does not return a value, it declares itself to return void, which means that it
returns nothing.

main() Is More Equal than Others

main() is a special function in C++. All C++ programs begin with main(); when main ends, the
program ends. In a sense, the operating system (Windows, DOS, and so on) calls main().

main() always returns an int (integer). I'll discuss the various types of values later in the book; for
now it is sufficient to know that you must always declare main to return an integer.

NOTE: On some older compilers, you can have main() return void, but that is not
legal under the new ISO standard. It is a good idea to get into the habit of having main()
return an int every time.

You'll notice that main() does return an integer (in this case, 0) on line 50. When programs are run
from batch files or scripts, you can examine these values. For the programs in this book (and probably
for most of the programs you will write), this value is discarded. By convention, you'll return 0 to
indicate that the program ran without incident.

Using cout to Print to the Screen

Most of the statements in this very first program are designed to write to the screen. Use the standard
output object cout. You send a string of characters to cout by enclosing them in quotation marks and
by using the output redirection operator (<<), which you create by holding the Shift key and pressing the
comma key twice.

This actually takes advantage of a very advanced feature in C++ called operator overloading, which is
discussed in detail in Chapter 6, "Using Linked Lists." Fortunately, for now you can use this feature
without fully understanding it. The net effect is that the words

Decryptix. Copyright 1999 Liberty

are sent to the screen.

Operator Overloading--The capability of user-created types to use the operators that
built-in types use, such as +, =, and ==. I explain how to do this in Chapter 6.

Special Printing Characters

Line 5 prints the words

Associates, Inc. Version 0.2

to the screen. Notice that before the closing quotes, line 5 includes \n. These are two special marks
within quoted strings. The slash is called an escape character, and when it is found in a quoted string it
means "what follows is a special instruction to the compiler." The letter n, when it follows the escape
character, stands for "new line." Thus, the effect is to print, to the output, a new line.

Escape character--A character that serves as a signal to the compiler or precompiler that
the letter that follows requires special treatment. For example, the precompiler usually
treats the character n as a letter, but when it is preceded by the escape character (\n), it
indicates a new line.

Notice also that this line ends with

<< endl;

cout can receive more than just strings. In this case, the redirection operator is being used to send
endl.

NOTE: endl is pronounced end-ell and stands for "end line."

This sends another new line to the output and flushes out the buffers. Buffers will be explained later,
when I talk about streams, but the net effect ensures that all the text is written to the screen immediately.

Line 7 begins to print another line, which is continued on line 8 and completed on line 9.

Together, these lines print the following output:

Decryptix. Copyright 1999 Liberty Associates, Inc. Version 0.2
There are two ways to play Decryptix: either you can guess a pattern
I create,
or I can guess your pattern.

Note first that there is no new line after Liberty and before Associates. There was no instruction to cout
to print a new line, so none was printed. Two new lines appear after 0.2. The first, created by the \n
character, ends the line; the second, created by endl, skips a line.

You can achieve the effect of skipping a line by putting in two \n characters, as shown on line 9.

Table 2.1 illustrates the other special printing characters.

Table 2.1Special Printing Characters

Character What it means

\n new line

\t tab

\b rings the bell

\" prints a double quote

\' prints a single quote

\? prints a question
mark

\\ prints a backslash

Variables

A variable is a place to store a value during the progress of your program.

Variable--A place to store a value

In this case, at line 36, you want to keep track of what round of play you are up to. Store this information
in a variable named round:

int round = 1;

One way to think of your computer's memory is as a series of cubbyholes. Each cubbyhole is one byte,
and every byte is numbered sequentially: The number is the address of that memory. Each variable
reserves one or more bytes in which you can store a value.

Your variable's name (round) is a label on one of these cubbyholes, which enables you to find it easily
without knowing its actual memory address.

Think of it like this: When you jump in a cab in Washington, D.C., you can ask for 1600 Pennsylvania
Avenue, or you can ask for The White House. The identifier "the White House" is the name of that
address.

Figure 2.3 is a schematic representation of this idea. As you can see from the figure, round starts at
memory address 103. Depending on the size of round, it can take up one or more memory addresses.

Figure 2.3 A schematic representation of memory.

RAM is random access memory. When you run your program, it is loaded into RAM from
the disk file. All variables are also created in RAM. When programmers talk about
memory, they are usually referring to RAM.

Setting Aside Memory

When you define a variable in C++, you must tell the compiler what kind of variable you are declaring:
an int, char, and so forth. The type tells the compiler the size of the variable. For example, a char is
1 byte, and on modern computers an int is 4 bytes; thus, the variable round consumes four bytes
(cubbyholes) of memory.

Defining a Variable

You define a variable by stating its type, followed by one or more spaces, the variable name, and a
semicolon:

int round;

The variable name can be virtually any combination of letters, but it cannot contain spaces. Legal
variable names include x, J23qrsnf, and myAge. It is good programming practice to use variable
names that tell you what the variables are for. This makes them easier to understand, which makes it
easier for you to maintain your program.

Case Sensitivity

C++ is case sensitive; therefore, a variable named round is different from Round, which is different
from ROUND. Avoid using multiple variables whose names differ only by capitalization--it can be
terribly confusing.

NOTE: Some compilers enable you to turn case sensitivity off. Don't be tempted to do
this. Your programs won't work with other compilers, and other C++ programmers will be
very confused by your code.

Keywords

C++ reserves some words, and you cannot use them as variable names. These are keywords that are used
by the compiler to control your program. Keywords include if, while, for, and main. Your
compiler manual probably provides a complete list, but generally, any reasonable name for a variable is
almost certainly not a keyword.

Creating More Than One Variable at a Time

You can create more than one variable of the same type in one statement by writing the type and then
the variable names, separated by commas. For example

int howManyLetters, howManyPositions;
bool valid, duplicatesAllowed;

Assigning Values to Your Variables

Back in listing 2.1, at line 36, a local variable is defined by stating the type (int) and the variable name
(round).

This actually allocates memory for the variable. Because an int is four bytes, this allocates four bytes
of memory. When the compiler allocates memory, it reserves the memory for the use of your variable
and assigns the name that you provide (in this case, round).

Scope

Scope refers to the region of a program in which an identifier--something that is named, such as an
object, variable, function, or constant--is valid. When I say a variable has local scope, I mean that it is
valid within a particular function.

Scope--The region of a program in which an identifier (that is, the name of something) is
valid.

Local scope--When an identifier has local scope, it is valid within a particular function.

There are other levels of scope (global, static member, and so on) that I will discuss as I progress
through the program.

The Value of Variables

Local variables, such as round, have a value when they are created regardless of whether you initialize
them. If you don't initialize them (as shown here), whatever happened to already be in the bit of memory
is assigned to them--that is, a random garbage value.

It is good programming practice to initialize your variables. When you initialize a variable, you create it
and give it a specific value, all in one step:

int round = 1;

This creates the variable round and initializes it with the value 1.

Just as you can define more than one variable at a time, you can initialize more than one variable. For
example,

 int howManyLetters = 0, howManyPositions = 0;

initializes the two variables howManyLetters, each to the value 0. You can even mix definitions and
initializations:

int howManyLetters = 0, round, howManyPositions = 2;

This example defines three variables of type int, and it initializes the first and third.

Characters

On line 46 of Listing 2.1, you created a character variable (type char) named choice. On most
computers, character variables are 1 byte, enough to hold 256 values. A char can be interpreted as a
small number (0-255) or as a member of the ASCII set. ASCII stands for the American Standard Code
for Information Interchange. The ASCII character set and its ISO (International Standards
Organization) equivalent are a way to encode all the letters, numerals, and punctuation marks.

ASCII--The American Standard Code for Information Interchange

ISO--The International Standards Organization

You create a character by placing the letter in single quotes. Therefore, 'a' creates the character a.

In the ASCII code, the lowercase letter a is assigned the value 97. All the lower- and uppercase letters,
all the numerals, and all the punctuation marks are assigned values between 1 and 128. Another 128
marks and symbols are reserved for use by the computer maker.

Characters and Numbers

When you insert a character--'a', for example--into a char variable, what is really there is just a
number between 0 and 255. The compiler knows, however, how to translate back and forth between
characters and one of the ASCII values.

The value/letter relationship is arbitrary; there is no particular reason that the lowercase a is assigned the
value 97. As long as everyone (your keyboard, compiler, and screen) agrees, there is no problem. It is
important to realize, however, that there is a big difference between the value 5 and the character '5'.
The latter is actually valued at 53, much as the letter 'a' is valued at 97.

Listing 2.2 is a simple program that prints the character values for the integers 32-127. Pay no attention
to the details of this program--we will walk through how this works later in the book.

Listing 2.2 Printing out the Characters

 #include <iostream >
using namespace std;
int main()
 {
 for (int i = 32; i<128; i++)
 cout << (char) i;
 return 0;
 }
 !"#$%G'()*+,./0123456789:;<>?@ABCDEFGHIJKLMNOP
_QRSTUVWXYZ[\]^'abcdefghijklmnopqrstuvwxyz<|>~s

NOTE: Your computer might print a slightly different list.

Built-In Types

C++ comes right out of the box with knowledge of a number of primitive built-in types. The type of a
variable or object defines its size, its attributes, and its capabilities.

For example, an int is, on modern compilers, 4 bytes in size. It holds a value from -
2,147,483,648 to 2,147,483,647. For more on bytes and why 2,147,483,648 is a round
number, see Appendix A, "Binary and Hexadecimal."

You might think that an integer is an integer, but it isn't quite. The keyword integer refers to a four-
byte value, but only if you are using a modern compiler on a modern 32-bit computer. If your software
or computer is 16-bit, however, an integer might be only two bytes. The keyword short usually refers
to a two-byte integer, and the keyword long most often refers to a four-byte integer, but neither of
these is certain. The language requires only that a short is shorter than or equal to an integer, and an
integer is shorter than or equal to a long. On my computer, a short is 2 bytes and an integer is 4, as is
a long.

ISO C++ provides the types that are listed in Table 2.2.

Table 2.2 Variable Types

Type Size Values

unsigned short int 2
bytes

0 to 65,535

short int 2
bytes

-32,768 to 32,767

unsigned long int 4
bytes

0 to 4,294,967,295

long int 4
bytes

-2,147,483,648 to
2,147,483,647

int (16-bit) 2
bytes

-32,768 to 32,767

int (32-bit) 4
bytes

-2,147,483,648 to
2,147,483,647

unsigned int (16-
bit)

2
bytes

0 to 65,535

unsigned int (32-
bit)

4
bytes

0 to 4,294,967,295

char 1 byte 256 character values

float 4
bytes

1.2e-38 to 3.4e38

double 8
bytes

2.2e-308 to 1.8e308

bool 1 byte true or false

NOTE: ISO C++ recently added a new type, bool, which is a true or false value.
bool is named after the British mathematician George Bool (1815-1864), who invented
Boolean algebra, a system of symbolic logic.

Size of Integers

This book assumes that you are using a 32-bit computer (for example, a Pentium) and that you are
programming with a 32-bit compiler. With that development environment, an integer is always 4 bytes.
Listing 2.3 can help you determine the size of the built-in types on your computer, using your compiler.

Listing 2.3 Finding the Size of Built-In Types

1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: cout << "The size of an int is:\t\t";
5a: cout << sizeof(int) << " bytes.\n";
6: cout << "The size of a short int is:\t";
6a: cout << sizeof(short) << " bytes.\n";
7: cout << "The size of a long int is:\t";
7a: cout << sizeof(long) << " bytes.\n";
8: cout << "The size of a char is:\t\t";
8a: cout << sizeof(char) << " bytes.\n";
9: cout << "The size of a float is:\t\t";

9a: cout << sizeof(float) << " bytes.\n";
10: cout << "The size of a double is:\t";
10a: cout << sizeof(double) << " bytes.\n";
11: cout << "The size of a bool is:\t";
11a: cout << sizeof(bool) << " bytes.\n";
12: return 0;
13: }
The size of an int is: 4 bytes.
The size of a short int is: 2 bytes.
The size of a long int is: 4 bytes.
The size of a char is: 1 bytes.
The size of a float is: 4 bytes.
The size of a double is: 8 bytes.
The size of a bool is: 1 bytes.

NOTE: On your computer, the number of bytes presented might be different. If the
number of bytes reported for an int (the first line of output) is 2 bytes, you are using an
older (and probably obsolete) 16-bit compiler.

TIP: If you are using Visual C++, you can run your program with Ctrl+F5. Your ouput
displays, followed by

Press any key to continue

This gives you time to look at the output; then, when you press a key, the window closes.

If your compiler does not provide this service, you might find that the text scrolls by very
quickly, and then you are returned to your IDE.

In this case, add the following line to the top of the file:

#include <conio.h>

Add the following line just before return 0;:

_getch();

This causes your program to pause after all the output is completed; it waits for you to
press the spacebar or other character key. Add these lines to every sample program.

Most of Listing 2.3 is probably pretty familiar to you. The one new feature is the use of the sizeof()
operator, which is provided by your compiler and tells you the size of the object you pass as a parameter.
For example, on line 5, the keyword int is passed into sizeof(). Using sizeof(), I determined
that on my computer an int is equal to a long int, which is 4 bytes.

Using an Integer Variable

In Decryptix!, we want to keep track of how many different letters the code can contain. Because this is
a number (between 1 and 26), you can keep track of this value with an int. In fact, because this
number is very small, it can be a short int, and because it must be a positive number, in can be an
unsigned short int.

Using a short int might save me two bytes. There was a time when such a savings was significant;
today, however, I rarely bother. Short ints can be written just as short, so it is the height of profligacy
to waste bytes because I'm too lazy to write short rather than int.

When I was a boy, bytes were worth something, and I watched every one. Today, for most applications,
bytes are cheap. They are the pennies of programming, and these days most programmers just keep a
small cup of bytes out on the counter and let customers take them when they need a few, occasionally
tossing extra bytes into the cup for the next person to use.

NOTE: In the 1960s, many programmers worked in primitive languages, which
represented dates as characters. Each number in the date consumed one byte (so 1999
consumed 4 bytes). Obsessive concern about saving a byte here and a byte there led many
programmers to shorten dates from four digits (1999) to two (99), thus saving two bytes
and creating the Y2K problem.

For the vast majority of programs, the only built-in types to be concerned with are int, char, and
bool. Now and again you'll use unsigned ints, floats, and doubles. Of course, most of the time
you'll use your own programmer-created types.

Signed and Unsigned

After you determine the size of an integer, you're not quite done. An integer (and a short and a long) can
be signed or unsigned. If it is signed, it can store negative and positive numbers. If it is unsigned, it can
store only positive numbers.

Because signed numbers can store negative as well as positive numbers, the absolute value they can
store is only half as large.

Wrapping Around an Unsigned Integer

The fact that unsigned long integers have a limit to the values they can hold is only rarely a problem--but
what happens if you do run out of room?

When an unsigned integer reaches its maximum value, it wraps around and starts over, much like a car
odometer. Listing 2.4 shows what happens if you try to put too large a value into a short integer.

Listing 2.4 Wrapping Around an Unsigned Integer

1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: unsigned short int smallNumber;
6: smallNumber = 65535;
7: cout << "small number:" << smallNumber << endl;
8: smallNumber++;
9: cout << "small number:" << smallNumber << endl;
10: smallNumber++;
11: cout << "small number:" << smallNumber << endl;
12: return 0;
13: }
small number:65535
small number:0
small number:1

On line 4, smallNumber is declared to be an unsigned short int, which on my computer is a two-
byte variable that can hold a value between 0 and 65,535. On line 5, the maximum value is assigned to
smallNumber, and it is printed on line 6 using the standard output library function. Note that because
we did not add the line using namespace std; we must explicitly identify cout. The keyword
endl is also part of the standard library and must be explicitly identified.

On line 7, smallNumber is incremented; that is, one is added to it. The symbol for incrementing is ++

(as in the name C++, an incremental increase from C). Thus, the value in smallNumber is 65,536.
However, unsigned short integers can't hold a number larger than 65,535, so the value is wrapped
around to 0, which is printed on line 8.

Incremented--When a value is incremented, it is increased by one.

On line 9, smallNumber is incremented again, and then its new value, 1, is printed.

Wrapping Around a Signed Integer

A signed integer is different from an unsigned integer in that half of the values you can represent are
negative. Instead of picturing a traditional car odometer, you might picture one that rotates up for
positive numbers and down for negative numbers. One mile from 0 is either 1 or -1. When you run out
of positive numbers, you run right into the largest negative numbers and then count back down to 0.
Listing 2.5 shows what happens when you add 1 to the maximum positive number in short integer.

Listing 2.5 Wrapping Around a Signed Integer

1: #include <iostream>
2: using namespace std;
3: int main()
4: {
5: short int smallNumber;
6: smallNumber = 32767;
7: cout << "small number:" << smallNumber << endl;
8: smallNumber++;
9: cout << "small number:" << smallNumber << endl;
10: smallNumber++;
11: cout << "small number:" << smallNumber << endl;
12: return 0;
13: }
small number:32767
small number:-32768
small number:-32767

On line 4, smallNumber is declared to be a signed short integer. (If you don't explicitly say that it is
unsigned, it is assumed that it is signed.) The program proceeds much as the preceding program does,
but the output is quite different.

The bottom line is that just like an unsigned integer, the signed integer wraps around from its highest
positive value to its highest negative value.

Constants

The point of a variable is to store a value. I call it a variable because it might vary: That is, the value
might change over the course of the program. howManyLetters starts out as 0, but is assigned a new
value based on the user's input.

At times, however, you need a fixed value--one that won't change over the course of the program. The
minimum number of letters a user is allowed to choose is an example of a fixed value; the programmer
determines it long before the program runs.

A fixed value is called a constant. There are two flavors of constants: literal and symbolic.

Literal Constants

A literal constant is a value that is typed directly into your program wherever it is needed. For example

int howManyLetters = 7;

howManyLetters is a variable of type int; 7 is a literal constant. You can't assign a value to 7, and
its value can't be changed.

Symbolic Constants

Like variables, symbolic constants are storage locations, but their contents never change during the
course of your program. When you declare a constant, what you are really doing is saying to the
compiler, "Treat this like a variable, but if I ever change the value stored here, let me know." The
compiler then tells you with a compiler error.

You'll define minLetters to be a symbolic constant--specifically, a constant integer whose value is 2.
Note that the constant minLetters is used on a number of different lines of code. If you decide later
to change the value to 3, you need to change it only in one place--the change affects many lines of code.
This helps you avoid bugs in your code. Changes are localized, so there is little chance of one line
assuming that the minimum number of letters is two, whereas another line assumes that it is three.

There are actually two ways to declare a symbolic constant in C++. The old, traditional, and now
obsolete way is with a preprocessor directive: #define.

Defining Constants with #define

To define a constant in the traditional way, enter the following code:

#define minLetters 2

Note that when it is declared this way, minLetters is of no particular type (int, char, and so on).
#define does a simple text substitution. Every time the preprocessor sees the word minLetters, it
puts in the text 2.

Because the preprocessor runs before the compiler, your compiler never sees your constant; it sees the
number 2. Later, when I discuss debugging, you'll find that #defined constants do not appear as
symbolic constants in the debugger; you see only the literal value (2).

Defining Constants with const

Although #define works, there is a newer, much better way to define constants in C++:

 const int minLetters = 2;

This creates the symbolic constant minLetters but ensures that it has a particular type--integer. If
you try to write

 const int minLetters = 3.2;

the compiler complains that you have declared it to be an int but that you are trying to initialize it with
a float.

The purpose of a debugger is to enable you to peek inside the machine and watch your variables change
as the program runs. You can accomplish a lot with a debugger, and aside from your text editor, it is
your most important tool.

Unfortunately, most novices don't become comfortable with their debugger until very late in their
experience of C++. This is a shame because the debugger is a terrific learning tool.

Although every debugger is different and you definitely want to consult your documentation, this
excursion illustrates how you might debug Listing 2.1 using the Microsoft Visual C++ 6.0 Enterprise
Edition debugger. Your exact experience might vary, but the principles are the same.

Follow these steps:

1. Create a project called Decryptix.

2. Open a new file called decryptix.cpp.

3. Enter the program as it is written or download it from my Web site.

4. Place the cursor on the first line after the opening brace and press F9. You see a red dot in the
margin next to that line, indicating a break point (see Figure 2.4).

Figure 2.4 A break point showing in Visual C++.

5. Press Go (F5). The debugger starts, and your code runs.

6. Choose View/Debug Windows and make sure that the Watch and Variables windows are open
(see Figure 2.5).

Figure 2.5 Checking that the Watch and Variables windows are open.

7. Press Step Over (F10) to walk through the code line by line.

8. Scroll down to the line on which duplicatesAllowed is defined, and place a break point
there. Press Go (F5) to run until this second break point.

9. Note in the variables window that howManyLetters and howManyPositions are zero,
but that duplicatesAllowed has a random value (see Figure 2.6).

Figure 2.6 Looking at values in the debugger.

10. Press Step Over (F10) to step over this one line of code. This causes
duplicatesAllowed to be created and initialized. Note that the value that is shown in the
variables window is now correct (false is indicated as 0, and true is indicated as 1). Note
also that round has a random value. Press F10 again; round is initialized to 1.

11. Explore the debugger and read through the documentation and help files. The more time you
spend in the debugger, the more you will come to appreciate its tremendous value, both for
finding bugs and for helping you understand how programs work.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

Online Copyright

©Copyright 1999, Macmillan Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or stored in a database or
retrieval system without prior written permission of the publisher except in the case of brief quotations
embodied in critical articles and reviews.

For information, address Macmillan Publishing, 201 West 103rd Street, Indianapolis, IN 46290.

This material is provided "as is" without any warranty of any kind.

C++ From Scratch

3

Program Flow

● In this Chapter
● Building Robustness
● What Are You Trying to Accomplish?
● Solving the Problem with Loops

❍ Relational Operators
❍ Blocks and Compound Statements
❍ Logical Operators
❍ Short Circuit Evaluation
❍ Relational Precedence
❍ Putting It All Together
❍ do while
❍ Enumerated Constants
❍ Returning to the Code
❍ Getting a Boolean Answer from the User
❍ Equality Operator ==
❍ else
❍ The Conditional (or ternary) Operator
❍ Putting It All Together

In this Chapter

● Building Robustness

● What Are You Trying to Accomplish?

● Solving the Problem with Loops

● The if Statement

This chapter takes a look at how programs progress, how loops are created, and how programs branch
based on user input and other conditions.

Building Robustness

Listing 2.1 in Chapter 2, "Getting Started," is vulnerable to incorrect user input. For example, what
happens if the user asks for 35 letters or says, "Use five letters in six positions without duplicates." This,
of course, is impossible: You can't put five letters into six positions without duplicating at least one
letter. How do you prevent the user from giving you bogus data?

A robust program is one that can handle any user input without crashing. Writing highly robust code is
difficult and complex. Therefore, we won't set a goal of handling absolutely any bogus data, but we will
attempt to deal with a few highly predictable errors.

Robust--A program is robust when it can handle incorrect user input or other
unanticipated events without crashing.

Listing 3.1 illustrates a more complex version of the code you just considered. Before it is discussed,
take a look at it and see if you can make some guesses about what it is doing.

Listing 3.1[em]A More Complex Version of Decryptix!

0: #include <iostream>
1: using namespace std;
2: int main()
3: {
4: cout << "Decryptix. Copyright 1999 Liberty";

5: cout << "Associates, Inc. Version 0.2\n\n" << endl;
6: cout << "There are two ways to play Decryptix: either";
7: cout << "you can guess a pattern I create,\n";
8: cout << "or I can guess your pattern.\n\n";
9: cout << "If you are guessing, I will think of a pattern\n";
10: cout << "of letters (e.g., abcde).\n\n";
11: cout << "On each turn, you guess the pattern and I will\n";
12: cout << "tell you how many letters you got right, and how many
\n";
13: cout << "of the correct letters were in the correct position.\n
\n";
14: cout << "The goal is to decode the puzzle as quickly as\n";
15: cout << "possible. You control how many letters can be\n";
16: cout << "used and how many positions (e.g., 5 possible \n";
17: cout << "letters in 4 positions) as well as whether or not\n";
18: cout << "the pattern might contain duplicate \n";
19: cout << "letters (e.g., aabcd).\n\n";
20: cout << "If I'm guessing, you think of a pattern and score \n";
21: cout << "each of my answers.\n\n" << endl;
22:
23:
24: int round = 1;
25: int howManyLetters = 0, howManyPositions = 0;
26: bool duplicatesAllowed = false;
27: bool valid = false;
28:
29: const int minLetters = 2;
30: const int maxLetters = 10;
31: const int minPositions = 3;
32: const int maxPositions = 10;
33:
34:
35: while (! valid)
36: {
37: while (howManyLetters < minLetters
38: || howManyLetters > maxLetters)
39: {
40: cout << "How many letters? (";
41: cout << minLetters << "-" << maxLetters << "): ";
42: cin >> howManyLetters;
43: if (howManyLetters < minLetters
44: || howManyLetters > maxLetters)
45: {

46: cout << "please enter a number between ";
47: cout << minLetters << " and " << maxLetters << endl;
48: }
49: }
50:
51: while (howManyPositions < minPositions
52: || howManyPositions > maxPositions)
53: {
54: cout << "How many positions? (";
55: cout << minPositions << "-" << maxPositions << "): ";
56: cin >> howManyPositions;
57: if (howManyPositions < minPositions
58: || howManyPositions > maxPositions)
59: {
60: cout << "please enter a number between ";
61: cout << minPositions <<" and " << maxPositions <<
endl;
62: }
63: }
64:
65: char choice = ' ';
66: while (choice != 'y' && choice != 'n')
67: {
68: cout << "Allow duplicates (y/n)? ";
69: cin >> choice;
70: }
71:
72: duplicatesAllowed = choice == 'y' ? true : false;
73:
74: if (! duplicatesAllowed
75: && howManyPositions > howManyLetters)
76: {
77: cout << "I can't put " << howManyLetters;
78: cout << " letters in " << howManyPositions;
79: cout << " positions without duplicates! Please try again.
\n";
80: howManyLetters = 0;
81: howManyPositions = 0;
82: }
83: else
84: valid = true;
85: }
86:

87: return 0;
88: }

What Are You Trying to Accomplish?

Line 35 brings us to the first line of code after the initialization of the local variables and constants.

The goal with this piece of code is to prompt the user for a series of pieces of information. Specifically,
you want to know how many letters he or she will use (for example, five letters means a, b, c, d, and e),
how many positions (for example, three positions means there are three letters that are actually used in
the code), and whether you'll allow duplicates (can one letter repeat?)

The problem is that the user might not give you valid information. For example, the user might tell you
to use four letters in five positions with no duplicates. This, unfortunately, is not physically possible.
You want to make sure that you have reasonable choices before moving forward with the program.

NOTE: Let me pause and point out that in a real commercial program, it is not unusual
for literally dozens--or even hundreds--of lines of code to be devoted to catching and
responding appropriately to bogus user input. You will not endeavor to be quite that
robust here, but you do want to trap the obvious mistakes and ask the user to try again.

Solving the Problem with Loops

The essential approach to solving this problem is to do some work (ask the user for input), test a
condition (determine whether the data makes sense), and, if the condition fails, start over.

This is called a loop; C++ supports a number of different looping mechanisms.

loop--A section of code that repeats.

Remember that you've created two constant integers for the values you need: minLetters and
maxLetters. Because you initialized howManyLetters to zero, when you start out,
howManyLetters is of course less than minLetters, assuming that minLetters is greater than zero.

You want to continue to prompt and then reprompt the user while howManyLetters is either less than the
minimum or more than the maximum. To do this, you'll create a while loop.

The syntax for the while statement is as follows:

while (condition)
statement;

condition is any C++ expression, and statement is any valid C++ statement or block of
statements. When condition evaluates to true, statement executes, and then condition is
tested again. This continues until condition tests false, at which time the while loop terminates and
execution continues on the first line following statement.

Your while statement might be

while (howManyLetters < minLetters)
{
 //...
}

NOTE: The symbol

//...

indicates that I've left out code that you're not considering at the moment.

Relational Operators

Relational operators determine whether two numbers are equal, or whether one is greater or less than
the other. Every relational statement evaluates to either true or false.

Relational Operator--A symbol (for example, > or <) that is used to determine the
relative size of two objects. Relational operators evaluate to true or false.

If the integer variable howManyLetters has the value 1 and the constant minLetters has the
value 2, the expression

howManyLetters < minLetters

returns true.

A while loop continues while the expression is true, so if howManyLetters is 1 and minLetters
is 2, the expression is true and the while loop will in fact execute.

Note that I talk about a single statement executing. It is also possible to execute a block (that is, a group)
of statements.

Blocks and Compound Statements

A statement can be a single line or it can be a block of code that is surrounded by braces, which is
treated as a single statement. Although every statement in the block must end with a semicolon, the
block itself does not end with a semicolon.

The block of code itself can consist of any number of statements, but it is treated as a single statement.

This enables you to run several statements as the execution of a single while loop.

Not only can you test whether one variable is less than another, you can test whether one is larger, or
even whether they are the same.

There are six relational operators listed in Table 3.1, which also shows each operator's use and some
sample code.

Table 3.1 Relational Operators

Name Operator Sample Evaluates

Equals == 100 ==
50;

false

50 == 50; true

Not Equals != 100 !=
50;

true

50 != 50; false

Greater
Than

> 100 > 50; true

50 > 50; false

Greater
Than

>= 100 >=
50;

true

or Equals 50 >= 50; true

Less Than < 100 < 50; false

50 < 50; false

Less Than <= 100 <=
50;

false

or Equals 50 <= 50; true

WARNING: Many novice C++ programmers confuse the assignment operator (=) with
the equals operator (==). This can create a nasty bug in your program.

Logical Operators

The problem with this while loop is that it tests only whether howManyLetters is less than the
constant minLetters; you also need to test to find out whether howManyLetters is greater than
maxLetters.

You can test them separately:

while (howManyLetters < minLetters)
{
 //...
}
while (howManyLetters > maxLetters)
{
 //...
}

This will work, but the code within both while loops will be identical. In fact, what you are really
trying to say is that you want to repeat this work while howManyLetters is less than minLetters
or while howManyLetters is greater than maxLetters. C++ enables you to make exactly that test
using the logical OR operator (||). You create the logical OR operator by pressing Shift+\ twice.

The Logical OR Operator

In this case, you are asking for the while loop to continue as long as either condition is true, so you use
logical OR:

while (howManyLetters < minLetters || howManyLetters > maxLetters)
{
 //...
}

This code says that the statement (between the braces) is executed if it is true that howManyLetters
is less than minLetters or if it is true that howManyLetters is greater than maxLetters (or if
both conditions are true).

The Logical AND Operator

At other times, you might want to continue only if both conditions are true, in which case you want to
use while (condition 1 and condition 2). The logical AND operator (&&) handles this
condition. A logical AND statement evaluates two expressions, and if both expressions are true, the
logical AND statement is true as well.

For example, you can test the following:

while (howManyLetters > minLetters && howManyLetters < maxLetters)
{

 //...
}

this statement executes only if it is true that howManyLetters is greater than minLetters and if it
is also true that howManyLetters is less than maxLetters.

Logical operator OR--|| created by two vertical lines, by pressing Shift+backslash (\)
twice.

Logical operator AND--&& created by two ampersands, by pressing Shift+7 twice.

The if StatementAn if statement allows you to take action only if a condition is true (and to skip the
action or do something else if the condition is false). You use if statements every day:

If it is raining, I'll take my umbrella.

If I have time, I'll walk the dog.

If I don't walk the dog, I'll be sorry.

The simplest form of an if statement is this:

if (expression)
 statement;

The expression in the parentheses can be any expression at all, but it usually contains one of the
relational expressions. If the expression has the value false, the statement is skipped. If it evaluates to
true, the statement executes. Once again, the statement can certainly be a compound statement
between braces, as you see here.

The Logical NOT Operator

A logical NOT statement (!) evaluates true if the expression that is being tested is false. This is
confusing at first, but an example will help. I might start by saying, "If it is raining, I'll bring my
umbrella":

if (raining)

 BringUmbrella();

How do I express that I'll only go for a walk if it is not raining?

if (! raining)
 GoForWalk();

I can also reverse these:

if (! raining)
 LeaveUmbrella;
if (raining)
 GoForWalk;

You get the idea.

Thus

if (! valid)

is true only if valid is false.

Logical NOT--Evalutes true when something is not true, and false when it is true.

You can use this nifty construct to turn your logical OR statement into a logical AND statement without
changing its meaning. For example

while (howManyLetters < minLetters || howManyLetters > maxLetters)

is exactly the same thing as

while ((! (howManyLetters > minLetters)) &&
(! (howManyLetters > maxLetters) _))

The logic of this is easy to understand if you use values. Assume that minLetters is 2,
maxLetters is 10, and howManyLetters is 0.

In that case, the while loop executes because the left part of the statement is true (0 is less than 2). In
an OR statement, only one side must be true for the entire statement to return true.

Thus,

while (howManyLetters < minLetters || howManyLetters > maxLetters)

becomes

while (0 < 2 || 0 > 10) // substitute the values

becomes

while (true || false) // evaluate the truth of each side

becomes

while (true) // if either is true, the statement is true

The second statement,

while ((! (howManyLetters > minLetters)) &&
(! (howManyLetters > maxLetters)))

becomes

while ((! (0 > 2)) && (! (0 > 10) _))

Now each side must be evaluated. The NOT symbol reverses the truth of what follows. It is as if this
said, "While it is not true that zero is greater than 2 and it is not true that zero is greater than 10."

Thus you get

while ((! (false)) && (! (false) _))

When you apply NOT to false, you get true:

while ((true)) && (true))

With an AND statement, both sides must be true; in this case they are, so the statement will execute.

Short Circuit Evaluation

When the compiler is evaluating an AND statement such as

while ((x == 5) && (y == 5))

the compiler evaluates the truth of the first statement (x==5); if this fails (that is, if x is not equal to
five), the compiler does not go on to evaluate the truth or falsity of the second statement (y == 5)
because AND requires that both be true.

Similarly, if the compiler is evaluating an OR statement such as

while ((x == 5) || (y == 5))

if the first statement is true (x == 5), the compiler never evaluates the second statement (y == 5)
because the truth of either is sufficient in an OR statement.

Relational Precedence

Relational operators and logical operators, because they are C++ expressions, each return a value of
true or false. Like all expressions, they have a precedence order (see Appendix B, "Operator
Precedence") that determines which relations are evaluated first. This fact is important when
determining the value of the statement

if (x > 5 && y > 5 || z > 5)

It might be that the programmer wanted this expression to evaluate true if both x and y are greater than
5 or if z is greater than 5. On the other hand, the programmer might have wanted this expression to
evaluate true only if x is greater than 5, and if it is also true that either y is greater than 5 or z is
greater than 5.

If x is 3 and y and z are both 10, the first interpretation is true (z is greater than 5, so ignore x and y),
but the second is false (it isn't true that x is greater than 5, and it therefore doesn't matter what is on the
right side of the && symbol because both sides must be true.)

Although precedence determines which relation is evaluated first, parentheses can both change the order
and make the statement clearer:

if ((x > 5) && (y > 5 || z > 5))

Using the values that were mentioned earlier, this statement is false. Because it is not true that x is

greater than 5, the left side of the AND statement fails, so the entire statement is false. Remember that
an AND statement requires that both sides be true: Something isn't both "good tasting" AND "good for
you" if it isn't good tasting.

NOTE: It is often a good idea to use extra parentheses to clarify what you want to group.
Remember, the goal is to write programs that work and that are easy to read and
understand. It is easier to understand

(8 * 5) + 3

than

8 * 5 + 3

even though the result is the same.

Putting It All Together

Following is the while statement you'll use to see whether you have a reasonable number of letters:

while (howManyLetters < minLetters || howManyLetters > maxLetters)
{
 //...
}

This reads "As long as the condition is true, do the work between the braces." The condition that is
tested is that either howManyLetters is less than minLetters OR howManyLetters is greater
than maxLetters.

Thus, if the user enters 0 or 1, howManyLetters is less than minLetters, the condition is true,
and the body of the while loop executes.

do while

Because howManyLetters is initialized to zero, you know that this while loop will run at least
once. If you do not want to rely on the initial value of howManyLetters but you want to ensure that
the loop runs at least once in any case, you can use a slight variant on the while loop--the do while

loop:

do statement
 while (condition)

This says that you will do the body of the loop while the condition is true. The loop must run at least
once because the condition is not tested until after the statement executes the first time. So you can
rewrite your loop as follows:

do
{
 //...
} while (howManyLetters < minLetters || howManyLetters > maxLetters)

You know you need a do while loop when you are staring at a while loop and find your self saying,
"Dang, I want this to run at least once!"

do while--A while loop that executes at least once and continues to exit while the
condition that is tested is true.

Enumerated Constants

When I have constants that belong together, I can create enumerated constants. An enumerated constant
is not quite a type; it is more of a collection of related constants.

The syntax for enumerated constants is to write the keyword enum, followed by the enumeration name,
an open brace, each of the legal values (separated by commas), and a closing brace and a semicolon.
Here's an example:

enum COLOR { RED, BLUE, GREEN, WHITE, BLACK };

This statement performs two tasks:

1. It makes COLOR the name of an enumeration.

2. It makes RED a symbolic constant with the value 0, BLUE a symbolic constant with the value
1, GREEN a symbolic constant with the value 2, and so on.

Every enumerated constant has an integer value. If you don't specify otherwise, the first constant has the
value 0 and the rest count up from there. Any one of the constants can be initialized with a particular
value, however, and those that are not initialized count upward from the ones before them. Thus, if you
write

enum Color { RED=100, BLUE, GREEN=500, WHITE, BLACK=700 };

RED has the value 100; BLUE, the value 101; GREEN, the value 500; WHITE, the value 501; and
BLACK, the value 700.

In this case you'll create an enum called BoundedValues and establish the values you need:

enum BoundedValues
{
minPos = 2,
maxPos = 10,
minLetters = 2,
maxLetters = 26
};

This replaces the four constant integers described previously. Frankly, there often is little advantage to
enumerated constants, except that they keep these values together in one place. If, on the other hand, you
are creating a number of constants and you don't particularly care what their value is so long as they all
have unique values, enumerated constants can be quite useful.

Enumerated constants are most often used for comparison or testing, which is how you use them here.
You'll test whether minLetters is greater or less than these enumerated values.

Returning to the Code

Let's look at the code beginning on line 37 and ending on line 49:

37: while (howManyLetters < minLetters
38: || howManyLetters > maxLetters)
39: {
40: cout << "How many letters? (";
41: cout << minLetters << "-" << maxLetters << "): ";
42: cin >> howManyLetters;
43: if (howManyLetters < minLetters
44: || howManyLetters > maxLetters)
45: {

46: cout << "please enter a number between ";
47: cout << minLetters << " and " << maxLetters << endl;
48: }
49: }

The goal of this statement is to continue to prompt the user for an entry that is greater than
minLetters and smaller than maxLetters.

The purpose of the if statement is to issue a reminder message if the number that is entered is out of
bounds. Here's how the code reads in words:

37: while (howManyLetters < minLetters
38: || howManyLetters > maxLetters)

While it is either true that the value howManyLetters is smaller than minLetters or it is true that
howManyLetters is greater than maxLetters,

 cout << "How many letters? (";
 cout << minLetters << "-" << maxLetters << "): ";
 cin >> howManyLetters;

prompts the user and captures the user's response in the variable howManyLetters:

 if (howManyLetters < minLetters
 || howManyLetters > maxLetters)

Test the response; if it is either smaller than minLetters or greater than maxLetters,

{
 cout << "please enter a number between ";
 cout << minLetters << " and " << maxLetters << endl;
}

prints out the reminder message.

The logic of this next while loop, shown on line 51, is identical to the preceding one.

Getting a Boolean Answer from the User

It is now time to ask the user whether he or she wants to allow duplicates (on line 72). You have a
problem, however. The local variable duplicatesAllowed is of type bool, which, you'll

remember, is a type that evaluates either to true or false.

You cannot capture a Boolean value from the user. The user can enter a number (using cin to save it in
an int variable) or a character (using cin to save it in a character variable). There are some other
choices as well, but Boolean is not one of them.

Here's how you'll do it: You'll prompt the user to enter a letter, y or n, and you'll then set the Boolean
value based on what is entered.

The first task is to capture the response, and here you need something very much like the while logic
that was shown previously for the letters. That is, you create a variable, as shown on line 65, initialize it
to an invalid answer (in this case, space), and then continue to prompt until the user gives you an
acceptable answer ('y' or 'n'):

char choice = ' ';
while (choice != 'y' && choice != 'n')
{
 cout << "Allow duplicates (y/n)? ";
 cin >> choice;
}

Begin by defining and initializing a character variable, choice. You can initialize it to a space by
enclosing a space in single quotes, as described in Chapter 2.

Once again, you use a while loop to test whether you have valid data. This time, you will test to see
whether choice is not equal to 'y' or 'n'.

If it is true that choice is not equal to (!=) 'y', and it is also true that choice is not equal to 'n',
the expression returns true and the while statement executes.

Your next task is to test the value in choice (which must now be 'y' or 'n') and set
duplicatesAllowed accordingly. You can certainly use an if statement:

if (choice == 'y')
 duplicatesAllowed = true;
else
 duplicatesAllowed = false;

Equality Operator ==

The equality operator (==) tests whether two objects are the same. With integers, two variables are equal

if they have the same value (for example, if x is assigned the value 4 and y is assigned the value 2*2,
they are equal). With character variables, they are equal if they have the same character value. No
surprises here. We test for equality on line 72 to see if choice is equal to the letter 'y'.

Equality operator (==)--Determines whether two objects have the same value. Be careful
with this; you need two equal signs. A single equal sign (=) indicates assignment in C++.
Thus, if you write

a = b

in C++ you assign the value currently in b to the variable a. If you want to test if they are
equal, you must write

a == b

else

Often your program wants to take one branch if your condition is true, another if it is false. The keyword
else indicates what the compiler is to execute if the tested expression evaluates false:

if (expression)
 statement;
else
 statement;

else--An else statement is executed only when an if statement evaluates to false.

Thus, the code shown says, "If choice is equal to y, set duplicatesAllowed to true; otherwise
(else), set it to false."

The Conditional (or ternary) Operator

You're trying to assign the value duplicatesAllowed depending on the value of choice. In

English you might want to say, "Is choice equal to y? If so, set duplicatesAllowed equal to
true; otherwise, set it to false."

C++ has an operator that does exactly what you want.

The conditional operator (?:) is C++'s only ternary operator: It is the only operator to take three terms.

NOTE: The arity of an operator describes how many terms are used. For example, a
binary operator, such as the addition operator (+), uses two terms: a+b. In this case, a and
b are the two terms.

C++ has a few unary operators, but you've not seen them yet. The conditional operator is C
++'s only ternary operator, and thus the terms conditional operator and ternary operator
are often used interchangeably.

arity--How many terms an operator uses

unary--An operator that uses only one term

binary--An operator that uses two terms

ternary--An operator that uses three terms

The conditional operator takes three terms and returns a value. In fact, all three terms are expressions;
that is, they can be statements that return a value:

(expression1) ? (expression2) : (expression3)

This line is read as follows: "If expression1 is true, return the value of expression2; otherwise,
return the value of expression3." Typically, this value is assigned to a variable.

Thus, line 72 shows

duplicatesAllowed = (choice == y) ? true : false;

Figure 3.1 illustrates each of the operators and terms.

Figure 3.1 Dissecting a statement.

This line is read as follows: "Is it true that choice equals the character 'y'? If so, assign true to
duplicatesAllowed; otherwise, assign false."

After you are comfortable with the conditional operator, it is clean, quick, and easy to use.

Putting It All Together

You are now ready to analyze the while loop, beginning at line 35. You start at line 27 by establishing
valid as a Boolean operator that is initialized to false.

while (! valid)

The while loop executes while valid is false. Because valid was initialized to false, the while
loop will certainly execute the first time through. This while loop begins with the opening brace on
line 36 and ends at the closing brace on line 86.

This entire loop continues to execute until and unless valid is set to true.

Within this while loop are a series of interior while loops that solicit and test the values for
howManyLetters, howManyPositions, and, ultimately (if indirectly), duplicatesAllowed:

 (! duplicatesAllowed && howManyPositions > howManyLetters)

Finally, after the values are gathered, on line 74 you test the logic of the choices. If it is true that
duplicates are not allowed, and it is also true that howManyPositions (provided by the user) is
greater than the number the user chose for howManyLetters, you have a problem: You need to put
five letters in six positions without duplicating any letters--it can't be done.

In this case, you execute the if statement and write to the screen, "I can't put five letters in six positions
without duplicates! Please try again." You then reinitialize howManyLetters and
howManyPositions to zero. Make sure that you understand why. Hint: check the while loops in
which these variables are assigned the user's choice.

If, on the other hand, the if statement fails (if duplicates are allowed or if howManyPositions is not
greater than howManyLetters), the else statement executes, valid is set to true, and the

while loop terminates.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

4

Creating Classes

● Why Classes?
● Creating New Types: Class
● Interface Versus Implementation

❍ Clients
● Looking at the Code
● Declaring the Class

❍ Classes and Objects
❍ Member Variables
❍ Member Methods or Functions
❍ The Size of Objects

● Files
● Constructors

❍ Destructors
● Implementing the Methods
● Including the Header
● Implementing the Constructor
● Initialization

❍ Using the Debugger
● Examining the Constructor
● The Other Methods
● Storing the Pattern
● What Is an Array?

❍ Initializing Arrays
❍ Array Elements
❍ Writing Past the End of an Array

● Generating the Solution
● Examining the Defined Values File

In Chapter 3, "Program Flow," you began to put logic into main() to gather the user's preference. In
this chapter you'll look at creating classes to do this work.

Why Classes?

Although it is possible--and perhaps tempting--to just flesh out main() with the additional
functionality you want to add to this program, it is a very bad idea.

The point of object-oriented programming is to create objects and assign them responsibility for specific
aspects of the game. This fosters encapsulation, and with it maintainability and extensibility.

Maintainability means that the programs can be maintained at less expense. Extensibility means that you
can add features without breaking the existing code.

As we design and implement classes, I'll discuss design heuristics: guidelines for designing excellent
software.

design heuristics--Guidelines for quality in design

The very first--and perhaps most important--object-oriented design heuristic is that each class needs to
have a single area of responsibility, and each object needs to collaborate with other objects to
accomplish more complicated tasks.

As a rule, C++ programmers tend to keep main() very simple. Its job is only to create the first object
and set off the chain of events that lead to these objects accomplishing their assigned tasks.

You'll begin by creating a Game class that is responsible for keeping track of the user's preferences and
getting the game underway.

Creating New Types: Class

Although the built-in types are fine for storing values, they are limited in the complexity of the
information they can manage.

Built-in types can be combined, however, into user-defined types that can be far more complex.

For example, suppose you want to store the number of letters from which you'll allow the player to
choose and the number of positions (for example, choosing among three numbers in two positions,
without duplicates, makes the following codes possible: ab, ba, ac, ca, bc, and cb). You can store
these two values in variables, or you can store both of them along with the decision as to whether to
allow duplicates--all within a Game class.

A class not only has values--it also has capabilities. Just as you know that an int can be added,
subtracted, multiplied, and divided, a Game can be set up, played, restarted, quit, and saved.

Interface Versus Implementation

We draw a sharp distinction between the declaration of a class and its implementation. The declaration
of a class tells the compiler about the attributes of the class and what its capabilities are. We often refer
to this declaration as the class's interface.

Every method that is declared in the interface must be implemented: You must write the code that shows
how it works.

interface--The declaration of the methods of a class

implementation--The code showing how the class methods work

Clients

Classes provide services to clients of the class. The client of your class is any programmer (even you!)
who creates instances of your class in his code.

NOTE: It is regrettable that the generic pronoun in Standard English is masculine, and
this is especially exacerbated by the fact that the programming profession is
disproportionately male. Please understand that the masculine pronoun is intended to be
generic.

Programmers use the term client in many ways. For example, if class A calls a method in
Class B, we say that A is a client of B. If I write class A and I call code you wrote in class
B, I am a client of your code. If my computer calls code running on your computer, my
computer is a client of your (server) computer. And so on.

All these share the same essential characteristic: The client receives a service from the
server.

The client of your class needs to know what your class does, but not how it works. If you create an
employee class, your client needs to know that the employee can tell him his hire date, but your client
does not need to know how your employee class keeps track of that date. You can store it in memory,
on disk, or in a central database, but that is not important to your client. He cares about the interface (can
supply date), not the implementation (retrieve date from file). Thus, the client treats your code as a black
box.

client--Any code that makes use of a class

Looking at the Code

Before we discuss classes, let's take a quick look at the new code that is declaring the Game class. Once
again, there is much here that will be new, but by reading through the code you can get a good idea of
how it works--even before we go through it in detail.

Listing 4.1 Game.h

0: class Game
1: {
2: public:
3: Game();
4: ~Game();

5: void Play();
6:
7: bool duplicatesAllowed;
8: int howManyLetters;
9: int howManyPositions;
10: int round;
11: };

Declaring the Class

A class is declared by writing the keyword class, followed by the class name and an opening brace (as
shown at line 0). The declaration is ended by a closing brace and a semicolon.

NOTE: The keyword public is needed as it is shown in line 2. We'll cover what this
word does in a later chapter. For now, please be sure to place the keyword public,
followed by a colon, at the start of every class declaration.

Classes and Objects

A class is a type. When you make instances of that type, they are called objects. In fact, the action of
creating an object is called instantiation.

class--Defines a new type

object--An instance of the type defined by a class

instantiation--Creating an instance of a class: an object

Novice programmers often confuse classes with objects. The type of something (the class) tells you what
it is (cat), what it can do (purr, eat, jump), and what attributes it has (weight and age). Individual objects
of that type have specific objects (nine pounds, two years old.)

Member Variables

When this code was in main(), you had a number of local variables: duplicatesAllowed,
howManyLetters, howManyPositions, and round.

These variables are now moved into the class, and they become members of the class itself starting at
line 7.

Member variables represent attributes of the objects of that class type. In other words, we are now
saying that every Game object will keep track of whether duplicates are allowed in that game, how many
letters and how many positions are to be used in the game, what the current round is, and that these are
the attributes of the class Game.

member variable--Data that is owned by a particular object of a class, and which
represents attributes of that class.

Member variables are different from normal variables only in that they are scoped to a specific class.
This is actually a very powerful aspect of object-oriented programming. The details of these values and
their management are now delegated to the Game class and can be made invisible to the clients of that
class.

Member Methods or Functions

The Game class has two principal activities:

● Setup--Get the user's preferences and choose a secret code.

● Play--Ask the user for guesses and score the guesses based on how many are correct and how
many are in the correct position.

You provide these capabilities to a class by giving the class member methods, which are also called
member functions. A member method is a function that is owned by a class--a method that is scoped to a
particular class.

NOTE: When we say that a member method is scoped to a class, we mean that the
identifier that is the member method is visible only within the context of the class or an

object of that class.

It is through these member methods that an object of a class achieves its behavior.

The Size of Objects

The size of an object is the sum of the sizes of the member variables that are declared for its class. Thus,
if an int is 4 bytes and your class declares three integer member variables, each object is 12 bytes.
Functions have no size.

Files

You create a class in two steps: First, the interface to the class is declared in a header file; second, the
member methods are created in a source code file.

NOTE: Header file--A text file that contains the class declaration. Traditionally named
with the .h extension

Source file--A text file that contains the source code for the member methods of a class.
Traiditionally named with the .cpp extension

The header file typically has an extension of .h or .hpp, and the source code file has the extension .cpp.
So for your Game class, you can expect to find the declaration in the file Game.h and the
implementation of the class methods in Game.cpp.

Constructors

It is not uncommon for a class to require a bit of setting up before it can be used. In fact, an object of
that class might not be considered valid if it hasn't been set up properly. C++ provides a special method
to set up and initialize each object, called a constructor, as shown at line 3.

In this case, you want the constructor to initialize each of the member variables. For some member
variables, you'll hard wire a reasonable value; for example, you'll keep track of what round of play you
are on, and of course, you'll start with round 1.

NOTE: Hard wire is a programming term that means that the value is written into the
code and doesn't change each time you run the program.

For other member variables, you must ask the user to choose an appropriate starting value. For example,
you'll ask the user to tell you whether duplicates are allowed, how many letters are to be used, and how
many positions are to appear in the secret code.

A constructor (line 3) has the same name as the class itself, and never has a return value.

NOTE: The absence of a return value does not, in this case, mean that it returns void.
Constructors are special: They have no return value. There are only two types of methods
for which this is true--constructors and destructors.

Destructors

The job of the destructor (line 4) is to tear down the object. This idea will make more sense after we talk
about allocating memory or other resources. For now, the destructor won't do much, but as a matter of
form, if I create a constructor, I always create a destructor.

Implementing the Methods

The header file provides the interface. Each of the methods is named, but the actual implementation is
not in this file--it is in the implementation file (See Listing 4.2).

Listing 4.2 Game.cpp

0: #include "Game.h"
1: #include <iostream.h>
2:
3:
4: Game::Game():
5: round(1),
6: howManyPositions(0),

7: howManyLetters(0),
8: duplicatesAllowed(false)
9: {
10: enum BoundedValues
11: {
12: minPos = 2,
13: maxPos = 10,
14: minLetters = 2,
15: maxLetters = 26
16: };
17: bool valid = false;
18: while (! valid)
19: {
20: while (howManyLetters < minLetters
21: || howManyLetters > maxLetters)
22: {
23: cout << "How many letters? (";
24: cout << minLetters << "-" << maxLetters << "): ";
25: cin >> howManyLetters;
26: if (howManyLetters < minLetters
27: || howManyLetters > maxLetters)
28: {
29: cout << "please enter a number between ";
30: cout << minLetters << " and " << maxLetters << endl;
31: }
32: }
33:
34: while (howManyPositions < minPos
35: || howManyPositions > maxPos)
36: {
37: cout << "How many positions? (";
38: cout << minPos << "-" << maxPos << "): ";
39: cin >> howManyPositions;
40: if (howManyPositions < minPos
41: || howManyPositions > maxPos)
42: {
43: cout << "please enter a number between ";
44: cout << minPos <<" and " << maxPos << endl;
45: }
46: }
47:
48: char choice = ' ';
49: while (choice != 'y' && choice != 'n')

50: {
51: cout << "Allow duplicates (y/n)? ";
52: cin >> choice;
53: }
54:
55: duplicatesAllowed = choice == 'y' ? true : false;
56:
57: if (! duplicatesAllowed &&
58: howManyPositions > howManyLetters)
59: {
60: cout << "I can't put " << howManyLetters;
61: cout << " letters in " << howManyPositions;
62: cout << " positions without duplicates! Please try again.
\n";
63: howManyLetters = 0;
64: howManyPositions = 0;
65: }
66: else
67: valid = true;
68: }
69:
70:
71: }
72:
73: Game::~Game()
74: {
75:
76: }
77:
78: void Game::Play()
79: {
80:
81: }

Listing 4.3 provides a short driver program that does nothing but instantiate an object of type Game.

Listing 4.3 Decryptix.cpp

0: #include <iostream >
1: #include "Game.h"
2:
3: int main()
4: {

5: Game theGame;
6: return 0;
8: }

Including the Header

The compiler can't know what a Game is without the definition, which is in the header file. To tell the
compiler what a Game object is, the first thing you do in the implementation file is to #include the
file with the definition of the Game class, in this case Game.h (as shown on line 1 of Listing 4.2).

NOTE: It is desirable to minimize the number of header files that are included in other
header files. Having many include statements within a header file can risk the creation
of circular references (a includes b, which includes c, which includes a) that won't
compile. This can also introduce order dependence, which means that the proper
execution of your code depends on files being added in the "correct order." This makes for
code that is difficult to maintain.

There is no limit to the number of header files you might want to include in
implementation files, but keep the includes in your header file to a minimum.

Implementing the Constructor

A member function definition begins with the name of the class, followed by two colons (the scoping
operator), the name of the function, and its parameters. On line 4 in Listing 4.2, you can see the
implementation of the constructor.

scope operator--The pair of colons between the class name and the method

identifier--Any named thing: object, method, class, variable, and so on

Like all methods, the constructor begins with an open brace ({) and ends with a closing brace (}). The
body of the constructor lies between the braces.

Initialization

In the exploration of variables, I talked about the difference between assignment and initialization.
Member variables can be initialized as well. In fact, the constructor actually executes in two steps:

● Initialization

● Construction

Construction is accomplished in the body of the constructor. Initialization is accomplished through the
syntax that is shown: After the closing parentheses on the constructor, add a colon. For each member
variable you want to initialize, write the variable name, followed by the value to which you want to
initialize it (enclosed in parentheses). Note also that you can initialize multiple members by separating
them with commas. There must be no comma after the last initialized value.

Thus, on line 5 in Listing 4.3, you see round initialized to the value 1, howManyPositions to the
value 0, howManyLetters to the value 0, and duplicatesAllowed to the value false.

NOTE: The new line I've placed between each initialized value is only for the
convenience of the programmer. I can just as easily put them all on one line, separated by
spaces:

Game::Game():
round(1),
howManyPositions(0),
howManyLetters(0),
duplicatesAllowed(false)
{

All this initialization occurs before the body of the constructor runs, beginning on line 10 of Listing 4.2 .

NOTE: We talk of methods or functions running, being executed, or being called,
depending on context. These all mean the same thing: Program execution branches to the
function, beginning at the first line and proceeding from there until it reaches a return
statement.

Within the body of the constructor, you see that an enumerated constant, BoundedValues, is created,
and a local variable, valid, is created and initialized on line 17.

This local variable, valid, will exist only for the duration of the constructor. Because this value is
needed only temporarily and is not part of the permanent state of the object (it is not an attribute of the
class Game), do not make it a member variable.

Just as valid is a variable that is local to the constructor, the instance of Game that is created in main
()is local to main() (Listing 4.3, line 5). Declare it like you declare any other variable--by declaring
its type (Game), and then the name of the object itself (theGame). You can name the object anything
you want, but it is best to name it something meaningful so that the code can be easily understood.

By defining this object, you bring it into existence, and that causes the constructor to be invoked
automatically.

Normally, methods are called explicitly. The constructor, however, is called implicitly when the object is
created, and the destructor is called implicitly when the object is destroyed. When a method is called
implicitly, the call doesn't appear in your code: It is understood to be the result of another action. Thus,
when you create an object, you implicitly call the constructor; when you delete an object, you implicitly
call the destructor. Not only do you not have to call these methods explicitly, you are prohibited from
doing so.

There are two ways to see this explicitly. One way is to add a temporary output line to the constructor
and destructor (as shown in Listing 4.4), and to main() (as shown in Listing 4.5).

Listing 4.4 Implicit Call to Constructor and Destructor

0: #include "Game.h"
1: #include <iostream>
2:
3: Game::Game():
4: round(1),
5: howManyPositions(0),
6: howManyLetters(0),
7: duplicatesAllowed(false)
8: {
9: cout << "In the Game constructor\n"" << endl;
10: }
11:
12: Game::~Game()

13: {
14: cout << "In the Game destructor\n" << endl;
15: }
16:
17: void Game::Play()
18: {
19:
20: }

Listing 4.5 Driver Program for Listing 4.4

0: #include <iostream>
1: #include "Game.h"
2:
3: using namespace std;
4:
5: int main()
6: {
7: cout << "Creating the game\n" << endl;
8: Game theGame;
9: cout << "Exiting main\n" << endl;
10: return 0;
11: }
Creating the game
In the Game constructor
Exiting main
In the Game destructor

Here we've stripped the constructor down to do nothing except print an informative message. As you can
see, creating the Game object causes the constructor to be invoked. Returning from main() ends the
function and implicitly destroys any local objects. This causes the destructor to be invoked, which prints
an equally informative message.

Using the Debugger

Although this works, it is tedious to add these printout messages; in any case, you can only infer the
effect because you don't actually see the constructor being invoked. The debugger is a far more powerful
tool.

Load Listings 4.1, 4.2, and 4.3 into a project and compile, link, and run it. Now, put a break point on line
5 in Listing 4.3--the creation of the Game object (see Figure 4.?). You are ready to see what this does, so
step into the function call. You find yourself at the opening brace to the constructor.

The debugger is a powerful tool for learning C++. It can show you explicitly what is happening in your
program as it runs. Because you'll be using the debugger throughout this book, you might want to take a
few minutes and read the documentation that came with your programming environment to learn more
about how to use your debugger.

Examining the Constructor

Careful examination of the constructor reveals that you have, essentially, duplicated the logic you had in
main() in the preceding chapter. The one exception is that you are now capturing and storing the
user's preferences in member variables as shown on lines 25, 39, and 52. These member variables are
part of the object and will, therefore, persist and contain these values after the constructor returns.

The Other Methods

The Game object has two other methods: a destructor and the Play() method. At this time neither of
these methods has any action, and you'll note that Play() is not yet called. This stubbed out function
exists only to remind the programmer of his intent--that eventually this class will include a meaningful
Play() method.

NOTE: When a programmer wants to show a method or function but does not want to do
the work of implementing that function, he stubs it out: He creates a stub function that
does nothing more than return, or at most prints, a message "in myTestMethod" and then
returns.

Storing the Pattern

The computer creates a pattern that the human player guesses. How is this pattern to be stored? Clearly,
you need the capability to store between minLetters and maxLetters characters as a pattern
against which you can compare the human's guesses.

NOTE: Let me explain the preceding sentence because this is exactly how programmers
talk about a problem like this: "The capability to store between minLetters and
maxLetters characters." This sentence is easier to understand if we use sample values:
If minLetters is 2 and maxLetters is 10, this sentence means that you need the

capability to store between 2 and 10 letters in a pattern.

Programmers become comfortable using variables rather than absolute values in their
formulations of a problem. The astute reader might also note that in fact we store these
values (minLetter and maxLetter) as constants, not variables. That is true, but the
values can vary from one compiled version to another, so they are variable in the more
general sense.

So how do you store the computer's secret code? Let's assume that the player chooses seven possible
letters with five positions, and the computer generates a secret code of acbed. How do you store this
string of letters?

You have several options. You can use the built-in array class or the standard library string, you can
create your own data structure to hold the letters, or you can use one of the standard library collection
classes.

The rest of this chapter examines arrays in some detail; in coming chapters you'll turn to other
alternatives.

What Is an Array?

An array is a fixed-size collection of data storage locations, each of which holds the same type of data.
Each storage location is called an element of the array.

Array--A fixed size collection of data

You declare an array by writing the type, followed by the array name and the subscript. The subscript is
the number of elements in the array, surrounded by square brackets. For example

long LongArray[25];

declares an array of 25 long integers, named LongArray. When the compiler sees this declaration, it
sets aside enough memory to hold all 25 elements. Because each long integer requires 4 bytes, this
declaration sets aside 100 contiguous bytes of memory, as illustrated in Figure 4.1.

subscript--The number of elements in an array

Figure 4.1 Declaring an array.

Initializing Arrays

You can initialize a simple array of built-in types, such as integers and characters, when you first declare
the array. After the array name, put an equal sign (=) and a list of comma-separated values enclosed in
braces. For example

int IntegerArray[5] = { 10, 20, 30, 40, 50 };

declares IntegerArray to be an array of five integers. It assigns IntegerArray[0] the value 10,
IntegerArray[1] the value 20, and so on.

If you omit the size of the array, an array that is just big enough to hold the initialization is created.
Therefore, if you write

int IntegerArray[] = { 10, 20, 30, 40, 50 };

you create exactly the same array as you did in the preceding example.

If you need to know the size of the array, you can ask the compiler to compute it for you. For example

int IntegerArrayLength = sizeof(IntegerArray)/sizeof(IntegerArray[0]);

sets the int variable IntegerArrayLength to the result that is obtained by dividing the size of the
entire array by the size of each individual entry in the array. That quotient is the number of members in
the array.

You cannot initialize more elements than you've declared for the array. Therefore,

int IntegerArray[5] = { 10, 20, 30, 40, 50, 60};

generates a compiler error because you've declared a five-member array and initialized six values. You
can, however, write

int IntegerArray[5] = { 10, 20};

Uninitialized array members have no guaranteed values; therefore, any value might be in an array
member if you don't initialize it.

Initializing Character Arrays

You can use a special syntax for initializing character arrays. Rather than writing

char alpha[] = { 'a', 'b', 'c' };

you can write

char alpha[] = "abc";

This creates an array of four characters and initializes with the three letters shown, followed by a NULL
character. It is exactly as if you had written

char alpha[4] = {'a','b','c',0}

It adds the NULL because NULL-terminated strings have special meaning in C and C++.

C-Style Strings

C++ inherits from C the capability to create strings, which are meaningful groups of characters used to
store words, phrases, and other strings of characters. These strings are represented in C and C++ as
NULL-terminated arrays of characters. The old C library string.h, still a part of C++, provides methods
for manipulating these strings: copying them, printing them, and so on.

The new Standard Library now includes a far better alternative: the string class. Objects of type
string offer all the functionality of old C-style NULL-terminated arrays of characters, but with all the
benefits of being well-defined types. That is, the new libraries are object-oriented, type safe, and well
encapsulated.

You'll look at string objects in some detail as we go forward, and along the way I'll review some of
the details of how C-style strings are used. For now, you're actually using this array of characters as a
simple array, and it is not NULL-terminated. You are using the array as a collection. The objects that are
being collected happen to be characters, but they can just as easily be integers or anything else you can
store in an array.

Array Elements

You access each of the array elements by referring to an offset from the array name. Array elements are
counted from zero. Therefore, the first array element is arrayName[0].

In the version of the program we'll examine for the rest of this chapter, you'll add a member variable
solution, which will hold an array of characters that represent the solution to the code generated by
the compiler.

The declaration for that array is

 char solution[maxPos+1];

This creates an array of characters that can hold exactly one more than maxPos characters. maxPos is
a symbolic constant defined to 10, so this defines an array of 11 characters. The 11th character is the
NULL character.

Because arrays count from offset 0, the elements in this array are solution[0], solution[1],
solution[2]...solution[9].

Writing Past the End of an Array

When you write a value to an element in an array, the compiler computes where to store the value, based
on the size of each element and the subscript. Suppose that you ask to write over the value at solution
[5], which is the sixth element. The compiler multiplies the offset (5) by the size of each element.
Since this is a char array, each element is 1 byte, so the math is fairly simple. The compiler then moves
that many bytes (5) from the beginning of the array and writes the new value at that location.

If you ask to write at solution[12], the compiler ignores the fact that there is no such element. It
computes how far past the first element it is to look, and then writes over whatever is at that location.
This can be virtually any data, and writing your new value there might have unpredictable results. If
you're lucky, your program will crash immediately. If you're unlucky, you'll get strange results
elsewhere in your program, and you'll spend weeks trying to find the bug.

Fence Post Errors

It is so common to write to one past the end of an array that this bug has its own name. It is called a
fence post error. This refers to the problem in counting how many fence posts you need for a 10-foot
fence if you need one post for every foot: Most people answer ten, but of course you need 11. Figure 4.2
makes this clear.

Figure 4.2 Fence post errors.

This sort of "off by one" counting can be the bane of any programmer's life. Over time, however, you'll
get used to the idea that a 25-element array counts only to element 24, and that everything counts from
zero.

NOTE: Fence post errors are responsible for one of the great misunderstandings of our
time: when the new millennium begins. A millennium is 1,000 years. We are ending the
second millennium of the Common Era, and we are about to start the third--but when,
exactly?

The first Millennium began with the year 1 and ended with the year 1000. The second
Millennium runs from 1001 to 2000. The third will begin on January 1, 2001. (Don't tell
the newspapers.)

Of course, to a C++ programmer this is all wrong. We begin counting with 0, and 1K is
1,024, thus the third C++ Millennium begins on January 1, 2048. Call it the Y2K2
problem.

Some programmers refer to ArrayName[0] as the zeroth element. Getting into this
habit is a big mistake. If ArrayName[0] is the zeroth element, what is ArrayName
[1], the oneth? If so, when you see ArrayName[24], will you realize that it is not the
24th element, but rather the 25th? It is far better to say that ArrayName[0] is at offset
zero and is the first element.

Generating the Solution

Now that you have an array to hold the solution, how do you add letters to it? You want to generate
letters at random, and you don't want the user to be able to guess the solution. The C++ library provides
a method, rand(), which generates a pseudo-random number. It is pseudo-random in that it always
generates numbers in the same predictable order, depending on where it starts--but they appear to be
random.

You can increase the apparent randomness of the numbers that are generated if you start the random
number generator with a different starting number (which we call a seed number) each time you run the
program.

You provide rand() with a seed number by first calling srand() and passing in a value. srand
(seed random) gives the random number generate a starting point to work from. The seed determines the

first random number that will be generated.

If you don't call srand() first, rand() behaves as if you have called srand() with the seed value
1.

You want to change the seed value each time you run the program so that you'll invoke one more library
function: time(). The function time returns the system time, expressed as a large integer.

NOTE: Interestingly, it actually provides you with the number of seconds that have
elapsed since midnight, January 1, 1970, according to the system clock. This date,
1/1/1970, is known as the epoch, the moment in time from which all other computer dates
are calculated.

The time() function takes a parameter of type time_t, but we don't care about this because it is
happy taking the NULL value instead:

 srand((unsigned)time(NULL));

The sequence, then, is to call time(), pass in NULL, cast the returned value to unsigned int, and pass
that result to srand(). This provides a reasonably random value to srand(), causing it to initialize
rand() to a nearly-random starting point.

NOTE: Let's talk about casting a value. When you cast a value to unsigned you say to the
compiler, "I know you don't think this is an unsigned integer, but I know better, so just
treat it like one." In this case, time() returns the value of type time_t, but you know
from the documentation that this can be treated as an unsigned integer--and an unsigned
integer is what srand() expects. Casting is also called "hitting it with the big hammer."
It works great, but you've disconnected the sprinklers and disabled the alarms, so be sure
you know what you're doing.

Now that you have a random number, you need to convert it into a letter in the range you need. To do
this, you'll use an array of 26 characters, the letters a-z. By creating such an array, you can convert the
value 0 to a, the value 1 to b, and so on.

Quick! What is the value of z? If you said 25, pat yourself on the back for not making the fence post
error of thinking it would be 26.

We'll call the character array alpha. You want this array to be available from just about anywhere in
your program. Earlier we talked about local variables, variables whose scope is limited to a particular
method. We also talked about class member variables, which are variables that are scoped to a particular
object of a class. A third alternative is a global variable.

global variable--A variable with no limitation in its scope--visible from anywhere in your
program

The advantage of global variables is that they are visible and accessible from anywhere in your program.
That is also the bad news--and C++ programmers avoid global variables like the plague. The problem is
that they can be changed from any part of the program, and it is not uncommon for global variables to
create tricky bugs that are terribly difficult to find.

Here's the problem: You're going along in your program and everything is behaving as expected.
Suddenly, a global variable has a new and unexpected value. How'd that happen? With global variables,
it is difficult to tell because they can be changed from just about anywhere.

In this particular case, although you want alpha to be visible throughout the program, you don't want it
changed at all. You want to create it once and then leave it around. That is just what constants are for.
Instead of creating a global variable, which can be problematic, you'll create a global constant. Global
constants are just fine:

const char alpha[] = "abcdefghijklmnopqrstuvwxyz";

global constant--A constant with no limitation in its scope--visible from anywhere in
your program.

This creates a constant named alpha that holds 27 characters (the characters a-z and the terminating
NULL). With this in place,

alpha[0]

evaluates to a, and

alpha[25]

evaluates to z.

NOTE: We'll include the declaration of alpha in a new file called definedValues.h, and
we'll #include that file in any file that needs to access alpha. This way, we create one
place for all our global constants (all our defined values), and we can change any or all of
them by going to that one file.

Listing 4.5 Adding Characters to the Array

0: for (i = 0; i < howManyPositions;)
1: {
2: int nextValue = rand() % (howManyLetters);
3: char c = alpha[nextValue];
4: if (! duplicatesAllowed && i > 0)
5: {
6: int count = howMany(solution, c);
7: if (count > 0)
8: continue;
9: }
10: // add to the array
11: solution[i] = c;
12: i++;
13: }
14: solution[i] = '\0';
15:
16: }

On line 0 you create a for loop to run once for each position. Thus, if the user has asked for a code with
five positions, you'll create five letters.

On line 2 you call rand(), which generates a random value. You use the modulus operator (%) to turn
that value into one in the range 0 to howManyLetters-1. Thus, if howManyLetters is 7, this

forces the value to be 0, 1, 2, 3, 4, 5, or 6.

Let's assume for the purpose of this discussion that rand() first generates the value 12, and that
howManyLetters is 7. How is the value 12 turned into a value in the range 0 through 6? To
understand this, you must start by examining integer division.

Integer division is somewhat different from everyday division. In fact, it is exactly like the division you
originally learned in fourth grade. "Class, how much is 12 divided by seven?" The answer, to a fourth
grader, is "One, remainder five." That is, seven goes into 12 exactly once, with five "left over."

integer division--When the compiler divides two integers, it returns the whole number
value and loses the "remainder."

When an adult divides 12 by 7, the result is a real number (1.714285714286). Integers, however, don't
have fractions or decimal parts, so when you ask a programming language to divide two integers, it
responds like a fourth grader, giving you the whole number value without the remainder. Thus, in
integer math, 12/7 returns the value 1.

Just as you can ask the fourth grader to tell you the remainder, you can use the modulus operator (%) to
ask your programming language for the remainder in integer division. To get the remainder, you take 12
modulus 7 (12 % 7), and the result is 5. The modulus operator tells you the remainder after an integer
division.

This result of a modulus operator is always in the range zero through the operand minus one. In this
case, zero through seven minus one (or zero through six). If an array contains seven letters, the offsets
are 0-6, so the modulus operator does exactly what you want: It returns a valid offset into the array of
letters.

On line 3 you can use the value that is returned from the modulus operator as an offset into alpha,
thus returning the appropriate letter. If you set howManyLetters to 7, the result will be that you'll
always get a number between zero and six, and, therefore, a letter in the range a through g--exactly what
you want!

Next, on line 4 you check to see whether you're allowing duplicates in this game. If not, enter the body
of the if statement.

Remember, the bang symbol (!) indicates not, so

if (! duplicatesAllowed)

evaluates true if duplicatesAllowed evaluates false. Thus, if not, duplicatesAllowed
means "if we're not allowing duplicates." The second half of the and statement is that i is greater than
zero. There is no point in worrying about duplicates if this is the first letter you're adding to the array.

On line 6 you assign to the integer variable count the result of the member method howMany(). This
method takes two parameters--a character array and a character--and returns the number of times the
character appears in the array. If that value is greater than zero, this character is already in the array and
the continue statement causes processing to jump immediately to the top of the for loop, on line 0.
This tests i, which is unchanged, so proceed with the body of the for loop on line 2, where you'll
generate a new value to try out.

If howMany() returns zero, processing continues on line 11, where the character is added to
solution at offset i. The net result of this is that only unique values are added to the solution if
you're not allowing duplicates. Next, i is incremented (i++) and processing returns to line 0, where i is
tested against howManyPositions. When i is equal to howManyPositions, the for loop is
completed.

Finally, on line 14 you add a NULL to the end of the array to indicate the end of the character array. This
enables you to pass this array to cout, which prints every character up to the NULL.

NOTE: To designate a NULL in a character array, use the special character
'\0'. To designate NULL otherwise, use the value 0 or the constant NULL.

Examining the Defined Values File

Take a look at Listing 4.6, in which we declare our constant array of characters alpha.

Listing 4.6 definedValues.h

0: #ifndef DEFINED_VALUES
1: #define DEFINED_VALUES
2:
3: #include <iostream>
4: using namespace std;
5:

6: const char alpha[] = "abcdefghijklmnopqrstuvwxyz";
7:
8: const int minPos = 2;
9: const int maxPos = 10;
10: const int minLetters = 2;
11: const int maxLetters = 26;
12:
13: #endif

This listing introduces several new elements.On line 0 you see the precompiler directive #ifndef. This
is read "if not defined," and it checks to see whether you've already defined whatever follows (in this
case, the string DEFINED_VALUES).

If this test fails (if the value DEFINED_VALUES is already defined), nothing is processed until the next
#endif statement, on line 13. Thus, the entire body of this file is skipped if DEFINED_VALUES is
already defined.

If this is the first time the precompiler reads this file, that value will not yet be defined; processing will
continue on line 2, at which point it will be defined. Thus, the net effect is that this file is processed
exactly once.

The #ifndef/#define combination is called an inclusion guard, and it guards against multiple
inclusions of the same header file throughout your program. Every header file needs to be guarded in
this way.

NOTE: Inclusion guards are added to header files to ensure that they are included in the
program only once.

We intend to include the definedValues.h header file into all our other files so that it constitutes a global
set of definitions and declarations. By including, for example, iostream.h here, we don't need to include
it elsewhere in the program.

On line 6 you declare the constant character array that was discussed earlier. On lines 8-11 you declare a
number of other constant values that will be available throughout the program.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

5

Playing The Game

● Inline Implementation
● Constant Member Methods
● Geek SpeakThis entire section needs to be moved to later in this chapter. Thanks. -jThe Signature
● Passing by Reference and by Value

❍ References and Passing by Reference
● Pointers

❍ What is a pointer?
❍ Memory Addresses
❍ Dereferencing
❍ Getting the Operators Straight

● Arrays
● Excursion: Pointers and Constants

❍ Arrays as Pointers
❍ Passing the Array as a Pointer

● Using ASSERT
❍ How ASSERT Works

● Excursion: Macros
❍ Why All the Parentheses?
❍ Macros Versus Functions

● String Manipulation
❍ Stringizing
❍ Concatenation

● Predefined Macros
● Through the Program Once, by the Numbers

The declaration of the Game object builds on the material we've covered so far, and it adds a few new
elements you'll need to build a robust class. Let's start by taking a look at the code (see Listing 5.1) and
then discussing it in detail.

Listing 5.1 Game.h

1: #ifndef GAME_H
2: #define GAME_H
3:
4: #include "definedValues.h"
5:
6: class Game
7: {
8: public:
9: Game();
10: ~Game() {}
11: void Display(const char * charArray) const
12: {
13: cout << charArray << endl;
14: }
15: void Play();
16: const char * GetSolution() const
17: {
18: return solution;
19: }
20: void Score(const char * thisGuess, int & correct, int &
position);
21:
22: private:
23: int howMany(const char *, char);
24: char solution[maxPos];
25: int howManyLetters;
26: int howManyPositions;
27: int round;
28: bool duplicates;

29: };Once again, you see inclusion guards on line 1, and you now see the naming pattern that I'll use
throughout this book. The inclusion guard will typically have the name of the class or file, in all
uppercase, followed by the underscore (_) and the uppercase letter H. By having a standard for the
creation of inclusion guards, you can reduce the likelihood of using the same guard name on two
different header files.

On line 4, we include definedValues.h. As promised, this file will be included throughout the program.

On line 6, we begin the declaration of the Game class. In the public section we see the public interface
for this class. Note that the public interface contains only methods, not data; in fact, it contains only
those methods that we want to expose to clients of this class.

On line 9, we see the default constructor, as described in Chapter 4, "Creating Classes," and on line 10,
we see the destructor. The destructor, as it is shown here, has an inline implementation, as do Display
() (lines 11 to 14) and GetSolution (lines 16 to 19).

Inline Implementation

Normally, when a function is called, processing literally jumps from the calling function to the called
function.

The processor must stash away information about the current state of the program. It stores this
information in an area of memory known as the stack, which is also where local variables are created.

NOTE: The stack is an area of memory in which local variables and other information
about the state of the program are stored.

The processor must also put the parameters to the new function on the stack and adjust the instruction
pointer (which keeps track of which instruction will execute next), as illustrated in Figure 5.1. When the
function returns, the return value must be popped off the stack, the local variables and other local state
from the function must be cleaned up, and the registers must be readjusted to return you to the state you
were in before the function call.

Figure 5.1 The instruction pointer.

An alternative to a normal function call is to define the function with the keyword inline. In this case,
the compiler does not create a real function: It copies the code from the inline function directly into the

calling function. No jump is made. It is just as if you had written the statements of the called function
right into the calling function.

Note that inline functions can bring a heavy cost. If the function is called 10 times, the inline code is
copied into the calling functions each of those 10 times. The tiny improvement in speed you might
achieve is more than swamped by the increase in size of the executable program. Even the speed
increase might be illusory. First, today's optimizing compilers do a terrific job on their own, and there is
almost never a big gain from declaring a function inline. More importantly, though, the increased size
brings its own performance cost.

If the function you are calling is very small, it might still make sense to designate that function as inline.
There are two ways to do so. One is to put the keyword inline into the definition of the function,
before the return value:

inline int Game::howMany()

An alternative syntax for class member methods is just to define the method right in the declaration of
the class itself. Thus, on line 19 you might note that the destructor's implementation is defined right in
the declaration. It turns out that this destructor does nothing, so the braces are empty. This is a perfect
use of inlining: There is no need to branch out to the destructor, just to take no action.

Constant Member Methods

Take a look at Display on lines 11-14. After the argument list is the keyword const. This use of
const means, "I promise that this method does not change the object on which you invoke this
method," or, in this case, "I promise that Display() won't change the Game object on which you call
Display()."

const methods attempt to enlist the compiler in helping you to enforce your design decisions. If you
believe that a member method ought not change the object (that is, you want the object treated as if it
were read-only), declare the method constant. If you then change the object as a result of calling the
method, the compiler flags the error, which can save you from having a difficult-to-find bug.

Geek SpeakThis entire section needs to be moved to later in
this chapter. Thanks. -jThe Signature

On line 20, we see the signature for the member method Score(). The signature of a method is the
name (Score) and the parameter list. The declaration of a method consists of its signature and its return
value (in this case, void).

signature--The name and parameter list of a method.

Before we examine this signature in detail, let's talk about what this method does and what parameters it
needs. The responsibility of this method is to examine the player's guess (an array of characters) and to
score it on how many letters he correctly found, and of those letters, how many were in the right place.

Let's take a look at how this will be used. Listing 5.2 shows the Play() method, which calls Score().

Listing 5.2 The Play Method

0: void Game::Play()
1: {
2: char guess[80];
3: int correct = 0;
4: int position = 0;
5:
6: //...
7: cout << "\nYour guess: ";
8: Display(guess);
9:
10: Score(guess,correct,position);
11: cout << "\t\t" << correct << " correct, " << position
12: << " in position." << endl;
13: }

I've elided much of this method (indicated by the //... marks), but the code with which we are
concerned is shown. We ask the user for his guess and store it in the character array guesson line 2.
We display guess by calling Display() on line 8 and passing guess in as a parameter. We then we
score it by calling Score() on line 10 and passing in guess and two integer variables: correct
(declared on line 3) and position (declared on line 4). Finally, we print the values for correct and
position on lines 11 and 12.

Score() adjusts the values of correct and position. To accomplish this, we must pass in these
two variables by reference.

Passing by Reference and by Value

When you pass an object into a method as a parameter to that method, you can pass it either by reference

or by value. If you pass it by reference, you are providing that function with access to the object itself. If
you pass it by value, you are actually passing in a copy of the object.

passing by reference--Passing an object into a function.

passing by value--Passing a copy of an object into a function.

This distinction is critical. If we pass correct and position by value, Score() cannot make
changes to these variables back in Play(). Listing 5.3 illustrates a very simple program that shows this
problem.

Listing 5.3 Illustrating Pass by Value

0: #include <iostream>
1: using namespace std;
2:
3: class Game
4: {
5: public:
6: Game(){};
7: ~Game(){}
8: void Play();
9: void Score(int correct, int position);
10:
11: private:
12: int howManyLetters;
13: int howManyPositions;
14: };
15:
16: void Game::Score(int correct, int position)
17: {
18: cout << "\nBeginning score. Correct: ";
19: cout << correct << " Position: " << position << endl;
20: correct = 5;
21: position = 7;
22: cout << "Departing score. Correct: ";
23: cout << correct << " Position: " << position << endl;
24: }

25:
26: void Game::Play()
27: {
28: int correct = 0;
29: int position = 0;
30:
31: cout << "Beginning Play. Correct: ";
32: cout << correct << " Position: " << position << endl;
33: correct = 2;
34: position = 4;
35: cout << "Play updated values. Correct: " ;
36: cout << correct << " Position: " << position << endl;
37: cout << "\nCalling score..." << endl;
38: Score(correct, position);
39: cout << "\nBack from Score() in Play. Correct: ";
40: cout << correct << " Position: " << position << endl;
41: }
42:
43: int main()
44: {
45:
46: Game theGame;
47: theGame.Play();
48: return 0;
49: }
50: Beginning Play. Correct: 0 Position: 0
51: Play updated values. Correct: 2 Position: 4
52:
53: Calling score...
54:
55: Beginning score. Correct: 2 Position: 4
56: Departing score. Correct: 5 Position: 7
57:
58: Back from Score() in Play. Correct: 2 Position: 4

The very first thing to note is that I've moved everything into one file: Decryptix.cpp. This is for
convenience only. In a real program, the declaration of Game would be in Game.h, the implementation
of Game would be in Game.cpp, and so forth.

Let's examine the code. On line 6, you see that we've simplified the constructor to take no action, and
we've implemented it inline. For the purpose of this illustration, we don't need to focus on anything
except the invocation of Score() from Play(). On line 9, you might notice that I've simplified the
signature of Score():, eliminating the array of characters. We'll come back to how to pass an array

into a function later, but for now I want to focus on the two integer variables, correct and
position. Note that in this illustration the ampersand (&) is gone: We're now passing by value, not by
reference.

Program flow begins in main(), toward the bottom of the file on line 43. On line 46 we create an
instance of a Game object, and at (16) we invoke (or call) the method Play() on that method.

This call to Play() causes program flow to jump to the beginning of Play() on line 26. We start by
initializing both correct and position to 0, on line 28. We then print these values on line 32,
which is reflected in the output on line 50.

Next, on lines 33 and 34 we change the values of correct and position to 2 and 4, respectively,
and then on line 36 we print them again, which is shown in the output on line 51.

On line 38 we invoke Score(), passing in correct and position. This causes the program flow
to jump to the implementation of Score(), which is shown on lines 16-24.

The signature of Score() at its implementation matches that of Score() in the class declaration, as
it must. Thus, correct and position are passed in by value. This is exactly as if you had declared
local variables in this function and initialized them to the values they had in Play().

On line 19 we print correct and position and, as the output shows on line 55, they match the
values they had in Play().

On lines 20 and 21, we change these values to 5 and 7, and then on line 23 we print them again to prove
that the change occurred; this appears in the output at line 56.

Score() now returns, and program flow resumes on 39; the values are printed again, as shown in the
output on line 58.

Until this moment, everything has proceeded according to plan; however, the values back in Play()
are not changed, even though you know they were in Score(). Step through this in your debugger, and
you'll find that the values are changed in Score(), but when you are back in Play(), they are
unchanged.

As you have probably already guessed, this is the result of passing the parameters by value. If you make
one tiny change to this program and declare the values to be passed by reference, this program works as
expected (see Listing 5.4).

Listing 5.4 Passing by Reference

0: #include <iostream>
1: using namespace std;
2:
3: class Game
4: {
5: public:
6: Game(){}
7: ~Game(){}
8: void Play();
9: void Score(int & correct, int & position);
10:
11: private:
12: int howManyLetters;
13: int howManyPositions;
14: };
15:
16: void Game::Score(int & rCorrect, int & rPosition)
17: {
18: cout << "\nBeginning score. Correct: " << rCorrect
18a: << " Position: " << rPosition << endl;
19: rCorrect = 5;
20: rPosition = 7;
21: cout << "Departing score. Correct: "; << rCorrect;
21a: cout << " Position: " << rPosition << endl;
22: }
23:
24: void Game::Play()
25: {
26: int correct = 0;
27: int position = 0;
28:
29: cout << "Beginning Play. Correct: " << correct;
29a: cout << " Position: " << position << endl;
30: correct = 2;
31: position = 4;
32: cout << "Play updated values. Correct: " << correct;
32a: cout << " Position: " << position << endl;
33: cout << "\nCalling score..." << endl;
34: Score(correct, position);
35: cout << "\nBack from Score() in Play. Correct: " << correct;
35a: cout << " Position: " << position << endl;
36: }
37:

38: int main()
39: {
40:
41: Game theGame;
42: theGame.Play();
43: return 0;
44: }
45: Beginning Play. Correct: 0 Position: 0
46: Play updated values. Correct: 2 Position: 4
47:
48: Calling score...
49:
50: Beginning score. Correct: 2 Position: 4
51: Departing score. Correct: 5 Position: 7
52:
53: Back from Score() in Play. Correct: 5 Position: 7

The only change in this version is to the signature of Score() (on line 9), which is matched in the
implementation (on line 16). The parameter names (for example, rCorrect) need not match between
the declaration and the implementation.

NOTE: The parameter names are actually optional at the declaration. If you leave them
off, the program compiles without error. As a general programming practice, however, be
sure to include good parameter names even though they are not required. They serve as
documentation and make your source code easier to understand.

The invocation of Score() on line 34 does not change at all. The client of Score() doesn't have to
manage the fact that you are now passing correct and position by reference.

The output illustrates on line 53 that the change to the values in Score() did change the values back
in Play(). This happens because this time no copy was made--you were changing the actual values.

References and Passing by Reference

The change in the signature is a change in type. You have changed correct from the integer

int correct

into a reference to an integer:

int & rCorrect

A reference is a special type that acts as an alias.

NOTE: A reference is a type that acts as an alias to an existing object.

The references rCorrect and rPosition are used within Score() exactly as if they were normal
integer variables, but the values assigned to them are actually assigned to the original variables--
correct and position--back in Play().

NOTE: The name I've given it, rCorrect, is a clue to me that this is a reference. I tend
to prepend reference variables with the letter r and pointers (discussed later) with the letter
p, but the language does certainly not require this. You can name the variables in Score
() and the variables in Play() using exactly the same names, but it makes the source
code a bit more difficult to understand.

prepend--Programmers use the term prepend to indicate that you add something to the
beginning of a term or variable. Thus, we prepend the letter p to variable names for
pointers. The Free Online Dictionary of Computing (http://www.instantweb.
com/foldoc/foldoc.cgi?query=prepend) defines prepend as follows: /pree
pend/ (by analogy with append) To prefix or add to the beginning.

It is important to distinguish between passing by reference and passing a reference. There are two ways
to pass by reference. So far we've examined one way: using a reference. Let's take a look at the
alternative--pointers.

Pointers

Your throat tightens, your pulse quickens, and a cold, sickening dread grows in the pit of your stomach.
Nothing unnerves new C++ programmers as does working with pointers. Well, relax. When you
understand that a pointer is nothing more than a variable that holds the address in memory of another
variable, pointers are a piece of cake.

What is a pointer?

When you create objects in your program, you create them in memory.

When you create the local variable correct in the method Play(), correct is kept in memory.
Later you'll examine where in memory variables live, but for now it doesn't matter. What does matter is
that correct is in memory, and every location in memory has an address. Normally, you don't care
about the specific address of an object because you have a label (or name), for example, correct. If
you need to get to correct, you can do so with its label.

You can get the address of correct by using the address of operator (&):

&correct;

NOTE: The address-of operator (&) uses the same ampersand that we used to identify
references. The compiler can tell which you want by context.

When you have the address of correct, you can stash that address in a pointer. A pointer is a variable
that holds the address of some object in memory.

pointer--A variable that holds the address of an object.

Memory Addresses

You can imagine that each memory location is ordered sequentially, as an offset from some arbitrary
starting point. Picture, if you will, a series of cubbyholes, all aligned and numbered, perhaps as shown in
Figure 5.2.

Figure 5.2 Memory as cubbyholes.

Every integer, character, or object you create is stored in these addresses. Because each cubby holds one
byte, a 4-byte integer such as correct takes up four such locations.

correct's address is just the first byte of that storage location. Because the compiler knows that an
integer is 4 bytes, if its address is 0x001, the compiler knows it occupies 0x001, 0x002, 0x003, and
0x004, and therefore puts the next integer at 0x005-0x008.

NOTE: These addresses are in hexadecimal, which is a base-16 numbering system. If you
are curious about this, please see Appendix A, "Binary and Hexadecimal."

There are two perspectives on what is stored in these locations. One is the bit perspective, which is
pretty close to how the compiler "thinks" about memory (see Figure 5.3).

Figure 5.3 How the compiler thinks about data in memory.

From this perspective, the four bytes are filled with binary digits. How these values are interpreted is
irrelevant to the compiler. The bits might represent an integer, a character, or an address somewhere else
in memory. We'll return to that idea in a moment.

The point is that the compiler doesn't know or care how to interpret the bits--it just knows what is stored
at a given location. To the programmer, however, this memory is conceived somewhat differently (as
shown in Figure 5.4).

Figure 5.4 How programmers think about data in memory.

To the programmer, the value 5 is stored at this location like a letter in a mailbox. The programmer
doesn't much care how the bits are configured, he just knows that the value is stashed away at a
particular location.

Let's return to the idea that you can store a memory address. This is a powerful idea. We show here that
the value 5 is stored at memory location 0x001. What if you take that address, 0x001 (which in binary
is 00000000 00000000 00000000 00000001), and you stash that pattern at another address in
memory: 0x1101 (see Figure 5.5).

Figure 5.5 Storing the address.

NOTE: There are some simplifying assumptions here that do not distort the point of this
discussion. For example, these are not real memory locations, and values are often stored
in memory in a slightly different order than is shown. In addition, compilers often store
values at even boundaries in memory.

Here you see that at location 1101, you have stored the value 0x001: the memory location at which
you stored the value 5.

At that pointed to address, you hold the value 5 as illustrated in Figure 5.4. You can now assign this
address to a variable that holds an address--a pointer. You declare a pointer by indicating the type of
object it points to (in this case, int), followed by the pointer operator (*), followed by the name of the
variable:

int * pCorrect;

This declares pCorrect to be a pointer to an integer. You can then assign the address of any integer, in
this case correct, to that pointer:

pCorrect = &correct;

Thus, pCorrect now contains the address of the score, as shown in Figure 5.6.

Figure 5.6 pCorrect points to correct.

pCorrect is a pointer to an integer. The integer itself, correct, is stored at 0x001, and pCorrect
stores the address of that integer.

The pointer does not have to be in the same method as the variable. In fact, by passing the address into a
method and manipulating it with a pointer, you can achieve the same pass by reference effect you
achieved using references. Listing 5.5 illustrates this point by rewriting Listing 5.4 using pointers.

Listing 5.5 Using Pointers

0: #include <iostream>
1: using namespace std;
2:
3: class Game

4: {
5: public:
6: Game(){}
7: ~Game(){}
8: void Play();
9: void Score(int * correct, int * position);
10:
11: private:
12: int howManyLetters;
13: int howManyPositions;
14: };
15:
16: void Game::Score(int * pCorrect, int * pPosition)
17: {
18: cout << "\nBeginning score. Correct: " << * pCorrect
18a: << " Position: " << * pPosition << endl;
19: * pCorrect = 5;
20: * pPosition = 7;
21: cout << "Departing score. Correct: " << * pCorrect
21a: << " Position: " << * pPosition << endl;
22: }
23:
24: void Game::Play()
25: {
26: int correct = 0;
27: int position = 0;
28:
29: cout << "Beginning Play. Correct: " << correct
29a: << " Position: " << position << endl;
30: correct = 2;
31: position = 4;
32: cout << "Play updated values. Correct: " << correct
32a: << " Position: " << position << endl;
33: cout << "\nCalling score..." << endl;
34: Score(&correct, &position);
35: cout << "\nBack from Score() in Play. Correct: " << correct
35a: << " Position: " << position << endl;
36: }
37:
38: int main()
39: {
40:
41: Game theGame;

42: theGame.Play();
43: return 0;
44: }
45: Beginning Play. Correct: 0 Position: 0
46: Play updated values. Correct: 2 Position: 4
47:
48: Calling score...
49:
50: Beginning score. Correct: 2 Position: 4
51: Departing score. Correct: 5 Position: 7
52:
53: Back from Score() in Play. Correct: 5 Position: 7

The signature to Score() has changed again, as shown on lines 9 and 16. This time, pCorrect and
pPosition are declared to be pointers to int: They hold the address of an integer.

On line 34, Play() calls Score() and passes in the addresses of correct and position using
the address-of operator (&). There is no reason to declare a pointer here. All you need is the address, and
you can get that using the address-of operator.

The compiler puts this address into the pointers that are declared to be the parameters to Score().
Thus, on line 34, the variables pCorrect and pPosition are filled with the addresses of correct
and position, respectively.

Dereferencing

On line 18 you want to print the values of correct and position. You don't want the values of
pCorrect and pPosition because these are addresses. Rather, you want to print the values at the
variables whose addresses these pointers hold.

Similarly, on line 19 and 20 you want to set a new value into the variable whose address is stored in
pCorrect. You do not want to write

pCorrect = 5;

because that assigns 5 to pCorrect, and pCorrect needs an address, not a simple integer value.

NOTE: This will compile, but it stores the address 5 to this pointer, which is a disaster
waiting to happen.

The dereference operator (*) is used. Again, this is the pointer operator, but its meaning is understood
in context.

dereference operator--The dereference operator is used to access the object to which the
pointer points.

The dereference operator returns the object whose address is stored in the pointer. Thus

*pCorrect

returns the variable correct. By writing

*pCorrect = 5;

we store the value 5 in correct.

NOTE: I read the statement

*pCorrect = 5

NOTE: as "set the value at pCorrect to 5." That is, assign 5 to the variable whose
address is stored in pCorrect.

Getting the Operators Straight

There are two hurdles for a novice programmer--syntax and semantics--and pointers challenge you on
both. The syntax is different because the same symbols (& and *) are used for many different purposes.

The asterisk is used for multiplication, for the declaration of a pointer, and for dereferencing:

z = x * y; // z equals x multiplied by y
int * ptr; // declare a pointer

*ptr = 7; // assign 7 to the dereferenced pointerSimilarly, the ampersand is used for references, for the
address-of operator, and for logical AND:

if (x && y) // if x and also y
ptr = &x; // address-of operator

int & x = y; // initialize a referenceMore important than the confusing syntax is the difficulty with
semantics. When I assign the value 5 on line 19, realize that I'm assigning 5 to correct in Play()
indirectly through the pointer that is passed into Score().

Arrays

Listing 5.6 reproduces the excerpt of Play() that we were examining in Listing 5.2 when we went off
on the discussion of pointers. Remember that on line 10 we call Score() with three parameters, the
first of which is our array of characters--guess. We've considered the two other parameters, correct
and position, which are passed by reference using references. How is guess passed?

Listing 5.6 Play

 0: void Game::Play()
1: {
2: char guess[80];
3: int correct = 0;
4: int position = 0;
5:
6: //...
7: cout << "\nYour guess: ";
8: Display(guess);
9:
10: Score(guess,correct,position);
11: cout << "\t\t" << correct << " correct, " << position
11a: << " in position." << endl;
12: }

You must always pass arrays by reference; this is fairly easy to accomplish because C++ supports a
close symmetry between arrays and pointers.

Excursion: Pointers and Constants

Every nonstatic member method has, as a hidden parameter, a pointer called the this pointer. The
this pointer has the address of the object itself. When you write

const char * Game::GetSolution()
{
 return solution;
}

the compiler invisibly turns it into

const char * Game::GetSolution(Game * this)
{
 return this->solution;
}

You are free to use the this pointer explicitly: you can write your code as follows

const char * Game::GetSolution()
{
 return this->solution;
}

but there is little point in doing so. That said, there are times when you will use the this pointer
explicitly to obtain the address of the object itself. We'll discuss this later in the book.

When you declare the member method const, the compiler changes the this pointer from a pointer to
an object into a pointer to a constant object. Thus, the compiler turns the following code

const char * Game::GetSolution() const
{
 return solution;
}

into

const char * Game::GetSolution(const Game * this) const
{
 return this->solution;
}

The constant this pointer enforces the constancy of class method.

Arrays as Pointers

The name of an array (in our case, guess) is thought of as a pointer to the first element in the array.
You can access elements of an array using the offset operator ([]), or by using the name of the array
and what is called pointer arithmetic. Listing 5.7 illustrates this relationship between pointers and arrays.

pointer arithmetic--You can determine how many objects are in a range by subtracting
the address of one pointer from another.

Listing 5.7 Relationship Between Pointers and Arrays

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: char myString[80];
6: strcpy(myString,"Hello there");
7: cout << "myString is " << strlen(myString)
7a: << " characters long!" << endl;
8: cout << "myString: " << myString << endl;
9: char c1 = myString[1];
10: char c2 = *(myString + 1);
11: cout << "c1: " << c1 << " c2: " << c2 << endl;
12: char * p1 = myString;
13: char * p2 = myString + 1;
14: cout << "p1: " << p1 << endl;
15: cout << "p2: " << p2 << endl;
16: cout << "myString+1: " << myString+1 << endl;
17: myString[4] = 'a';
18: cout << "myString: " << myString << endl;
19: *(myString+4) = 'b';
20: cout << "myString: " << myString << endl;
21: p1[4] = 'c';
22: cout << "myString: " << myString << endl;

23: *(p1+4) = 'd';
24: cout << "myString: " << myString << endl;
25: myString[4] = 'o';
26: myString[5] = '\0';
27: cout << "myString: " << myString << endl;
28: return 0;
29: }
30: myString is 11 characters long!
31: myString: Hello there
32: c1: e c2: e
33: p1: Hello there
34: p2: ello there
35: myString+1: ello there
36: myString: Hella there
37: myString: Hellb there
38: myString: Hellc there
39: myString: Helld there
40: myString: Hello

On line 5, we create a character array that is large enough to hold the string. On line 6 we use the old-
fashioned C-style string library routine strcpy to copy into our array a null-terminated string with the
words Hello there.

On line 7 we use the C-style library routine strlen to obtain the length of the string. This measures the
number of characters until the first NULL and returns that value (11) as an integer, which is printed by
cout and shown on line 30.

On line 8 we pass the array to cout, which treats the name of the array (myString) as a pointer to the
first byte of the string. cout knows that when it is given an array name it is to print every character
until the first NULL. This is shown on line 30.

On line 9 we create a character variable, c1, which is initialized with the character at offset 1--that is,
the second character in the array, e.

On line 13 we treat myString as a pointer and add one to it. When you add one to a pointer, the
compiler looks at the type of the object that is pointed to, which in this case is char. It uses the type to
determine the size of the object, which in this case is one byte. It then returns the address of the next
object of that size. If this were a pointer to int, it would return the address of the next int, four bytes
later in memory.

Take the address that is returned (myString+1) and dereference it; this returns the character at that
address. Then initialize a new character variable, c2, with that character. Note that c2 is not a pointer;

by dereferencing, you're actually getting a character, and that is what is assigned to c2.

We print these two characters on line 11, and the printout is on line 32.

On line 12 we create a pointer to a character and assign it to myString. Because the name of the array
acts as a pointer to the first byte of the array, p1 now also points to the first byte. On line 13 we create a
second pointer and point it to the second character in the array. These are printed on lines 14 and 15 and
shown at lines 33 and 34). This illustrates that in each case cout acts as expected, printing the string
beginning at the byte that is pointed to and continuing until the first NULL. These have the same printout
as on line 18, which uses the string offset directly and which is shown on line 35.

On line 21 we use the offset operator to change the character that is stored at offset 4 (the fifth
character). This is printed, and the output appears on line 36.

You can accomplish the same thing on line 16 by using pointer arithmetic and dereferencing the address
that is returned; see the output on line 37. Because p1 is pointing to myString, you can use the offset
operator on the pointer on line 21. Remember that the name of the array is a pointer to the first element--
and that is exactly what p1 is. The effect on line 38 is identical.

Similarly, on line 23 we can use pointer arithmetic on p1 and then dereference the resulting address, just
as we did with the array name. The resulting printout is shown on line 39.

On line 25 we change the value back to 'o' using the offset operator, and then we insert a null at offset
5. You can do the same thing with pointer arithmetic, but you get the point. As you probably remember,
cout prints only to the first null, so the string hello is printed; nothing further in the array is printed,
however, even though the word there still remains. This is shown on line 40.

Passing the Array as a Pointer

We said earlier that guess is passed by reference, as a pointer. What you see passed in Listing 5.6 is
the name of the array, which is a pointer to the first element in the array:

Score(guess,correct,position);In Score() this first parameter must be declared as a pointer to
character, which it is. Listing 5.8 reproduces Listing 5.1, the declaration of the Game class.

Listing 5.8 Reproducing Listing 5.1

0: #ifndef GAME_H
1: #define GAME_H
2:
3: #include "definedValues.h"

4:
5: class Game
6: {
7: public:
8: Game();
9: ~Game(){}
10: void Display(const char * charArray)const{ cout << charArray
<<
10a: endl;}
11: void Play();
12: const char * GetSolution() const { return solution; }
13: void Score(const char * thisGuess, int & correct, int &
position);
14:
15: private:
16: int howMany(const char *, char);
17: char solution[maxPos];
18: int howManyLetters;
19: int howManyPositions;
20: int round;
21: bool duplicates;
22: };
23:
24: #endif

You can see on line 13 that the first parameter to Score() is declared as a pointer to char, just as we
require. Listing 5.9 shows the implementation of the Score() method.

Listing 5.9 Implementing Score()

0:void Game::Score(const char * thisGuess, int & correct, int &
position)
1: {
2: correct = 0;
3: position = 0;
4:
5: for (int i = 0; i < howManyLetters; i++)
6: {
7: int howManyInGuess = howMany (thisGuess, alpha[i]);
8: int howManyInAnswer = howMany (solution, alpha[i]);
9: correct += howManyInGuess < howManyInAnswer ?
10: howManyInGuess : howManyInAnswer;
11:

12: }
13:
14: for (int j = 0; j < howManyPositions; j++)
15: {
16: if (thisGuess[j] == solution[j])
17: position++;
18: }
19:
20: }

The signature on the implementation agrees, as it must, with the declaration. thisGuess is a pointer to
char and is the same array as guess in Play(). Because guess was passed by reference (as arrays
must be), this is the same array, and changes to this array are reflected back in Play.

Because you must pass by reference but you do not want to allow Score() to change this array (and
there is no reason for it to do so), declare the parameter to be a pointer to a constant char rather than a
pointer to char. This keyword const says to the compiler, "I don't intend to change the object that is
pointed to, so tell me if I do." This way, the compiler taps you on the shoulder if you attempt to make
such a change and says, "Excuse me, sir, but you've changed an object when you promised you wouldn't.
Not cricket, sir." (Your compiler's error message might vary).

Let's walk through this implementation of Score() line by line. On lines 2 and 3, we initialize both
integers, correct and position, to 0. If we take no other action, the score is zero correct and
zero in position.

On line 5 we begin a for loop that will run once for each letter in thisGuess. The body of the for
loop consists of three statements.

On line 7 a local variable--howManyInGuess--is initialized to store the result of calling the private
member method howMany(). When we call howMany, we pass in the pointer to the array
as the first parameter and the letter at alpha[i] as the second parameter.

This is a classic C++ statement, which does at least three things at once. Let's take the statement apart.

The first thing that happens is that alpha[i] is returned. The first time through this loop, alpha[0]
is returned, which is 'a'. The second time through, 'b' is returned, and so forth.

This letter becomes the second parameter to the call to howMany(). If you look back at the declaration
of Game, you'll find that howMany() is a private method that takes two parameters: a pointer to a
constant char (the guess from Play()) and a character. Listing 5.10 shows the implementation of
howMany().

Listing 5.10 Implementing Game::HowMany()

0: inline int Game::howMany(const char * theString, char c)
1: {
2: int count = 0;
3: for (int i = 0; i < strlen(theString); i++)
4: {
5: if (theString[i] == c)
6: count ++;
7: }
8: return count;

9: }The purpose of this method is to return the number of times an individual letter occurs in an array of
characters. On line 2 the counter is initialized to zero. On line 3 we begin a for loop that iterates
through every position in the array.

On line 5 we test each character to see whether it matches the character that was sent in to be tested; if
so, we increment the counter. Note that the braces at lines 4 and 7 are not technically necessary, but as
Donald Xie pointed out when editing this book, they do make the code much easier to read.

Finally, on line 8 we return that value.

In Listing 5.9, on line 7, we now have a value on the right side of the assignment that represents how
many times alpha[i] occurs in thisGuess: that is, in the array that is passed in from Play().

On line 8, we compute the same value for the solution. The value of correct is the lesser of these two,
which we accomplish on lines 9 and 10 by using the ternary operator to find the smaller value.

An example makes this clearer: If the solution has aabba and the guess has ababc, we examine the first
letter a. howMany() returns 2 for the guess and 3 for the solution, so the player has the lesser, 2,
correct.

On lines 14-18, we iterate again through the loops, this time testing on line 16 to see whether the
character at a specific offset in thisGuess is the same as the character at the same offset in the
solution. If so, another letter is in the right position.

Because correct and position were passed in as references, the changes that are made in Score
() are reflected back in Play().

Using ASSERT

Before moving on, I want to demonstrate how this code can be made both more reliable and more
understandable through the use of ASSERT.

The purpose of ASSERT is to test your assumptions when you are debugging your code, but to have no
effect at all when you release your final production version.

When you are debugging your code, you signal your compiler to enter debug mode. When you are ready
to release your program to the paying public, you rebuild in release mode. Debug mode brings along a
lot of debugging information that you don't want in release mode.

Thus, in debug mode, you can write

ASSERT (position <= correct)

Here you are simultaneously documenting your belief that position must never be larger than
correct. (You can never have five in the correct position if you only have four correct letters!) You
are also testing that assertion each time the code runs to prove that you are right. In debug mode, if
position ever is larger than correct, this ASSERT statement fails and an error message is written.

When your program is ready to be released, the ASSERT macro magically disappears and has no effect
on the efficiency of your code.

How ASSERT Works

ASSERT is typically implemented as a macro. Macros are left over from C; they are type-unsafe
routines that are processed not by the compiler but by the precompiler, the same beast that handles your
#include and #define statements. In fact, a macro is a #define statement.

macro--A text substitution by the precompiler. Macros can act as small subprograms.

Excursion: Macros

A macro function is a symbol that is created using #define, which takes an argument much like a
function does, and which replaces the macro and its argument with a substitution string. For example,
you can define the macro TWICE as follows:

#define TWICE(x) ((x) * 2)

Then in your code you write

TWICE(4)

The entire string TWICE(4) is removed and the value 4*2 is substituted. When the precompiler sees
TWICE(4), it substitutes ((4) * 2). That is just what you want because 4*2 evaluates to 8, so
TWICE will have done just the work you expected.

A macro can have more than one parameter, and each parameter can be used repeatedly in the
replacement text. Two common macros are MAX and MIN:

#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define MIN(x,y) ((x) < (y) ? (x) : (y))

MAX returns the larger of two values (x and y), and MIN returns the lesser. Thus, MAX(7,5) is 7, and
MIN(7,5) is 5.

NOTE: In a macro function definition, the opening parenthesis for the parameter list must
immediately follow the macro name, with no spaces. The preprocessor is not as forgiving
of white space as is the compiler.

Why All the Parentheses?

You might be wondering why there are so many parentheses in these macros. The preprocessor does not
demand that parentheses be placed around the arguments in the substitution string, but the parentheses
help you avoid unwanted side effects when you pass complicated values to a macro. For example, if you
define MAX as

#define MAX(x,y) x > y ? x : y

and pass in the values 5 and 7, the macro works as intended. If you pass in a more complicated
expression, however, you'll get unintended results, as shown in Listing 5.11.

Listing 5.11 Unintended Macro Results

0:
1: #include <iostream.h>
2:
3: #define CUBE(a) ((a) * (a) * (a))
4: #define THREE(a) a * a * a
5:
6: int main()
7: {
8: long x = 5;
9: long y = CUBE(x);
10: long z = THREE(x);
11:
12: cout << "y: " << y << endl;
13: cout << "z: " << z << endl;
14:
15: long a = 5, b = 7;
16: y = CUBE(a+b);
17: z = THREE(a+b);
18:
19: cout << "y: " << y << endl;
20: cout << "z: " << z << endl;
21: return 0;
22: }
***Please Insert Output icon herey: 125
z: 125
y: 1728
z: 82

On line 1, we use the old-fashioned iostream.h so that we can avoid using namespaces. This is perfectly
legal in C++, and it is common in writing very short demonstration programs.

On line 3, the macro CUBE is defined, with the argument x put into parentheses each time it is used. On
line 4, the macro THREE is defined, without the parentheses. It is intended for these macros to do
exactly the same thing: to multiply their arguments times themselves, three times.

In the first use of these macros, on line 16, the value 5 is given as the parameter and both macros work
fine. CUBE(5) expands to ((5) * (5) * (5)), which evaluates to 125, and THREE(5)
expands to 5 * 5 * 5, which also evaluates to 125.

In the second use, on line 17, the parameter is 5 + 7. In this case, CUBE(5+7) evaluates to

 ((5+7) * (5+7) * (5+7))

which evaluates to

 ((12) * (12) * (12))

which in turn evaluates to 1,728. THREE(5+7), however, evaluates to

5 + 7 * 5 + 7 * 5 + 7

Because multiplication has a higher precedence than addition, this becomes

5 + (7 * 5) + (7 * 5) + 7

which evaluates to

5 + (35) + (35) + 7

which finally evaluates to 82.

Macros Versus Functions

Macros suffer from four problems in the eyes of a C++ programmer. First, because all macros must be
defined on one line, they can be confusing if they become large. You can extend that line by using the
backslash character (\), but large macros quickly become difficult to manage.

Second, macros are expanded inline each time they are used. This means that if a macro is used a dozen
times, the substitution appears 12 times in your program, rather than appearing once as a function call
does. On the other hand, they are usually quicker than a function call because the overhead of a function
call is avoided.

The fact that they are expanded inline leads to the third problem, which is that the macro does not appear
in the intermediate source code that is used by the compiler, and therefore it is not visible in most
debuggers. By the time you see it in the debugger, the substitution is already accomplished. This makes
debugging macros tricky.

The final problem, however, is the largest: Macros are not type-safe. Although it is convenient that
absolutely any argument can be used with a macro, this completely undermines the strong typing of C++
and so is anathema to C++ programmers.

That said, the ASSERT macro is a good example of a time when this is not a bug, but a feature: One
ASSERT macro can test any condition, mathematical or otherwise.

String Manipulation

The preprocessor provides two special operators for manipulating strings in macros. The stringizing
operator (#) substitutes a quoted string for whatever follows the stringizing operator. The concatenation
operator (##) bonds two strings together into one.

NOTE: The stringizing operator (#) substitutes a quoted string for whatever follows the
stringizing operator.

The concatenation operator (##) bonds two strings together into one.

Stringizing

The stringizing operator(#) puts quotes around any characters that follow the operator, up to the next
white space. Thus, if you write

#define WRITESTRING(x) cout << #x

and then call

WRITESTRING(This is a string);

the precompiler turns it into

cout << "This is a string";

Note that the string This is a string is put into quotes, as is required by cout.

Concatenation

The concatenation operator (##) enables you to bond together more than one term into a new word. The
new word is actually a token that can be used as a class name, a variable name, or an offset into an
array--or anywhere else a series of letters might appear.

Assume for a moment that you have five functions named fOnePrint, fTwoPrint,
fThreePrint, fFourPrint, and fFivePrint. You can then declare

#define fPRINT(x) f ## x ## Print

and then use it with fPRINT(Two) to generate fTwoPrint, and with fPRINT(Three) to generate
fThreePrint.

Predefined Macros

Many compilers predefine a number of useful macros, including __DATE__, __TIME__, __LINE__,
and __FILE__. Each of these names is surrounded by two underscore characters to reduce the
likelihood that the names will conflict with names you've used in your program.

When the precompiler sees one of these macros, it makes the appropriate substitutes. For __DATE__,
the current Date is substituted; for __TIME__, the current time is substituted. __LINE__ and
__FILE__ are replaced with the source code line number and filename, respectively. Note that this
substitution is made when the source is precompiled, not when the program is run. If you ask the
program to print __DATE__, you do not get the current date; instead, you get the date the program was
compiled. These defined macros are very useful in debugging.

Although many compilers do provide an ASSERT macro, it will be instructive to create our own, shown
in Listing 5.12.

Listing 5.12 An ASSERT Macro

0: #define DEBUG
1:
2: #ifndef DEBUG
3: #define ASSERT(x)
4: #else
5: #define ASSERT(x) \
6: if (! (x)) \
7: { \
8: cout << "ERROR!! Assert " << #x << " failed\n"; \
9: cout << " on line " << __LINE__ << "\n"; \
10: cout << " in file " << __FILE__ << "\n"; \
11: }
12: #endif

On line 0, we define the value DEBUG, which we test on line 2. In the production version we'll remove
the definition of DEBUG, and the test on line 2 will fail. When the test fails, this macro defines ASSERT
(x) to do nothing, as shown on line 3. If the test succeeds, as it will while we are debugging, this macro
defines ASSERT as shown on line 5.

In a macro, any line ending with \ continues on the next line as if both were on the same line. The
entire set of lines from line 5 to line 11 is thus considered a single line of the macro. On line 6, whatever
is passed to the macro (x) is tested; if it fails, the body of the if statement executes, writing an error
message to the screen.

On line 8, we see the stringizing macro at work, and the following lines take advantage of the
__FILE__ and __LINE__ macros that are supplied by the compiler vendor.

I don't show ASSERT macros everywhere they might appear in this book because they can detract from
the point that is being made; at other times, however, they can greatly clarify the program. For example,
I'd rewrite Score() as shown in Listing 5.13.

Listing 5.13 Rewriting Score with ASSERT

0:void Game::Score(const char * thisGuess, int & correct, int &
position)
1: {
2: correct = 0;
3: position = 0;
4:
5: ASSERT (strlen(thisGuess) == howManyPositions)
6: ASSERT (strlen(solution) == howManyPositions)
7:
8: for (int i = 0; i < howManyLetters; i++)
9: {
10: int howManyInGuess = howMany (thisGuess, alpha[i]);
11: int howManyInAnswer = howMany (solution, alpha[i]);
12: correct += howManyInGuess < howManyInAnswer ?
12a: howManyInGuess : howManyInAnswer;
13: }
14:
15: for (i = 0; i < howManyPositions; i++)
16: {
17: if (thisGuess[i] == solution[i])
18: position++;
19: }
20:
21: ASSERT (position <= correct)
22:
23: }

The ASSERT on line 5 documents and tests my assumption that the string passed in as thisGuess is

exactly howManyPositions long. The ASSERT on line 6 does the same for the solution. Finally, the
ASSERT on line 21 documents and tests my assumption that the number in the correct position can
never be greater than the number of correct letters.

Through the Program Once, by the Numbers

Listing 5.14 provides the complete listing of this program. Let's walk through one round, line by line.

Listing 5.14 Using ASSERT (DefinedValues.h)

1: #ifndef DEFINED
2: #define DEFINED
3:
4: #include <iostream>
5: using namespace std;
6:
7: const char alpha[] = "abcdefghijklmnopqrstuvwxyz";
8: const int minPos = 2;
9: const int maxPos = 10;
10: const int minLetters = 2;
11: const int maxLetters = 26;
12:
13: #define DEBUG
14:
15: #ifndef DEBUG
16: #define ASSERT(x)
17: #else
18: #define ASSERT(x) \
19: if (! (x)) \
20: { \
21: cout << "ERROR!! Assert " << #x << " failed
\n"; \
22: cout << " on line " << __LINE__ << "\n"; \
23: cout << " in file " << __FILE__ << "\n"; \
24: }
25: #endif
26:
27: #endif

Game.h

28: #ifndef GAME_H
29: #define GAME_H
30:
31: #include "DefinedValues.h"
32:
33: class Game
34: {
35: public:
36: Game();
37: ~Game(){}
38: void Display(const char * charArray) const
39: {
40: cout << charArray << endl;
41: }
42: void Play();
43: const char * GetSolution() const { return solution; }
44: void Score(const char * thisGuess, int & correct, int &
position);
45:
46: private:
47: int HowMany(const char *, char);
48: char solution[maxPos+1];
49: int howManyLetters;
50: int howManyPositions;
51: int round;
52: bool duplicates;
53: };
54:
55: #endif

Game.cpp

56: #include <time.h>
57: #include "Game.h"
58:
59: void Game::Score(const char * thisGuess, int & > rCorrect, int
& > rPosition)
60: {
61: rCorrect = 0;
62: rPosition = 0;
63:
64: ASSERT (strlen(thisGuess) == howManyPositions)

65: ASSERT (strlen(solution) == howManyPositions)
66: int i;
67: for (i = 0; i < howManyLetters; i++)
68: {
69: int howManyInGuess = HowMany (thisGuess, alpha[i]);
70: int howManyInAnswer = HowMany (solution, alpha[i]);
71: rCorrect += howManyInGuess < howManyInAnswer ?
72: howManyInGuess : howManyInAnswer;
73: }
74:
75: for (i = 0; i < howManyPositions; i++)
76: {
77: if (thisGuess[i] == solution[i])
78: rPosition ++;
79: }
80:
81: ASSERT (rPosition <= rCorrect)
82:
83: }
84:
85: Game::Game():
86: round(1),
87: howManyPositions(0),
88: howManyLetters(0),
89: duplicates(false)
90: {
91:
92: bool valid = false;
93: while (! valid)
94: {
95: while (howManyLetters < minLetters ||
96: howManyLetters > maxLetters)
97: {
98: cout << "How many letters? (";
99: cout << minLetters << "-" << maxLetters << "): ";
100: cin >> howManyLetters;
101: if (howManyLetters < minLetters ||
102: howManyLetters > maxLetters)
103: cout << "please enter a number between ";
104: cout << minLetters << " and " << maxLetters <<
endl;
105: }
106:

107: while (howManyPositions < minPos ||
107a: howManyPositions > maxPos)
108: {
109: cout << "How many positions? (";
110: cout << minPos << "-" << maxPos << "): ";
111: cin >> howManyPositions;
112: if (howManyPositions < minPos ||
112a: howManyPositions > maxPos)
113: cout << "please enter a number between ";
114: cout << minPos <<" and " << maxPos << endl;
115: }
116:
117: char choice = ' ';
118: while (choice != 'y' && choice != 'n')
119: {
120: cout << "Allow duplicates (y/n)? ";
121: cin >> choice;
122: }
123:
124: duplicates = choice == 'y' ? true : false;
125:
126: if (! duplicates && howManyPositions >
howManyLetters)
127: {
128: cout << "I can't put " << howManyLetters;
128a: cout << " letters in ";
129: cout << howManyPositions;
130: cout << " positions without duplicates! ";
131: cout << Please try again.\n";
132: howManyLetters = 0;
133: howManyPositions = 0;
134: }
135: else
136: valid = true;
137: }
138:
139: int i;
140: for (i = 0; i < maxPos; i++)
141: solution[i] = 0;
142:
143: srand((unsigned)time(NULL));
144:
145: for (i = 0; i < howManyPositions;)

146: {
147: int nextValue = rand() % (howManyLetters);
148: char c = alpha[nextValue];
149: if (! duplicates && i > 0)
150: {
151: int count = HowMany(solution, c);
152: if (count > 0)
153: continue;
154: }
155: // add to the array
156: solution[i] = c;
157: i++;
158: }
159: solution[i] = '\0';
160:
161: }
162:
163: void Game::Play()
164: {
165: char guess[80];
166: int correct = 0;
167: int position = 0;
168: bool quit = false;
169:
170: while (position < howManyPositions)
171: {
172:
173: cout << "\nRound " << round << ". Enter ";
174: cout << howManyPositions << " letters between ";
175: cout << alpha[0] << " and ";
175a: cout << alpha[howManyLetters-1] << ": ";
176:
177: cin >> guess;
178:
179: if (strlen(guess) != howManyPositions)
180: {
181: cout << "\n ** Please enter exactly ";
182: cout << howManyPositions << " letters. **\n";
183: continue;
184: }
185:
186:
187: round++;

188:
189: cout << "\nYour guess: ";
190: Display(guess);
191:
192: Score(guess,correct,position);
193: cout << "\t\t" << correct << " correct, ";
194: cout << position << " in position." << endl;
195: }
196:
197: cout << "\n\nCongratulations! It took you ";
198:
199: if (round <= 6)
200: cout << "only ";
201:
202: if (round-1 == 1)
203: cout << "one round!" << endl;
204: else
205: cout << round-1 << " rounds." << endl;
206: }
207:
208:
209: inline int Game::HowMany(const char * theString, char c)
210: {
211: int count = 0;
212: for (int i = 0; i < strlen(theString); i++)
213: if (theString[i] == c)
214: count ++;
215: return count;
216: }

Decryptix.cpp

217: #include "DefinedValues.h"
218: #include "Game.h"
219:
220: int main()
221: {
222: cout << "Decryptix. Copyright 1999 Liberty ";
223: cout << "Associates, Inc. Version 0.3\n\n" << endl;
224: bool playAgain = true;
225:
226: while (playAgain)
227: {

228: char choice = ' ';
229: Game theGame;
230: theGame.Play();
231:
232: cout << "\nThe answer: ";
233: theGame.Display(theGame.GetSolution());
234: cout << "\n\n" << endl;
235:
236: while (choice != 'y' && choice != 'n')
237: {
238: cout << "\nPlay again (y/n): ";
239: cin >> choice;
240: }
241:
242: playAgain = choice == 'y' ? true : false;
243: }
244:
245: return 0;
246: }

We begin by loading this program in the debugger and placing a break point on line 222, as illustrated in
Figure 5.7. Your particular debugger might look somewhat different, but the essentials are probably the
same. Choose Run to break point (in Microsoft Visual Studio, this is F5).

Figure 5.7 Examining a break point.

By the time the program has stopped at this break point, it has loaded the two header files,
definedValues.h and Game.h.

Loading definedValues brings us to line 1, where the inclusion guards are checked and we find that
DEFINED has not yet been defined. Thus, the body of definedValues is read, which brings in
iostream (line 4) and which declares (line 5) that we are using the standard namespace.

The global constants are defined on line 7, and ASSERT is defined on line 18.

Including Game.h brings us to line 31, where we attempt to include definedValues. This brings us
back to line 1, where the inclusion guards protect us by determining that DEFINED has already been
defined, so the rest of definedValues.h is ignored. Returning to line 33, we find the declaration of the
Game class.

The constructor and destructor are declared lines 36 and 37. Lines 38-41 are the Display routine,
which prints to the screen any character array that is passed in. On line 42 is the heart of the class: the

Play() method. On line 43 I've added a new method, GetSolution(), which simply returns the
solution as a pointer to a constant character--exactly what is needed by Display(). Finally, On line
44) we see the Score() method, which takes an array of characters (passed in by reference as a pointer
to a constant character), and two references to integers.

NOTE: Part of the private interface--not exposed to the public but used by the class's
methods to aid in implementation--are several state variables (such as
howManyLetters on line 49 and howManyPositions on line 50) that indicate
which round we're playing (on line 51) and whether we're allowing duplicates (on line 52).

In addition, line 48 shows the array that holds the solution to the game; line 47 shows a helper function,
which is used by other methods of this class to determine how many instances of a particular character
are found within any array of characters. You'll see how all the methods work as we step through the
code.

Our break point on line 222 causes the program to stop before it prints to the screen. See your debugger's
documentation for how to step over a function call; in Microsoft's debugger it is F10. Pressing step-over
causes the copyright notice to print, and then the Boolean value. playAgain is initialized to true.
This is used in the test on line 226, and of course this test passes because the value was just initialized
one line earlier.

This brings us into the body of the while statement, where we create an instance of a Game object on
line 229. This causes program flow to jump to the constructor of the Game object on line 85. We see
that the member variables are initialized, and we enter the while loop on line 93. On lines 95 and 96
we test whether howManyLetters (initialized to 0) is less than minLetters (set in definedValues.
h to 2). Because this proves true, the second half of the OR statement (howManyLetters >
maxLetters) is not even evaluated; instead, we enter the while loop on line 98.

The user is prompted to enter how many letters he'll be guessing in this instance of the game. We'll
choose 4; that value is stored in the member variable howManyLetters on line 100.

On line 101 we test to ensure that we have a legal value; if not, we print a reminder to the player.
Program flow loops back up to line 95, where the value is checked; if we have a valid value we proceed
on line 107, where the same logic is applied to the number of positions. We'll choose 3.

On line 121 we prompt the user to tell us whether he wants to allow duplicates. Note that this is not
robust code: If the user enters Y rather than y (that is, uppercase rather than lowercase), the while
statement continues to prompt him until he gets it right. We'll fix that up in the next version. For now,

we'll enter n.

On line 124 we test the value that is received; if it is 'y', we set duplicates to true; otherwise, we
set it to false. In this case, we set it to false because we've entered 'n'.

Take a look at the member variables, as shown in Figure 5.8.

Figure 5.8 Examining member variables.

Notice, in the variables window in the lower-left corner, that choice has the value 'n', and in the
watch window in the lower-right, that you have howManyLetters 4, and howManyLetters 3.
Also note, in the variables window, that duplicates is shown as 0. My debugger cannot handle
bools, so it shows true as 1 and false as 0. This is legal in C++ (0 does evaluate false and all
other integers evaluate true), but it might be better if the debugger showed the actual Boolean value.

NOTE: These images are from the Visual C++ debugger. In other environments you may
find a different display, but you should be able to see the same values and information.

On line 126 we test the logic of the user's choices. If he asks for three letters in four positions without
duplicates, we point out that this is impossible.

On line 140 we iterate through the entire array, setting every member to zero. It is interesting to put
solution into a watch window in the debugger and step through this loop watching as each offset
member of the array is changed to zero. Note that this is zero the numeric value, not 0 the character. In C
++, 0 is the value of NULL, so this loop sets our character array to contain nothing but NULLs.

At line 143 we use srand to seed the random number generator. You might find it interesting to step
into the call to time, but this is not relevant to our discussion here.

On line 145 we begin the work of populating the solution array. First, the local counter variable i is
initialized to zero.

NOTE: You might find that many C++ programmers use the variables i, j, k, l, and m
as counter variables in for loops, and many can't even tell you why. Why not a? Why
not counter?

This is a perfect example of historical anachronisms living on past the time they make any
sense. Back in the ancient days of mainframe computing, early versions of FORTRAN
(FORmula TRANslator) used only the variables i, j, k, l, and m as legal counting
variables. My second computing language was FORTRAN IV, which I learned in high
school in 1971. ("You had zeros? We had to use os!") Old habits die hard.

Just as an aside, my first programming language was Monrobot machine language (1s and
0s), which we programmed using paper tape. The computer on which we ran this also had
an assembler called QuickComp, which was used by the programming students. To use
QuickComp, you had to load a machine language "loader" by running the appropriate tape
before running your program. A few of us hacked the QuickComp tape so that on loading
it printed go away, I'm sleeping and then shut down the system. In those days,
programming, and my sense of humor, were a lot simpler.

On line 147 we examine the result of applying the modulus operator to the result of calling rand() and
howManyLetters. If you want to see this at work, rewrite this line as follows:

// int nextValue = rand() % (howManyLetters);
int randResult = rand();
int nextValue = randResult % (howManyLetters);

This way you can see the result from rand() (stored in randResult), and then the effect of the
modulus operator.

The first time I ran this on my machine, randResult was 17,516. I note that howManyLetters is
4. 17,516 divided by 4 is equal to exactly 4,379. Thus, there is no remainder, so the value that is
returned by the modulus operator is 0.

On line 148 the character variable c is set to the letter at offset 0 in alpha ('a').

On line 149 we test the value of duplicates (in this case, false) and whether i is greater than zero.
In this case, i is zero, so the if statement is skipped. On line 156 solution[0] is set to a. Then i is
incremented to 1 and is compared with howManyPositions at 41. (Notice that we do not do the
increment in the body of the for loop.) This is because we only want to increment i if we get to line
156. We'll see the alternative in just a moment.

On line 147 we generate nextValue again. On my computer this generates a randResult of
14846 and a nextValue of 2. Does this make sense? howManyLetters is 4. It turns out that
14,846 divided by 4 is 3,711, with a remainder of 2. (3,711 times 4 is 14,844). Thus the modulus
operator returns 2, and the character c is assigned alpha[2] or c.

This time the if statement at line 149 returns true, and we enter the body of the if statement. On line
151 we assign the result of calling HowMany to the variable count, passing in the solution array and
the letter c.

Program flow branches to line 209. The array is now represented as a pointer. On line 211 the local
variable count is initialized to zero. On line 212 we iterate through the string that is passed in (the
solution), and each time through the loop we test whether the value at the current offset is equal to the
character that is passed in .

This time, strlen(theString) is 1. You can test this by inserting a line between, rewriting line
212 as follows:

int stringLength = strlen(theString);
for (int i = 0; i < stringLength; i++)

C++ programmers snicker at this kind of code, with lots of temporary variables, but I've come to believe
strongly that this is the right way to do things. By introducing the temporary variable stringLength,
you can examine this value in the debugger in a way that is not possible with the more compact version
of this code (in which strlen is used in the for loop test).

We see that this first time stringLength is 1, so the for loop runs only once. Because theString
[0] is 'a' and our character c is 'c', the if statement fails and count is not incremented. The
for loop then ends, and the value 0 is returned. Program flow now resumes at the line immediately
following line 151, where the returned value (count) is tested. Because it is not greater than zero, the
continue statement does not execute, and program flow continues on line 156 where the character
'c' is added to the array and, once again, i is incremented.

The third time through the for loop at on line 145, my computer generates the value 5,092, which is
also exactly divisible by four, returning a nextValue of 0 and a character of 'a'. This time, when we
enter howMany, the character matches, so the counter is incremented and the value 1 is returned from
howMany. In this case, when the flow resumes at the line just after the call to howMany on line 151, the
if statement returns true (1 is greater than 0), so the continue statement executes. This causes the
program flow to immediately return to line 145, where we will generate and test a new value.

This is why you don't want to increment i: After all, you have not yet put a value into solution[2].
Thus, i remains at 2, but the call on line 147 generates a different value; this time, the value is 1,369,
which sets nextValue to 1 and the character value c to 'b'. Because 'b' does not yet appear in our
array, it is added, and i is incremented. i is now 3, the test on line 145 fails (3 is not less than 3), and
we fall through to line 159 where solution[3] is set to null.

The result of all this is that solution looks like this:

solution[0]: 'a'
solution[1]: 'c'
solution[2]: 'b'
solution[3]: 0

The constructor now ends, and we resume on line 230 back in main(). This immediately calls Play
(), so processing branches to the implementation of Play() on line 163. The local variables
correct and position are initialized to 0 (check your local variables window in your debugger),
and the user is prompted to enter a guess on line 173. That guess is stored on line 177 in the array you
created on line 165.

We'll guess abc. This fails the test on line 179 because the string length of guess is 3, which is equal
to howManyPositions and thus fails the test of not being equal. Processing skips the body of the if
statement and continues on line 187, where the member variable round is incremented from zero to 1.
On line 190 this guess is passed to Display(), where it is shown to the user; then, on line 192, it is
passed into Score().

You can step over Display (in Visual C++, press F10) and then into Score (in Visual C++, press F11)
to follow those parts of the program that are of immediate interest. Stepping into Score() causes
program flow to branch to line 59.

We immediately set the values that are referenced by rCorrect and rPosition to 0. We then assert
that our assumptions about the sizes of these arrays are correct. On line 67, we enter a for loop in
which we'll iterate through each array, testing every possible letter and creating a count of how many are
correct.

The first time in this loop, i is 0 and therefore passes the test of being less than howManyLetters
(which is 3). The first call to HowMany() passes in the current guess (abc), and the letter a (alpha
[0]) and returns the value 1. The second call passes in the solution (acb) and the character 'a' and
also returns 1.

The next line tests whether howManyInGuess (which is 1) is less than howManyInAnswer (also
1). This is false, so it returns the third part of this ternary operator: howManyInAnswer (which, again,
is 1). This value of 1 is added to rCorrect, incrementing it from 0 to 1.

We repeat this for all three letters in the two arrays. Next, on line 75, we reset i to 0 and test whether
thisGuess[0] is equal to solution[0]. thisGuess[0] is 'a', and solution[0] is also
'a', so rPosition is incremented from 0 to 1. On the second time through the loop, thisGuess
[1] is 'b', but solution[1] is 'c', so rPosition is not incremented. On the third time through,
thisGuess[2] is 'c' and solution [1] is 'b', so again, rPosition is not incremented.

There is no need to return a value from this method (which is why it is marked void) because the
variables rPosition and rCounter are references to the local variables back in Play(). When we
return from Score(), these values are printed and we see that correct is 3 and position is 1.

This returns us to the top of the while loop on line 170; position (now 1) is compared with
howManyPositions (currently 3). Because it is still smaller, we're not yet done, and we repeat the
loop, offering the user a second guess.

This time let's guess acb. The score we receive is three correct and three in position, and this while
loop ends. Program flow resumes on line 197, where we print a congratulatory message. Play() then
returns, dropping us on line 232 in main(), where the answer is displayed and you are offered (on line
236) the opportunity to play again.

If you decide not to play again, the value 0 is returned to the operating system on line 245 and the
program ends.

On line 230 we invoke the Play() method.

This causes program flow to jump to line 163. To see this, step into this method from line 230. Your
debugger brings you to line 163. A few local variables are created and initialized, and then on line 170
we check the value of position (which is zero) to see if it is less than howManyPositions.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

6

Using Linked Lists

● Dynamic Data Structures
❍ The Standard Template Library

● Linked Lists
❍ Understanding Linked Lists

● A Simple Driver Program
● The HowMany() Method
● Insert() in Detail
● Excursion: Understanding the Stack
● The Stack and Functions
● Using new

❍ new and delete
● Using Our Simple Linked List in Decryptix!
● Run it!
● Playing the Game
● Solving the Problem with a Member Method
● Operator Overloading

❍ How You Accomplish Operator Overloading
● Passing Objects by Value

❍ Why Is it a Reference?

The problem with using arrays is that you must declare their size at compile time rather than at runtime.

compile time--When you compile the program

runtime--When you run the program

This means that you must guess, in advance, how much memory you need to allocate. If you guess
wrong and you allocate too little, you run out of room and your program breaks. If, on the other hand,
you allocate more than you need, you waste memory.

In Decryptix! this isn't a very big problem because we create only two arrays: one to hold the solution
and one to hold the guess. We can just create a pair of arrays large enough to hold the biggest legal
solutions and the largest possible guess, and let it go at that.

In other programs, however, fixed size arrays are so wasteful of memory as to be unusable. Software
designers are often asked to consider how their program will scale: How will they perform as they
become larger and handle more data? Programs that use fixed size arrays rarely scale well.

Scaling a program refers to the capability to do more: to handle larger and more complex
data sets, more users, or more frequent access. When a program scales, it becomes bigger
and typically more complex, and all the weaknesses in performance and maintainability
surface.

To solve the problem of fixed size arrays, we need the capability to store data in some form of data
structure or collection that grows dynamically, which means that it grows as it needs to while the
program runs.

Dynamic Data Structures

Over the years, computer scientists have struggled with this issue. In the past, procedural programmers
created complex data structures to hold data efficiently. Object-oriented programmers talk about
collection classes, classes that are designed to hold collections of other objects.

collection class--A class designed to hold a collection of other objects

Collection classes are built on top of traditional data structures as higher-level abstractions, but the
problem they are solving is the same: How do we efficiently deal with large sets of data or objects?

We need a variety of collection classes because our needs and priorities differ from program to program.
Sometimes we care about adding objects to the collection quickly. Other times, we don't mind if there is
a slight delay adding objects, but we want the capability to find objects quickly. In other programs, the
emphasis is on using little memory or little disk space.

The Standard Template Library

The C++ Standard Library now offers a suite of collection classes called the Standard Template Library
(STL), which is described in coming chapters. The STL classes are designed to hold collections of
objects, including built-in objects such as characters and more complex (and dramatically larger) user-
defined objects. Most importantly, the STL code has been optimized, debugged, and tested so that you
don't have to do this work yourself.

Before considering the STL in detail, however, it is helpful to create our own rather simple collection
class, at least once, to see what is involved.

We'll rewrite Decryptix! to use a linked list rather than an array. A linked list is a very simple data
structure that consists of small containers that can be linked together as needed, and each of which is
designed to hold one object.

linked list--A simple data structure in which each element in the list points to data and to
the next element in the list

Each individual container is called a node. The first node in the list is called the head, and the last node
in the list is called the tail.

node--An element in a data structure

head--The first node in a linked list

tail--The last node in a linked list

Lists come in three fundamental forms. From simplest to most complex, they are

● Singly linked

● Doubly linked

● Trees

In a singly linked list, each node points forward to the next one, but not backward. To find a particular
node, start at the top and go from node to node, as in a treasure hunt ("The next node is under the sofa").
A doubly linked list enables you to move backward and forward in the chain. A tree is a complex
structure built from nodes, each of which can point in two or three directions. Figure 6.1 shows these
three fundamental structures.

Figure 6.1 Singly linked, doubly linked, and tree structures.

Linked Lists

We'll build the simplest form of linked list, a singly linked list that is not sorted. Characters are added in
the order in which they are received (just as they are in an array).

We'll actually create the linked list three times. The first time we'll take a rather simplistic, traditional
approach just to get a good sense of how a linked list works. The second time we'll design a somewhat
more object-oriented linked list and see whether we can add some solid object-oriented design heuristics
to our solution. Finally, we'll use the linked list to illustrate the concept of abstract data types.

Understanding Linked Lists

Our simplest linked list consists of nothing but nodes. A node is a tiny object with two members. The
first member is a pointer to the thing we're storing, in our case a single character. The second member is
a pointer to another node. By stringing nodes together, we create a linked list.

When there are no more nodes in the list, the last node points to NULL. Figure 6.2 shows what our linked
list looks like. The first node in the list (the head node) points to its data (A) and also to the second node

in the list. This second node in turn points to its data and also to the third node. The third node is the tail
node, and it points to its data and to null, signifying that there are no more nodes in the list.

Figure 6.2 Simple linked list.

Let's implement this linked list and then see how we might use it, instead of an array, to hold our
solution. To get started, however, we need only create the Node class and fill it with a list of characters.
Listing 6.1 has the declaration for our Node class.

NOTE: During the development of a program, I'm often confronted with a new
technology, in this case the linked list. Rather than trying to figure out how to use it in my
program while also figuring out how to implement it, I usually first implement the
technology with a simple driver program. That is, I'll take it out of context and create a
very simple program that does nothing but exercise the new technology. After it is
working, I'll go back and integrate it into the real program.

Listing 6.1 The Node Class Declaration

0: class Node
1: {
2: public:
3: Node(char c);
4: ~Node();
5: void Display () const;
6: int HowMany (char c) const;
7: void Insert (char c);
8:
9: private:
10: char GetChar ();
11: Node * GetNext ();
12: char myChar;
13: Node * nextNode;
14: };

Let's start by looking at the constructor on line 3. A node is created by passing in a character by value.
Rather than keeping a pointer to the character, our Node class keeps a copy of the character on line 12.
With a tiny one-byte object, this is sensible. With larger objects, you'll want to keep a pointer to avoid
making a copy.

NOTE: In C++, pointers are typically 4 bytes. With a 1-byte object, it is cheaper to keep a
copy (one byte of memory used) than to keep a pointer (4 bytes of memory used). With
large user-defined types, it can be far more expensive to make the copy, in which case a
pointer or reference is used.

Node provides three methods in addition to its constructor and destructor. On line 5 we see Display
(), whose job it is to print the characters that are stored in the list. The method HowMany() also takes
a character and returns the number of times that character appears in the list. Finally, Insert() takes a
character and inserts it into the list. Listing 6.2 shows the implementation of these simple methods.

Listing 6.2 Implementing Node

0: #include <iostream>
1: using namespace std;
2:
3: #include "Node.h"
4:
5: Node::Node(char c):
6: myChar,nextNode(0)
7: {
8: }
9:
10: Node::~Node()
11: {
12: if (nextNode)
13: delete nextNode;
14: }
15:
16:
17: void Node::Display() const
18: {
19: cout << myChar;
20: if (nextNode)
21: nextNode->Display();
22: }
23:
24:
25: int Node::HowMany(char theChar) const

26: {
27: int myCount = 0;
28: if (myChar == theChar)
29: myCount++;
30: if (nextNode)
31: return myCount + nextNode->HowMany(theChar);
32: else
33: return myCount;
34: }
35:
36: void Node::Insert(char theChar)
37: {
38: if (! nextNode)
39: nextNode = new Node(theChar);
40: else
41: nextNode->Insert(theChar);
42: }

The constructor on line 5 receives a character and initializes its myChar member variable on line 6. The
constructor also initializes its nextNode pointer to zero--that is, to null. When the Node is created, it
points to nothing further along in the list.

The destructor on line 10 tests the pointer on line 12, and if the pointer is not NULL, the destructor
deletes it.

NOTE: The destructor takes advantage of the C++ idiom that any nonzero value is
considered true. Thus, if nextNode is null, its value is 0 and, therefore, false, and
the if statement does not execute. If nextNode does point to another node, its value is
nonzero and thus true, and that object is deleted.

Display(), on line 17, prints the character that is held by the current node on line 19, and then calls
Display() on the nextNode in the list, if any (on line 20). In this way, by telling the first node to
display itself, you cause every node in the list to display itself.

A Simple Driver Program

On line 25, HowMany() takes a character and returns the number of times that character exists in the
list. The implementation of this is tricky and instructive because this type of implementation is common

in C++. Explaining how this works in words is much less effective than tracing it in the debugger. To do
that, we need a driver program, shown in Listing 6.3.

Listing 6.3 Driver Program

0: #include "DefinedValues.h"
1: #include "List0601_Node.h"
2:
3: int main()
4: {
5: Node head('a');
6: head.Insert('b');
7: int count = head.HowMany('a');
8: cout << "There are " << count << " instances of a\n";
9: count = head.HowMany('b');
10: cout << "There are " << count << " instances of b\n";
11: cout << "\n\nHere's the entire list: ";
12: head.Display();
13: cout << endl;
14:
15: return 0;
16: }
There are 1 instances of a
There are 1 instances of b
Here's the entire list: ab

Before we examine HowMany, let's look at the driver. Its job is to generate two letters and add them to
the list. To do this, it creates a first node, called the head node, on line 5, and initializes it with the
value 'a'. It then tells the head node to insert one more letter ('b'), starting on line 6.

Our linked list now looks like Figure 6.3.

Figure 6.3 With two nodes.

On line 0 we #include DefinedValues.h, shown in Listing 6.4.

Listing 6.4 DefinedValues.h

1: #ifndef DEFINED
2: #define DEFINED
3:
4: #include <iostream>

5: #include <vector>
6: #include <iterator>
7: #include <algorithm>
8: #include <time.h>
9: #include <utility>
10:
11: using namespace std;
12:
13: const char alpha[27] = "abcdefghijklmnopqrstuvwxyz";
14:
15: const int minPos = 2;
16: const int maxPos = 10;
17: const int minLetters = 2;
18: const int maxLetters = 26;
19: const int SecondsInMinute = 60;
20: const int SecondsInHour = SecondsInMinute * 60;
21: const int SecondsInDay = SecondsInHour * 24;
22: const int GUESSES_PER_SECOND = 10000;
23:
24: const int szInt = sizeof(int);
25: const int szChar = sizeof(char);
26: const int szBool = sizeof(bool);
27:
28: #endif

This file serves to include the necessary STL header files, and also to define constants we'll need in this
program. We will use this same defineValues file throughout all the sample code for the rest of the book.

Let's not examine how Insert() works just yet, but rather assume that the letter b is in fact inserted
into the list. We'll return to how this works in just a moment, but let's first focus on HowMany() works.

The HowMany() Method

On line 7 we ask how many instances of 'a' there are, and on line 9 we ask the same about how many
instances of 'b' there are. Let's walk through the call to howMany on line 9. Put a break point on this
line, and run the program to the break point.

The program runs as expected and stops at the following line:

 count = head.HowMany('b');

Stepping into this line of code brings you to the top of HowMany():

int Node::HowMany(char theChar) const
{

Let's step line by line. The first step initializes myCount to 0, which you can probably see in the local
variables window of your debugger.

Which node are we looking at? We'll be entering the HowMany() method once for each node. How can
we tell where we are? Remember that every nonstatic member method has a pointer called the this
pointer, which holds the address of the object itself.

You can examine the value of the this pointer in your debugger. Take note of the address of the this
pointer while you are here in HowMany(). On my machine, it is 0x0012ff6c, but yours might be
different. The particular value doesn't matter--just write down whatever you have. This is the address of
the node we're examining.

Step to the next line, where myChar is compared with theChar. Examine the myChar member
variable ('a') and the local variable theChar ('b'), again in your local variables window.

NOTE: You might need to expand your this pointer to see the member variables, or
you might need to click on a different debugger window to find them.

Clearly, these values are not the same, so the if statement fails. myCount remains at 0.

Step again to the next if statement. The nextNode pointer should be nonzero. On my machine, it is
0x004800a0. Your value will differ; again, although the absolute value doesn't matter, write down
whatever you get.

Because nextNode is nonzero, the if statement evaluates true, and you step to the following line:

 return myCount + nextNode->HowMany(theChar);

What do you expect to happen if you step into this line? The first thing to be evaluated is

nextNode->HowMany(theChar);

This calls the howMany() method through the nextNode pointer. This, in fact, calls howMany() on

the object to which nextNode points. Remember that nextNode had a value, the address of the next
node in the list. Let's step in.

The debugger appears to go to the top of the same method. Where are we? Examine the this pointer in
your debugging window (you might first have to step to the first line of the method). On my machine,
the this pointer has changed to 0x004800a0, which was exactly the value previously held in the
nextNode pointer. Aha! We're now in the second node in the list. We can imagine that our list looks
like Figure 6.4.

Figure 6.4 Nodes with addresses.

We are running HowMany in the second node. Once again, HowMany() begins by initializing the local
variable myCount, on line 27, to 0. Be careful here, the myCount we're looking at now is local to this
iteration of HowMany(). The myCount back in the first node has its own local value.

HowMany() then tests the character that is passed in against the character it is storing on line 28; if they
match, it increments the counter. In this case, they do match, so we compare myChar ('b') with
theChar (also 'b'). They match, so myCount is incremented.

Stepping again brings us to the next if statement:

30: if (nextNode)

This time nextNode is NULL (you should see all zeros in its value in your local variables window). As
expected, the second node's nextNode points to NULL. The if statement fails and the else statement
executes, returning myCount, which has the value 1.

We step into this line and appear to be right back at the return statement. Examine the this pointer,
however, and you'll find that we're back in the first node. The value that is returned (1) is added to the
value in myCounter (now 0), and it is this combined value that is returned to the calling function,
main().

As an exercise, try revising main() to insert the values a, b, c, b, and b. This produces the linked list
that is shown in Figure 6.5. Make sure you understand why HowMany() returns the value 3 when
passed in 'b'.

Figure 6.5 Linked list with abcbb.

Insert() in Detail

Now is the time to examine the implementation of Insert(), as shown on line 36 in Listing 6.2 and

reproduced here for your convenience:

36: void Node::Insert(char theChar)
37: {
38: if (! nextNode)
39: nextNode = new Node(theChar);
40: else
41: nextNode->Insert(theChar);
42: }

The goal of this method is to insert a new character (theChar) into the list.

Note that on line 39 we use the keyword new to create a new Node object. This is explained in full in
just a few pages; for now, all you need to know is that this creates a new object of type Node.

Let's start over, creating the linked list from Figure 6.5, using the code shown in Listing 6.5.

Listing 6.5 Decryptix Driver Program

0: #include "DefinedValues.h"
1: #include "List0601_Node.h"
2:
3: int main()
4: {
5: Node head('a');
6: head.Insert('b');
7: head.Insert('c');
8: head.Insert('b');
9: head.Insert('b');
10: int count = head.HowMany('a');
11: cout << "There are " << count << " instances of a\n";
12: count = head.HowMany('b');
13: cout << "There are " << count << " instances of b\n";
14: cout << "\n\nHere's the entire list: ";
15: head.Display();
16: cout << endl;
17:
18: return 0;
19: }
There are 1 instances of a
There are 3 instances of b
Here's the entire list: abcbb

On line 5 we create the first Node object, which we call head. Set a break point on that line and run to
the break point. Stepping in takes you to the constructor of the Node object:

 Node::Node(char c):
myChar,nextNode(0)
{
}

This does nothing but initialize the member variables. We now have a node whose myChar character
variable contains 'a' and whose nextNode pointer is NULL.

Returning to main(), we step into the call to

 head.Insert('b');

Step into this code from Listing 6.2, which is once again reproduced for your convenience:

36: void Node::Insert(char theChar)
37: {
38: if (! nextNode)
39: nextNode = new Node(theChar);
40: else
41: nextNode->Insert(theChar);
42: }

On line 38 we test to see whether nextNode is NULL. In this case it is, so we must create a new node.
The last time we created a node, we simply declared it and passed in the value to store ('a'). This time
we do something different, calling the new operator. Why?

Until now, all the objects you've created were created on the stack. The stack, you'll remember, is where
all local variables are stored, along with the parameters to function calls. To understand why creating
your new node object on the stack won't work, we need to talk a bit more about what the stack is and
how it works.

Excursion: Understanding the Stack

The stack is a special area of memory that is allocated for your program to hold the data required by
each of the functions in your program. It is called a stack because it is a last-in, first-out (LIFO) queue,
much like a stack of dishes at a cafeteria (see Figure 6.6).

Figure 6.6 A LIFO stack.

LIFO means that whatever is added to the stack last will be the first thing that is taken off. Other queues
are more like a line at a theater, which is called first in, first out (FIFO): The first one on line is the first
one off.

LIFO--Last in, first out, like plates on a stack

FIFO--First in, first out, like people on line to buy tickets at a theater

Interestingly, most airplanes board and unboard coach like a FIFO stack. The people at the
rear of the plane are the first to board and the last to get off. Of course, first class is a
FIFO structure--first class passengers are the first ones in and the first ones out.

When data is pushed onto the stack, the stack grows; as data is popped off the stack, the stack shrinks. It
isn't possible to pop a dish off the stack without first popping off all the dishes placed on after that dish,
and it isn't possible to pop data off a stack without first popping all the data added above your data.

A stack of dishes is a fine analogy as far as it goes, but it is fundamentally wrong. A more accurate
mental picture is of a series of cubbyholes, aligned top to bottom. The top of the stack is whatever cubby
the stack pointer happens to be pointing to. The stack pointer is just a pointer whose job is to keep track
of the top of the stack.

stack pointer--A pointer that keeps track of the top of the stack

Each of the cubbies has a sequential address, and one of those addresses is kept in the stack pointer
register. Everything below that magic address, known as the top of the stack, is considered to be on the
stack. Everything above the top of the stack is considered to be off the stack, and therefore invalid.
Figure 6.7 illustrates this idea.

Figure 6.7 The instruction pointer.

When data is put on the stack, it is placed into a cubby above the stack pointer, and then the stack
pointer is moved up to indicate that the new data is now on the stack.

When data is popped off the stack, all that really happens is that the address of the stack pointer is
changed because it moves down the stack. Figure 6.8 makes this rule clear.

Figure 6.8 Moving the stack pointer.

The Stack and Functions

Here's what happens when a program that is running on a PC under DOS branches to a function:

1. The address in the instruction pointer is incremented to the next instruction past the function
call. That address is then placed on the stack, and it will be the return address when the function
returns.

2. Room is made on the stack for the return type you've declared. On a system with two-byte
integers, if the return type is declared to be int, another two bytes are added to the stack, but no
value is placed in these bytes.

3. The address of the called function, which is kept in a special area of memory that is set aside
for that purpose, is loaded into the instruction pointer, so the next instruction executed will be in
the called function.

4. The current top of the stack is noted and is held in a special pointer called the stack frame.
Everything that is added to the stack from now until the function returns is considered local to the
function.

5. All the arguments to the function are placed on the stack.

6. The instruction that is now in the instruction pointer executes, thus executing the first
instruction in the function.

7. Local variables are pushed onto the stack as they are defined.

8. When the function is ready to return, the return value is placed in the area of the stack that is
reserved at step 2.

9. The stack is then popped all the way up to the stack frame pointer, which effectively throws
away all the local variables and the arguments to the function.

10. The return value is popped off the stack and assigned as the value of the function call itself.

11. The address that is stashed away in step 1 is retrieved and put into the instruction pointer.

12. The program resumes immediately after the function call, with the value of the function
retrieved.

Some of the details of this process change from compiler to compiler, or between computers, but the
essential ideas are consistent across environments. In general, when you call a function, the return
address and parameters are put on the stack. During the life of the function, local variables are added to
the stack. When the function returns, these are all removed by popping the stack.

For our purposes, the most important thing to note about this process is that when a function returns, all
the local variables are popped off the stack and destroyed.

As was described previously, if we create the new node in InsertNode on the stack, when the
function returns, that node is destroyed. Let's try it. We'll just change Insert to create a local node,
and we'll stash away the address of that local Node in nextNode. Listing 6.6 illustrates the change.

WARNING: These changes compile and link, but will crash when you run the program.

Listing 6.6 Local Nodes

0: void Node::Insert(char theChar)
1: {
2: if (! nextNode)
3: {
4: Node localNode(theChar);
5: nextNode = &localNode;
6: }
7: else
8: nextNode->Insert(theChar);
9:

When I run this program, it quickly crashes. Here's what happens: When we create the head Node, its
nextNode pointer is null. When we call Insert() on the head node, the if statement returns true,
and we enter the body of the if statement on line 4. We create a localNode object and assign its
address to nextNode. We then return from Insert. At that moment, the stack unwinds, and the local
node we created is destroyed.

Now, all that happens when that local node is destroyed is that its destructor runs and the memory is

marked as reusable. Sometime later, we might assign that memory to a different object. Still later, we
might use the nextNode pointer and bang! the program crashes.

Using new

This is a classic example of when you need to create an object on the heap. Objects that are created on
the heap are not destroyed when the function returns. They live on until you delete them explicitly,
which is just what we need.

Unlike objects on the stack, objects on the heap are unnamed. You create an object on the heap using the
new operator, and what you get back from new is an address, which you must assign to a pointer so that
you can manipulate (and later delete) that object.

Let's look again at Insert() from Listing 6.2:

36: void Node::Insert(char theChar)
37: {
38: if (! nextNode)
39: nextNode = new Node(theChar);
40: else
41: nextNode->Insert(theChar);
42: }

The logic of this code is that we test to see whether the nextNode pointer is pointing to an object on
line 38; if it is not, we create a new object on the heap and assign its address to nextNode.

When we create the new object, we call new, followed by the type of the object we are creating (Node)
and any parameters we need to send to the constructor (in this case, theChar).

If this object does point to another node, we invoke Insert on that object, passing along the character
we're trying to solve. Eventually we reach the end of the list--a node that does not point to any other
node--and we can create a new node and tag it to the end of the list.

new and delete

Many details are involved in using new effectively, which we'll discuss as we come to them. There is
one, however, that I want to discuss immediately. When you create an object on the heap using new,
you own that object, and you must clean it up when you are done with it. If you create an object on the
heap and then lose the pointer, that object continues to use up memory until your program ends, but you
can't access that memory.

When you have an object that you can't access anymore but that continues to consume memory, we say
it has leaked out of the program. Memory leaks are of significant concern to C++ programmers. You
solve memory leaks by the judicious application of delete(). We see this in the destructor in Listing
6.2, copied here:

10: Node::~Node()
11: {
12: if (nextNode)
13: delete nextNode;
14: }

When we are ready to destroy the linked list, we call delete on the head node (implicitly by returning
from the function in which the head node was created on the stack, or explicitly if the head node was
created on the heap). The destructor examines its own nextNode, and if the nextNode pointer is not
null, the destructor deletes the node to which it points. This mechanism knocks down all the dominoes,
each object deleting the next object as part of its own sequence of destruction.

Let's modify main() to create the head node on the heap, and we'll delete it explicitly when we're done
with the list. To make all this clear, we'll add printouts to the constructors and destructors to see our
progress. Listing 6.7 is the entire program, which we'll walk through in some detail.

Listing 6.7a Node.h

1: class Node
2: {
3: public:
4: Node(char c);
5: ~Node();
6:
7: void Display () const;
8: int HowMany (char c) const;
9: void Insert (char c);
10:
11: private:
12: char myChar;
13: Node * nextNode;
14: };

Listing 6.7b[em]Node.cpp

15: #include <iostream.h>
16: #include "List0603a_Node.h"

17:
18: Node::Node(char theChar):
19: myChar(theChar),nextNode(0)
20: {
21: cout << "In constructor of Node(" << this << ")\n";
22: }
23:
24: Node::~Node()
25: {
26: cout << "In destructor of Node(" << this << ")\n";;
27: if (nextNode)
28: delete nextNode;
29: }
30:
31:
32: void Node::Display() const
33: {
34: cout << this << ": " << myChar << endl;
35: if (nextNode)
36: nextNode->Display();
37: }
38:
39:
40: int Node::HowMany(char theChar) const
41: {
42: int myCount = 0;
43: if (myChar == theChar)
44: myCount++;
45: if (nextNode)
46: return myCount + nextNode->HowMany(theChar);
47: else
48: return myCount;
49: }
50:
51: void Node::Insert(char theChar)
52: {
53: if (! nextNode)
54: nextNode = new Node(theChar);
55: else
56: nextNode->Insert(theChar);
57: }

Listing 6.7c Driver.cpp

58: #include <iostream.h>
59: #include "List0603a_Node.h"
60:
61: int main()
62: {
63: Node * pHead = new Node('a');
64: pHead->Insert('b');
65: pHead->Insert('c');
66: pHead->Insert('b');
67: pHead->Insert('b');
68: int count = pHead->HowMany('a');
69: cout << "There are " << count << " instances of a\n";
70: count = pHead->HowMany('b');
71: cout << "There are " << count << " instances of b\n";
72: count = pHead->HowMany('c');
73: cout << "There are " << count << " instances of c\n";
74: cout << "\n\nHere's the entire list:\n";
75: pHead->Display();
76: cout << "Deleting pHead..." << endl;
77: delete pHead;
78: cout << "Exiting main()..." << endl;
79: return 0;
80: }
81: In constructor of Node(0x00430060)
82: In constructor of Node(0x00431DB0)
83: In constructor of Node(0x00431D70)
84: In constructor of Node(0x00431D30)
85: In constructor of Node(0x00431CF0)
86: There are 1 instances of a
87: There are 3 instances of b
88: There are 1 instances of c
89:
90:
91: Here's the entire list:
92: 0x00430060: a
93: 0x00431DB0: b
94: 0x00431D70: c
95: 0x00431D30: b
96: 0x00431CF0: b
97: Deleting pHead...
98: In destructor of Node(0x00430060)
99: In destructor of Node(0x00431DB0)

100: In destructor of Node(0x00431D70)
101: In destructor of Node(0x00431D30)
102: In destructor of Node(0x00431CF0)
103: Exiting main()...

The best way to follow the progress of this code is to put the code in the debugger and set a break point
in main() at line 63. Run the program to the break point and note that we are going to create a new
node and initialize it to hold the letter 'a'. The address of this new node is stashed away in the Node
pointer pHead. Now, step in at line 63. You might step into the new operator. If so, just step back out
and step in again, which brings you to the constructor for Node on line 18.

Sure enough, the character 'a' was passed in (now designated theChar), and this character is used to
initialize the member variable myChar. The node's second member variable, nextNode, which is a
pointer to a Node object, is also initialized with the value 0 or NULL. Finally, as you step through the
constructor, a message is printed on line 21, the effect of which is shown on line 81.

Notice that the this pointer is not dereferenced, so its actual value is printed: That is, the address of the
Node object on the heap whose constructor we are now discussing.

If you continue stepping, you'll return from the constructor back to main() on line 64, where we intend
to call the Insert() method on that Node. We do so indirectly, using the pointer that holds its
address, and we pass 'b' to the Insert method in the hope that a new Node will be created and
appended to the list to hold this new value.

Step in at on line 30 and you enter the Insert() method of Node on line 51, where the parameter
theChar holds the value 'b'. On line 53 you test the Node's nextNode pointer, which is NULL (or
0), the value to which you initialized it just a moment ago. The if statement returns true. Take a
moment and reflect on why.

If a pointer has a nonzero value, it evaluates true. With a 0 value, it evaluates false. Thus, asking if
a pointer is false is the same as asking if it is null.

The not operator turns false to true. Thus, (! nextNode) will evaluate true if nextNode is zero
(false). Thus

if (! nextNode)

will evaluate true and the if statement will execute as long as nextNode points only to NULL
(zero).

To most programmers, this is so idiomatic that

if (! nextNode)

really means "if nextNode doesn't yet point to anything..." and we don't much think through all the
convoluted logic that makes that work.

In any case, the if statement executes by calling newNode, passing in theChar, and assigning the
address that results to nextNode. Calling new immediately invokes the constructor, so stepping into
this line brings us to the Node constructor on line 18. Once again, a message is printed on line 82), and
we return from the constructor, assigning the address that is returned from new to the nextNode
pointer of the first node.

Before leaving Insert, let's examine the this and the nextNode pointers. You should find that
this has an address that is equal to the first address printed because we are now back in that first node.
You should find that the nextNode pointer has the address of the object we just created. Sure enough,
we now have a linked list with two objects in it.

Continuing causes us to return from Insert() back to main(), where the same logic is repeated to
insert 'c', 'b', and once again 'b'.

If you don't want to work your way through the logic repeatedly, continue to step over these lines until
you reach line 70. We are now ready to determine how many instances of 'b' exist in the program.

Step into this line of code. This takes you into Node::HowMany() on line 40, in which the
parameter theChar has the value 'b'. On line 42 we'll initialize myCount to 0. On line 43 we test
myChar, which has the value 'a', against theChar, which has the value 'b'. This test fails, so we
fall through to line 45, where we test to see whether nextNode is nonzero; it is. This causes us to
execute the body of the if statement:

 return myCount + nextNode->HowMany(theChar);

Step into this line. You find yourself in HowMany() for the second node. Continue stepping. myChar
is 'b' this time, and it thus matches theChar. We increment myCount and test nextNode. Again it
is nonzero, so again we step in, this time to the third node in the list.

In the third node, myChar is 'c', so it does not match myChar; but nextNode is nonzero, so we step
into the fourth node.

In the fourth node, mychar is 'b', and we increment myCount to 1. Why is it set to 1 and not to 2,
given that this is the second node with 'b'? The answer is that myCount is local to this invocation of
HowMany() and therefore can't know about the previous values. Again, nextNode is nonzero, so we
now step into the fifth node.

Take a look at the this pointer and expand it in your local variables window. You are now looking at
the local member variables for the fifth node object. myChar is 'b', and nextPointer is 0. Thus,
we increment myCount; then the test for nextPointer fails, so we return myCount.

We thus return the value 1 to the call from the fourth node. This value is added to the myCount
variable (also 1), summing to 2, and this value is now returned to the third node. The third node's
myCount is 0, so the value 2 is now returned to the second node. Its myCount variable is 1, so 3 is
returned to the first node. The first node's myCount is 0, so 3 is returned to main().

It is very important that you understand how this was accomplished. You might find that using pencil
and paper and drawing a picture (see Figure 6.9) makes this easier to understand.

Figure 6.9 Walking the list to get the answer.

As you continue to step out of the function calls, you'll find yourself popping up through the calls to
HowMany(), unwinding your way from Node 5 to 4, 3, 2, and back to Node 1. Step into and out of this
set of calls repeatedly until you can match what is happening in your debugger to the diagram in Figure
6.9.

When this is comfortable, continue stepping over code lines until you get to the call to Display on line
74. Here you are calling Display() on pHead. Step into this method call and you'll be in Display
() for your first node on line 32. Step into the method and note the address of the this pointer, which
confirms that you are in the first Node in the list. myChar is printed on line 34 (printing 'a'), and the
nextNode pointer is checked on line 45. It returns true, so Display() is called on the second node
in the list.

Step into this call, and you are back at line 32. Step in and notice that the this pointer now reflects the
address of the second node, as you'd expect. On line 34, the member variable myChar is printed ('b'),
and once again we call Display(), this time on the third node.

This continues until the fifth node prints its value. Because the fifth node does not point to another node,
the if statement fails, and we return through the various Display() method invocations, back to
main().

On line 77 we call delete on pHead. To see what this does, place a break point on line 24 and go
until the break point. You find yourself in the destructor of the head node. On line 26 we print the
address of the first (head) node, and then on line 27 we test nextNode, which points to the second
node. We delete that object, causing us to come to the destructor for the second node, where the logic is
repeated. The second node deletes the third node, the third Node deletes the fourth Node, and the fourth
node deletes the fifth.

The client of the linked list, in this case main(), never had to call HowMany() or Display() on

any node except the head node, and it doesn't have to delete any node except the head node. The
maintenance of the list is managed by the list itself. Commands such as Display() or delete are
passed along the list as required, each node falling like a domino into the next in the list.

Using Our Simple Linked List in Decryptix!

We are just about ready to change the type of the member variable solution in the Game class. Until
now, it has been an array; we want it to be a linked list.

Let's examine all the places we use Solution to see what our linked list must be able to accomplish,
and whether our list of Nodes is up to the task.

Following are the lines in Game in which we refer to the solution:

 theGame.Display(theGame.GetSolution());
 int howManyInAnswer = howMany (solution, alpha[i]);
 if (thisGuess[i] == solution[i])

That is, we must have the capability to retrieve the solution and display it, count the instances of a
particular character in the solution, and retrieve the character at a given offset.

Rather than expose the workings of the Node object to the Game, I've chosen to create a small class that
will serve as an interface to the nodes, which I'll call LinkedList. Listing 6.8 shows the declaration
of the LinkedList class.

Listing 6.8 LinkedList Declared

1:
2: class LinkedList
3: {
4: public:
5: LinkedList();
6: ~LinkedList();
7: bool Add (char c, bool dupes = true);
8: void Display () const;
9: int HowMany (char c) const;
10: char operator[] (int offset);
11: private:
12: Node * headNode;
13: };

To the client (in this case, Game), LinkedList is the linked list structure. The client is oblivious to
the existence of nodes (note that headNode is private).

The best way to understand the implementation of these methods is to see them in action. Let's change
Game to use a LinkedList as its solution, as shown in Listing 6.9.

Listing 6.9 The Game Class Declaration

0: #include "List0606_LL.h"
1:
2: class Game
3: {
4: public:
5: Game ();
6: ~Game () {}
7: void Display (const LinkedList * pList) const
7a: { pList->Display(); }
8: const LinkedList & GetSolution () const { return
solution; }
9: void Play ();
10: void Score (const char * thisGuess, int &
10a: correct, int & position);
11:
12: private:
13: int HowMany (const char * theString, char theChar);
14:
15: bool duplicates;
16: int howManyLetters;
17: int howManyPositions;
18: int round;
19: LinkedList solution;
20: };

Game is unchanged except for the last line, where the solution member variable is changed to type
LinkedList.

NOTE: When one class contains another, as Game contains LinkedList, it can do so
by value or by reference. LinkedList contains Node by reference (see Figure 6.10).

Figure 6.10 Containing the node by reference.

NOTE: Game, on the other hand, contains LinkedList by value and is diagrammed in
the UML as shown in Figure 6.11. The filled in diamond indicates by value.

Figure 6.11 Containing linked list by value.

Run it!

Let's run through one play of Decryptix! and see how the LinkedList is used. Our driver program is
unchanged, as shown in Listing 6.10. We begin by instantiating a Game object, which brings us into
Game's constructor as shown in Listing 6.11.

When you make an instance of an object, you are said to instantiate it.

NOTE: To save room, I've left out the beginning of Game's constructor, in which the
member variables howManyLetters, howManyPositions, and duplicates are
set because this logic is unchanged.

Listing 6.10 Decryptix!.cpp

{
while (choice != 'y' && choice != 'n')
0: #include "DefinedValues.h"
1: #include "List0607_Game.h"
2:
3: int main()
4: {
5: cout << "Decryptix. Copyright 1999 Liberty";

5a: cout << Associates, Inc. Version 0.4\n\n" << endl;
6: bool playAgain = true;
7:
8: while (playAgain)
9: {
10: char choice = ' ';
11: Game theGame;
12: theGame.Play();
13:
14: cout << "\nThe answer: ";
15: theGame.GetSolution().Display();
16: cout << "\n\n" << endl;
17:
18: while (choice != 'y' && choice != 'n')
19: {
20: cout << "\nPlay again (y/n): ";
21: cin >> choice;
22: }
23:
24: playAgain = choice == 'y' ? true : false;
25: }
26:
27: return 0;
28: }

Listing 6.11 Implementing Game

1: Game::Game():
2: round(1),
3: howManyPositions(0),
4: howManyLetters(0),
5: duplicates(false)
6: {
7:
8: //...
9:
10: srand((unsigned)time(NULL));
11:
12: for (int i = 0; i < howManyPositions;)
13: {
14: int nextValue = rand() % (howManyLetters);
15: char c = alpha[nextValue];
16: if (solution.Add(c, duplicates))

17: i++;
18: }
19:
20: cout << "Exiting constructor. List: ";
21: solution.Display();
22:
23: }

We pick up the logic on line 14, within the for loop in which we create our random numbers, turn them
into characters on line 20, and then add them to solution on line 21. It is here, when we call
solution.add(), that the logic of the LinkedList comes into play. This invokes
LinkedList::Add(), as shown in Listing 6.12.

Listing 6.12 Implementing LinkedList

1:
2: bool LinkedList::Add(char theChar, bool dupes)
3: {
4: bool inserted = false;
5:
6: if (! headNode)
7: {
8: headNode = new Node(theChar);
9: inserted = true;
10: }
11: else if (dupes || HowMany(theChar) == 0)
12: {
13: headNode->Insert(theChar);
14: inserted = true;
15: }
16:
17: return inserted;
18: }
19:
20: int LinkedList::HowMany(char theChar) const
21: {
22: return headNode->HowMany(theChar);
23: }
24:
25: char LinkedList::offset(int offSetValue)
26: {
27: Node * pNode = headNode;
28: for (int i = 0; i < offSetValue && pNode; i++)

29: pNode = pNode->GetNext();
30:
31: ASSERT (pNode);
32: char c = pNode->GetChar();
33: return c;
34: }
35:
36: char LinkedList::operator[](int offSetValue)
37: {
38: Node * pNode = headNode;
39: for (int i = 0; i < offSetValue && pNode; i++)
40: pNode = pNode->GetNext();
41:
42: ASSERT (pNode);
43: char c = pNode->GetChar();
44: return c;
45: }

On line 6, LinkedList checks to see whether it already has a headNode. To do this, it checks its
headNode pointer, which was initialized to NULL in LinkedList's constructor. If that is pointer is
still NULL, no headNode exists, so one is now created, passing in the character to be stored.

The constructor to Node was considered earlier (refer to Listing 6.3). Remember that the Node's
member variable myChar is initialized with the character passed in (theChar), and its member
variable nextNode is initialized with NULL as shown in Listing 6.13.

Listing 6.13 Node Constructor

0: Node::Node(char theChar):
1: myChar(theChar),nextNode(0)
2: {
3: }

This effectively adds the character to the linked list, storing it in the head node.

If there already is a HeadNode, (that is, the pointer is not NULL), we have a list already and must
decide whether we want to add the character. If we are accepting duplicates or if the character does not
appear in the list already (line 11), we add it by calling Insert on the headNode (line 13). I already
described HeadNode()::Insert in Listing 6.3.

We determine whether the character is in the list on line 11 by calling LinkedList::HowMany(),
as shown in Listing 6.14.

Listing 6.14 LinkedList's HowMany Method

0: int LinkedList::HowMany(char theChar) const
1: {
2: return headNode->HowMany(theChar);
3: }

As you can see, LinkedList does nothing but pass along the character to the headNode, calling the
logic that was considered earlier (in Listing 6.3). The LinkedList method HowMany() is considered
a wrapper method: It wraps around the Node::HowMany() method, encapsulating its interface, but
delegating all the work to the encapsulated method.

wrapper--A class is a wrapper for another when it provides a public interface but
delegates all the work to the contained class.

method--A method is a wrapper for another method when it provides an encapsulating
interface to that method but delegates all the work to the wrapped method.

Playing the Game

After the solution member linked list is populated, the Game object is fully constructed and the next
line in main() is a call to the Game's Play() method. This was considered earlier, and you probably
remember that Play() solicits a guess from the player and then calls Game::Score().

Game::Score() was also considered earlier, but because solution is now a linked list, this is worth
another look. I've reproduced Game::Score() in Listing 6.15 for your convenience.

Listing 6.15 The Score Method

0:void Game::Score(const char * thisGuess, int & correct, int &
position)
1: {
2: correct = 0;
3: position = 0;
4:
5:
6: for (int i = 0; i < howManyLetters; i++)

7: {
8: int howManyInGuess = HowMany(thisGuess, alpha[i]);
9: int howManyInAnswer = solution.HowMany(alpha[i]);
10: correct += howManyInGuess < howManyInAnswer ?
10a: howManyInGuess : howManyInAnswer;
11: }
12:
13: for (i = 0; i < howManyPositions; i++)
14: {
15: if (thisGuess[i] == solution[i])
16: position++;
17: }
18:
19: ASSERT (position <= correct)
20:
21: }

On line 9, we must determine how many times each character appears in solution. We do this by
calling HowMany() on solution, passing in each character in turn. This calls LinkedList::
HowMany(), which, as we just saw, calls Node::HowMany().

On line 15, we compare the letter at each offset into thisGuess with the letter at the same offset in
solution. The Node class does not provide an offset operator, but the LinkedList class must if
we are to make this comparison.

Solving the Problem with a Member Method

You can solve this problem by implementing an offset method and calling that method by changing
line 15 to read

15: if (thisGuess[i] == solution.offset(i))

The implementation of the offset method is shown in Listing 6.16.

Listing 6.16[em]The offset Operator

0: char LinkedList::offset(int offSetValue)
1: {
2: Node * pNode = headNode;
3: for (int i = 0; i < offSetValue && pNode; i++)
4: pNode = pNode->GetNext();
5:

6: ASSERT (pNode);
7: char c = pNode->GetChar();
8: return c;
9: }

The offset is passed into this method as a parameter. We make a new, local pointer, pNode, and we
assign to that pointer the address that is currently held in headNode. Thus, both pointers now point to
the same object on the heap, as shown in Figure 6.12.

The goal of the for loop on line 3 in Listing 6.16 is to tick through the linked list, starting at the head
node, and find the node that corresponds to offSetValue.

As we tick through each node, we must also check that pNode continues to point to a valid node (that
is, we have not reached the end of the list). This protects us from trying to get an offset that is too large
for the list.

We put the test for whether the offset continues to point to a valid Node right into the for loop by
adding it to the test condition:

i < offSetValue && pNode;

This tests that the counter i is not greater than the offset value that was passed in (that is, we're still
ticking through the list) and that pNode has a nonzero (that is, non-NULL) value.

On line 4 we assign to pNode the address returned by GetNext(). The call to Node::GetNext()
simply returns the address that is stored in that node's nextNode pointer. The net effect of this is that
pNode now points to the next node in the list.

This for loop continues until i is no longer less than offSetValue. Thus, if offSetValue is 5,
this for loop causes pNode to point to the sixth node in the list, just as you want it to.

On line 6, we assert that we are still pointing to a valid object (belt and suspenders!), on line 7 we extract
from that node the character it holds, and on line 8 we return that character.

The net effect of all this is that if you call offset(5), you get back the character at the fifth offset:
that is, the sixth character in the list.

This works great, but it isn't how arrays work. You never write

myArray.offset(5);

You write

myArray[5];

It would be nice if our linked list supported the same syntax.

Operator Overloading

C++ provides the capability for the designer of a class to give that class the same operators that are
available in the built-in class, such as +, -, ==, <, >, and so forth. This is called operator overloading.
The goal of operator overloading is to allow your class to behave as if it were a built-in type.

operator overloading--The ability to program operators such as plus (+) or assignment
(=) for classes

How You Accomplish Operator Overloading

C++ has a specific syntax dedicated to creating operators for your classes. We'll examine how the offset
operator ([]) is overloaded because that is what we need right now in the code; we'll return to operator
overloading throughout the book, however, because it is a powerful technique with many subtleties.

To create the offset operator, you use the following syntax:

char operator[](int offSetValue);

When you write solution[5], the compiler automatically converts this to solution.operator
[](5).

The implementation for this overloaded operator is identical to the offset method shown in Listing 6.14,
as illustrated in Listing 6.17. The only difference is in the signature of the method.

Listing 6.17 LinkedList's offset Operator

0: char LinkedList::operator[](int offSetValue)
1: {
2: Node * pNode = headNode;
3: for (int i = 0; i < offSetValue && pNode; i++)

4: pNode = pNode->GetNext();
5:
6: ASSERT (pNode);
7: char c = pNode->GetChar();
8: return c;
9: }

As you can see, the body is identical; it is just the signature on line 0 that is different:

0: char LinkedList::operator[](int offSetValue)

Once again, the return value is a char, but this time we see the keyword operator, followed by the
operator we're overloading, and then the parameter that is needed by that operator.

You invoke this method by writing

solution[5];

which the compiler translates into

solution.operator[](5);

setting the parameter offset to the value passed in (5).

With this implementation in place, the Play() method can test the value of solution[i], and thus
the Play() method remains unchanged from when we were using arrays.

Passing Objects by Value

After the Game is fully constructed, we return to main(), where the Play() method is invoked.
When we return from Play(), we see this line:

 theGame.GetSolution().Display();

This causes the Game's GetSolution() method to be called, returning a reference to a
LinkedList; then the method Display() is called on that reference to a LinkedList object.

It is clearer to write

 const LinkedList & linkedListConstantReference =
 theGame.GetSolution();

 linkedListConstantReference.Display();

This compiles equally well and makes a bit more explicit what we're up to.

We declare linkedListConstantReference to be a reference to a constant LinkedList
object because that is what GetSolution() is declared to return in Game.h:

class Game
{
//...
 const LinkedList & GetSolution () const { return solution; }
//...
}

Let's pick this apart:

● const, LinkedList, and & together represent the return value: a reference to a constant
LinkedList object.

● GetSolution is the name of the method, GetSolution.

● () is the parameter list, which in this case is empty.

● const declares this member method to be constant.

● return solution is the inline implementation, in which we return the member variable
solution.

Because the return value is declared to be a constant reference to a LinkedList, we actually don't
return solution itself. Instead, we return a constant reference to solution.

NOTE: The fact that we return a reference to a constant object limits what you can do
with that object. For example, you can only call constant member methods using that
reference. If the reference is to a constant object, you can't change that object, and calling
a method that is not constant risks changing the object. The compiler enforces this
constraint. We're fine here because the only method we call with this reference is
Display(), which is a constant member method of LinkedList.

Why Is it a Reference?

Why bother returning the LinkedList object by reference at all? Why not just return it by value?

 LinkedList GetSolution () const { return solution; }

This has the advantage of not being constant: You can do anything you want with this object. Because it
is a copy of the original, you won't affect solution at all. The net effect in this case is the same: You
can still call Display, only this time you'll call it on the copy.

The answer is that it is more expensive to make a copy, but to understand why, we must examine what
happens when you pass an object by value, this is the subject of the next chapter, "Creating Object-
Oriented Linked Lists."

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

C++ From Scratch

8

Using Polymorphism

● In this Chapter
● Specialization

❍ Benefits from Specialization
❍ Polymorphism
❍ Abstract Data Types
❍ How This Is Implemented in C++
❍ The Syntax of Inheritance

● Overriding Functions
● Virtual Methods

❍ How Virtual Functions Work
❍ Virtual Destructors

● Implementing Polymorphism
❍ Adding a Second Letter
❍ Appending 'b'.Examining operator[]

In this Chapter

● Specialization

● Overriding Functions

● Virtual Methods

● Implementing Polymorphism

The linked list class works, but it cries out for a bit of improvement. Each node in the list is forever
checking to see whether there is a next node in the list before taking action:

void Node::Insert(char theChar)
{
 if (! nextNode)
 nextNode = new Node(theChar);
 else
 nextNode->Insert(theChar);
}

This creates code that is a bit more difficult to maintain. As an object-oriented designer, I notice that I'm
asking each node to be capable of being the head node in the list, an internal node in the list, or the tail
of the list. There is nothing special about these positions--they are just nodes.

Because any node can be internal or the tail, it can't know whether it has a next node, so it must test. If a
node knew that it was an internal node, it would always know that there was a next node ("If I'm not the
tail, there must be at least one after me"). If it knew that it was the tail, it would know there was no next
node (such is the meaning of being the tail node; objects live a very existential existence, and they often
major in epistemology).

Specialization

This leads me to a redesign. In it, I have three types of nodes: One is the head node, one is the tail, and
the third is the internal node.

You've already seen that the LinkedList class you created can mark the head node position, and that
this class has special responsibilities such as supporting an offset operator. Let's break out the
InternalNode from the TailNode.

When we say that the LinkedList, InternalNode, and TailNode are all nodes, this tells us that
we are thinking about a specialization/generalization relationship. The LinkedList,
InternalNode, and TailNode are specializations of Node. The LinkedList has the special
requirement that it act as an interface to the list, which leads me to the design shown in Figure 8.1

Figure 8.1 Node Specialization.

In this design, shown here in UML notation, we indicate that the LinkedList, InternalNode, and
TailNode are all kinds of Node. This brings us back to the conversation about specialization/
generalization in Chapter 1, "Introduction."

The specialization relationship establishes an is-a relationship: That is, a TailNode is-a Node.
Furthermore, the specialization relationship indicates that TailNode adds to the definition of Node. It
says that this is a special kind of Node--one that marks the end of a list.

Similarly, InternalNode specializes Node to mean a node that manages associated data and that, by
implication, does not mark the tail of the list.

Finally, LinkedList is-a node, a very special node that marks the head of the list and that provides an
interface to users of the list. We could have called this the head node, but we want to focus on the user's
perception: To the user, the head node is the linked list. Thus, we bridge the gap between the architect's
view (in which this is the head node in a linked list) and the user's view (in which this is the linked list)
by having it inherit from Node but calling it LinkedList.

NOTE: The specialization/generalization relationship is reciprocal. Because
LinkedList, TailNode, and InternalNode specialize Node, Node in turn
becomes a generalization of the commonality between all three of these classes.
Programmers talk about factoring out common features from the derived classes up into
the base classes. Thus, you can factor out all the common responsibilities of the three
classes up into Node.

Benefits from Specialization

The first benefit you receive from this design is that Node can serve to hold the common characteristics
of LinkedList, InternalNode, and TailNode. The things they have in common in this design
are that any Node can exist in a list, that you can tell any Node to insert a new data object, and that you
can tell a Node to display itself.

In addition, by specializing Node, this design of TailNode maintains the Node features but adds the
special capability to mark the end of the list. This specialization is manifest in the differences in how
TailNode responds to a request to Insert data, which it handles differently than, for example, an
InternalNod e does.

Polymorphism

The need to handle Insert() in a special way might be a good reason to create a new class, but you
can imagine that it would make your code much more complicated. Each Node would have to know
what it pointed to: If it pointed to an InternalNode, it would call InternalNodeInsert, and if
it pointed to a TailNode, it would call TailNodeInsert. What a bother.

We want to say, "I have a Node, I don't know what kind. It might be an InternalNode or it might be
a TailNode. When I call Insert(), I want my Node to act one way if it is an InternalNode,
and in a different way if it is a TailNode."

This is called polymorphism: poly means many and morph means form. We want the Node to take on
many forms. C++ supports polymorphism, which means that the client can call Insert on the Node
and the compiler will take care of making the right thing happen. In this case, the right thing means that
if the Node is really an InternalNode, InternalNode::Insert() will be called; if the Node is
really a TailNode, TailNode::Insert() will be called instead.

Abstract Data Types

You want to create InternalNode objects to hold your data, and you want to create a single
TailNode object and a single LinkedList object. You will never instantiate a Node object, though.
The Node object exists only as an abstraction so that you can say "I will call the next node," and not
worry about which kind of node it is. The Node class is called an abstract data type (ADT) because it
exists only to provide an abstraction for the classes that inherit from it.

The classes that are derived from your ADT (in this case, LinkedList, InternalNode, and
TailNode) can be concrete, and thus can have objects instantiated. Alternatively, you can derive
ADTs from other ADTs. Ultimately, however, you must derive a concrete class so that you can create
objects.

Abstract Data Type--A class that provides a common interface to a number of classes
that derive from it. You can never instantiate an Abstract Data Type.

concrete class--A class that is not abstract and that can therefore be instantiated.

How This Is Implemented in C++

Until now, we've not discussed a word about how all this is implemented in C++. That is because we
have rightly been focused on design, not implementation.

The design calls for all three of these classes to specialize Node. You implement that design concept of
specialization by using inheritance. Thus, you will have LinkedList, TailNode, and
InternalNode inherit from Node.

The Syntax of Inheritance

When you declare a class, you can indicate the class from which it derives by writing a colon after the
class name, the type of derivation (public or otherwise), and the class from which it derives. For now,
focus only on public inheritance because that is what implements the design concept of specialization/
generalization.

Thus, to indicate that InternalNode is a specialization of Node, or that InternalNode derives
from Node, you write

class InternalNode : public Node

NOTE: When one class specializes another, we say that the specialized class is derived
from the more general class, and that the more general class is the base class.

The class from which you derive must have been declared already, or you receive a compiler error.

Overriding Functions

A LinkedList object has access to all the member functions in class Node, as well as to any member
functions the declaration of the LinkedList class might add. It can also override a base class
function. Overriding a function means changing the implementation of a base class function in a derived
class. When you instantiate an object of the derived class and call an overridden method, the right thing
happens.

NOTE: When a derived class creates a function with the same return type and signature
as a member function in the base class, but with a new implementation, it is said to
override that method.

This is very handy because it allows an InternalNode to specialize how it handles some methods
(such as Insert()) and simply inherit the implementation of other methods.

When you override a function, its signature must be identical to the signature of the function in the base
class. The signature is the function prototype, other than the return type: the name, the parameter list,
and the keyword const (if it is used).

Virtual Methods

I have emphasized the fact that an InternalNode object is-a Node object. So far that has meant only
that the InternalNode object has inherited the attributes (data) and capabilities (methods) of its base
class. In C++, however, the is-a relationship runs deeper than that.

C++ extends its polymorphism, allowing pointers to base classes to be assigned to derived class objects.
Thus, you can write

Node * pNode = new InternalNode;

This creates a new InternalNode object on the heap and returns a pointer to that object, which it
assigns to a pointer to Node. This is fine because an InternalNode is-a Node.

In fact, this is the key to polymorphism. You can create all kinds of Windows--they can each have a
draw() method that does something different (the list box draws a rectangle, the radio button draws a
circle). You can create a pointer to a Window without regard to what type of Window you have, and
when you call

pWindow->Draw();

the Window is drawn properly.

Similarly, you can have a pointer to any kind of Node, a LinkedList, an InternalNode, or a
TailNode, and you can call Insert() on that node without regard to what kind of Node it is. The
right thing will happen.

Here's how it works: You use the pointer to invoke a method on Node, for example Insert(). If the
pointer is really pointing to a TailNode, and if TailNode has overridden Insert(), the overridden
version of Insert is called. If TailNode does not override Insert(), it inherits this method from
its base class, Node, and Node::Insert() is called.

This is accomplished through the magic of virtual functions.

NOTE: C++ programmers use the terms method and function interchangeably. This
confusion comes from the fact that C++ has two parents: the object-oriented languages
such as SmallTalk, which use the term method, and C, which uses the term function.

How Virtual Functions Work

When a derived object, such as an InternalNode object, is created, first the constructor for the base
class is called, and then the constructor for the derived class is called. Figure 8.2 shows how the
InternalNode object looks after it is created. Note that the Node part of the object is contiguous in
memory with the InternalNode part.

Figure 8.2 The InternalNode object after it is created.

When a virtual function is created in an object, the object must keep track of that function. Many
compilers build a virtual function table, called a v-table. One of these tables is kept for each type, and
each object of that type keeps a virtual table pointer (called a vptr or v-pointer) that points to that table.
(Although implementations vary, all compilers must accomplish the same thing, so you won't be too
wrong with this description.)

v-table--The virtual function table used to achieve polymorphism

vptr or v-pointer--The Virtual Function Table Pointer, which is provided for every object
from a class with at least one virtual method

Each object's vptr points to the v-table that, in turn, has a pointer to each of the virtual functions. When
the Node part of the InternalNode is created, the vptr is initialized to point to the correct part of the
v-table, as shown in Figure 8.3.

Figure 8.3 The v-table of a node.

When the InternalNode constructor is called and the InternalNode part of this object is added,
the vptr is adjusted to point to the virtual function overrides (if any) in the InternalNode object (see
Figure 8.4).

Figure 8.4 The v-table of a InternalNode.

When a pointer to a Node is used, the vptr continues to point to the correct function, depending on the
"real" type of the object. Thus, when Insert() is invoked, the correct (InternalNode) version of
the function is invoked.

Virtual Destructors

It is legal and common to pass a pointer to a derived object when a pointer to a base object is expected.
What happens when that pointer to a derived subject is deleted? If the destructor is virtual, as it should
be, the right thing happens: The derived class's destructor is called. Because the derived class's
destructor automatically invokes the base class's destructor, the entire object is properly destroyed.

The rule of thumb is this: If any of the functions in your class are virtual, the destructor needs to be
virtual as well.

The ANSI/ISO standard dictates that you can vary the return type, but few compilers support this. If you
change the signature--the name, number, or type of parameters or whether the method is const--you
are not overriding the method, you are adding a new method.

It is important to note that if you add a new method with the same name as another method in the base
class, you hide the base class method and the client can't get to it. Take a look at Listing 8.1, which
illustrates this point.

Listing 8.1 Hiding the Base Class Method

0: #include <iostream>
1: using namespace std;
2:
3: class Base
4: {
5: public:
6: Base() { cout << "Base constructor\n"; }
7: virtual ~Base() { cout << "Base destructor\n"; }
8: virtual void MethodOne() { cout << "Base MethodOne\n"; }
9: virtual void MethodTwo() { cout << "Base MethodTwo\n"; }
10: virtual void MethodThree()
11: { cout << "Base MethodThree\n"; }
12: private:
13: };
14:

15: class Derived : public Base
16: {
17: public:
18: Derived() { cout << "Derived constructor\n"; }
19: virtual ~Derived() { cout << "Derived destructor\n"; }
20: virtual void MethodOne() { cout << "Derived MethodOne\n"; }
21: virtual void MethodTwo() { cout << "Derived MethodTwo\n"; }
22: virtual void MethodThree(int myParam)
23: { cout << "Derived MethodThree\n"; }
24: private:
25: };
26:
27: int main()
28: {
29:
30: Base * pb = new Base;
31: pb->MethodOne();
32: pb->MethodTwo();
33: pb->MethodThree();
34: // pb->MethodThree(5);
35: delete pb;
36: cout << endl;
37:
38: Base * pbd = new Derived;
39: pbd->MethodOne();
40: pbd->MethodTwo();
41: pbd->MethodThree();
42: // pbd->MethodThree(5);
43: delete pbd;
44: cout << endl;
45:
46: Derived * pd = new Derived;
47: pd->MethodOne();
48: pd->MethodTwo();
49: // pd->MethodThree();
50: pd->MethodThree(5);
51: delete pd;
52:
53: return 0;
54: }
Base constructor
Base MethodOne
Base MethodTwo

Base MethodThree
Base destructor
Base constructor
Derived constructor
Derived MethodOne
Derived MethodTwo
Base MethodThree
Derived destructor
Base destructor
Base constructor
Derived constructor
Derived MethodOne
Derived MethodTwo
Derived MethodThree
Derived destructor
Base destructor

In this example, we create a Base class and a Derived class. The Base class declares three methods
virtual on lines 8-10, which will be overridden in the Derived class.

The overridden MethodThree differs from the base class's version in that it takes an extra parameter.
This overloads the method (rather than overrides it) and hides the base class method. What is the effect?
Let's see.

On line 30 we declare a pointer to a Base object, and we use this pointer to invoke MethodOne,
MethodTwo, and both versions of MethodThree. The second, shown on line 34, won't compile and
so is commented out. It won't compile because Base objects know nothing about this overload version.

The output shows that a Base constructor is called, followed by the three Base methods, ending with a
call to the Base destructor. Pretty much as we might expect.

On line 38 we declare a pointer to a Base and initialize it with a Derived. This is the polymorphic
form: We assign a specialized object to a pointer to a more general object. We call MethodOne,
MethodTwo, and MethodThree, and they compile fine until we try to compile the version that takes
an int. Because this is a pointer to a Base, it can't find this method and won't compile.

Let's look at the output. We see the Base constructor, and then the Derived constructor. That is how
derived objects are constructed: base first. We then see a call to the Derived MethodOne.
Polymorphism works! Here we have a Base pointer, but because we assigned a Derived object to it,
when we call a virtual method, the right method is called. This is followed by a call to Derived
MethodTwo, and then to Base MethodThree! As far as the Base pointer is concerned, Base
MethodThree has not been overridden, so Derived inherits the Base method. Finally, the object is

destroyed in the reverse order in which it was created.

The final set of code begins on line 46, where we create a Derived Pointer and initialize it with a
Derived object. This time we can't call the version of MethodThree that was declared in Base
because our new Derived object hides it. This proves the rule: If you overload a base class in the
derived class, you must explicitly implement every version of the method (in this case you'd have to
implement the version with no parameters) in the derived class, or it is hidden from your derived objects.

The output reflects the fact that this Derived object calls (of course) only derived methods.

To avoid the hiding, we can move the version of the method that takes an integer up into Base, or at a
minimum we can implement the version with no parameters in the derived class. If we choose the first
option, we can use both methods polymorphically. If we choose the latter, at least we can access the base
method using a derived object.

We can, actually, overcome many of these problems with a bit more magic. Let's take them in turn. To
solve the first problem (shown on line 34), we have only to overload MethodThree in Base:

3: class Base
4: {
5: public:
6: Base() { cout << "Base constructor\n"; }
7: virtual ~Base() { cout << "Base destructor\n"; }
8: virtual void MethodOne() { cout << "Base MethodOne\n"; }
9: virtual void MethodTwo() { cout << "Base MethodTwo\n"; }
10: virtual void MethodThree()
11: { cout << "Base MethodThree\n"; }
 virtual void MethodThree(int param)
 { cout << "Base MethodThree(int)\n"; }
12: private:
13: };

To solve the problem on lines 42 and 49, we need only invoke the base class's method directly:

42: // pbd->Base::MethodThree(5);

Here we use the Base class name, followed by the scoping operator (::), to invoke the Base version
of this method. Hey! Presto! Now we've "unhidden" it, and we can call it.

Implementing Polymorphism

All this is fine in theory, but it remains highly abstract until you see it implemented in code. Let's take a
look at the implementation of the newly object-oriented LinkedList (see Listing 8.2).

Listing 8.2 LinkedList

0: #ifndef LINKEDLIST_H
1: #define LINKEDLIST_H
2:
3: #include "DefinedValues.h"
4:
5: class Node // abstract data type
6: {
7: public:
8: Node(){}
9: virtual ~Node() {}
10: virtual void Display() const { }
11: virtual int HowMany(char c) const = 0;
12: virtual Node * Insert(char theCharacter) = 0;
13: virtual char operator[](int offset) = 0;
14: private:
15: };
16:
17: class InternalNode: public Node
18: {
19: public:
20: InternalNode(char theCharacter, Node * next);
21: virtual ~InternalNode();
22: virtual void Display() const;
23: virtual int HowMany(char c) const;
24: virtual Node * Insert(char theCharacter);
25: virtual char operator[](int offset);
26:
27: private:
28: char myChar;
29: Node * nextNode;
30: };
31:
32: class TailNode : public Node
33: {
34: public:
35: TailNode(){}
36: virtual ~TailNode(){}
37: virtual int HowMany(char c) const;

38: virtual Node * Insert(char theCharacter);
39: virtual char operator[](int offset);
40:
41: private:
42:
43: };
44:
45: class LinkedList : public Node
46: {
47: public:
48: LinkedList();
49: virtual ~LinkedList();
50: virtual void Display() const;
51: virtual int HowMany(char c) const;
52: virtual char operator[](int offset);
53:
54: bool Add(char c);
55: void SetDuplicates(bool dupes);
56:
57: private:
58: Node * Insert(char c);
59: bool duplicates;
60: Node * nextNode;
61: };
62:
63: #endif

This analysis begins on line 5 with the declaration of the Node class. Note that all the methods, with the
exception of the constructor, are virtual.

Constructors cannot be virtual; destructors need to be virtual if any method is virtual; and I've made the
rest of the methods virtual because I expect that they can be overridden in at least some of the derived
classes.

Note that the first three methods--the constructor, the destructor, and Display()--all have inline
implementations that do nothing. HowMany() (line 11), however, does not have an inline
implementation. If you check Listing 8.2, which has the implementation for the classes that are declared
in Listing 8.1, you will not find an implementation for Node::HowMany().

That is because Node::HowMany() is declared to be a pure virtual function by virtue of the
designation at the end of the declaration, = 0. This indicates to the compiler that this method must be
overridden in the derived class. In fact, it is the presence of one or more pure virtual functions in your
class declaration that creates an ADT. To recap: In C++, an abstract data type is created by declaring one

or more pure virtual functions in the class.

Pure Virtual Function--A member function that must be overridden in the derived class,
and which makes the class in which it is declared an Abstract Data Type. You create a
pure virtual function by adding = 0 to the function declaration.

The Node class is, therefore, an ADT from which you derive the concrete nodes you'll instantiate in the
program. Every one of these concrete types must override the HowMany() and Insert() methods, as
well as the offset operator. If a derived type fails to override even one of these methods, it too is abstract,
and no objects can be instantiated from it.

On line 17, you see the declaration of the InternalNode class, which derives from Node. As you
can see on lines 23-25, this class does override the three pure virtual functions of Node; thus, this is a
concrete class from which you can instantiate objects.

Although we put the keyword virtual on lines 22-25, it is not necessary. When a method is virtual, it
remains virtual all the way down the hierarchy of derived classes. So we could have left this designation
out here, as we did on line 21.

InternalNode adds two private variables: myChar and nextNode. It is clear why myChar can't
be in Node: Only InternalNode classes have a character for which they are responsible. Why not
put nextNode up in the base class, then? After all, nodes exist in a linked list. You'd expect all nodes
to have a nextNode.

This is true of all nodes except for TailNode. Because TailNode does not have a nextNode, it
doesn't make sense for this attribute to be in the base class.

You can put this pointer in the base and then give TailNode a null nextNode pointer. That might
work, but it doesn't map to the semantics of a Node. A Node is an object that lives in a linked list. It is
not part of our definition that a Node must point to another Node, only that it must be in the list.
TailNodes are in the list, but they don't point to a nextNode. Thus, this pointer is not an intrinsic
aspect of a Node, so I've left it out of the base class.

The declaration for TailNode begins on line 32, and once again you can see that the pure virtual
functions are overridden. The distinguishing characteristics of TailNode are shown in the
implementation of these methods, which we'll consider in a moment.

Finally, on line 45 you see LinkedList declared. Again, the pure virtual methods are overridden, but

this time, on lines 54 and 55, you see new public methods: Add and SetDuplicates. These methods
support the functionality of this class, to provide an interface for the LinkedList to the client classes.

Note also that on line 58 we've moved Insert() to the private section of LinkedList. The only
Node class that any non-Node interacts with is this one, and Insert is not part of the LinkedList
class's public interface. When a client wants to add a character to the list, it calls LinkedList::Add
(), which is shown on line 54.

Node's Insert() method is public, however--when nodes interact with one another (for example,
when LinkedList is adding objects to an InternalNode), the InsertMethod is used.

Let's look at the implementation of LinkedList in Listing 8.3, adding Game in Listings 8.4 and 8.5,
and the driver program Decryptix! in Listing 8.6. This enables us to step through a few methods using
the new object-oriented linked list.

Listing 8.3 Linked List Implementation

0: #include "LinkedList.h"
1:
2: InternalNode::InternalNode(char theCharacter, Node * next):
3: myChar(theCharacter),nextNode(next)
4: {
5: }
6:
7: InternalNode::~InternalNode()
8: {
9: delete nextNode;
10: }
11:
12: void InternalNode::Display() const
13: {
14: cout << myChar; nextNode->Display();
15: }
16:
17: int InternalNode::HowMany(char theChar) const
18: {
19: int myCount = 0;
20: if (myChar == theChar)
21: myCount++;
22: return myCount + nextNode->HowMany(theChar);
23: }
24:

25: Node * InternalNode::Insert(char theCharacter)
26: {
27: nextNode = nextNode->Insert(theCharacter);
28: return this;
29: }
30:
31: char InternalNode::operator[](int offSet)
32: {
33: if (offSet == 0)
34: return myChar;
35: else
36: return (*nextNode)[--offSet];
37: }
38:
39:
40: int TailNode::HowMany(char theChar) const
41: {
42: return 0;
43: }
44:
45: Node * TailNode::Insert(char theChar)
46: {
47: return new InternalNode(theChar, this);
48: }
49:
50: char TailNode::operator[](int offset)
51: {
52: ASSERT(false);
53: return ' ';
54: }
55:
56:
57:
58: LinkedList::LinkedList():
59: duplicates(true)
60: {
61: nextNode = new TailNode;
62: }
63:
64: LinkedList::~LinkedList()
65: {
66: delete nextNode;
67: }

68:
69: void LinkedList::Display() const
70: {
71: nextNode->Display();
72: }
73:
74: int LinkedList::HowMany(char theChar) const
75: {
76: return nextNode->HowMany(theChar);
77: }
78:
79: Node * LinkedList::Insert(char theChar)
80: {
81: nextNode = nextNode->Insert(theChar);
82: return nextNode;
83: }
84:
85: char LinkedList::operator[](int offSet)
86: {
87: return (*nextNode)[offSet];
88: }
89:
90:
91:
92: bool LinkedList::Add(char theChar)
93: {
94: if (duplicates || HowMany(theChar) == 0)
95: {
96: Insert(theChar);
97: return true;
98: }
99: else
100: return false;
101: }
102:
103:
104: void LinkedList::SetDuplicates(bool dupes)
105: {
106: duplicates = dupes;
107: }

Listing 8.4 Game Header

0: #ifndef GAME_H
1: #define GAME_H
2:
3: #include "definedValues.h"
4: #include "LinkedList.h"
5:
6: class Game
7: {
8: public:
9: Game();
10: ~Game(){}
11: void Display(const LinkedList * pList)const
12: {
13: pList->Display();
14: }
15:
16: void Play();
17: const LinkedList & GetSolution() const
18: {
19: return solution;
20: }
21:
22: void Score(
23: const char * thisGuess,
24: int & correct,
25: int & position
26:);
27:
28: private:
29: int HowMany(const char * theString, char theChar);
30: LinkedList solution;
31: int howManyLetters;
32: int howManyPositions;
33: int round;
34: bool duplicates;
35: };
36:
37: #endif

Listing 8.5 Game Implementation

0: #include <time.h>
1: #include "game.h"

2: #include "definedvalues.h"
3:
4: Game::Game():
5: round(1),
6: howManyPositions(0),
7: howManyLetters(0),
8: duplicates(false)
9: {
10:
11: bool valid = false;
12: while (! valid)
13: {
14: while (howManyLetters < minLetters
15: || howManyLetters > maxLetters)
16: {
17: cout << "How many letters? (" ;
18: cout << minLetters << "-" << maxLetters << "): ";
19: cin >> howManyLetters;
20: if (howManyLetters < minLetters
21: || howManyLetters > maxLetters)
22: {
23: cout << "please enter a number between ";
24: cout << minLetters << " and " << maxLetters <<
endl;
25: }
26: }
27:
28: while (howManyPositions < minPos ||
29: howManyPositions > maxPos)
30: {
31: cout << "How many positions? (";
32: cout << minPos << "-" << maxPos << "): ";
33: cin >> howManyPositions;
34: if (howManyPositions < minPos ||
35: howManyPositions > maxPos)
36: {
37: cout << "please enter a number between ";
38: cout << minPos <<" and " << maxPos << endl;
39: }
40: }
41:
42: char choice = ' ';
43: while (choice != 'y' && choice != 'n')

44: {
45: cout << "Allow duplicates (y/n)? ";
46: cin >> choice;
47: }
48:
49: duplicates = choice == 'y' ? true : false;
50: solution.SetDuplicates(duplicates);
51:
52: if (! duplicates && howManyPositions >
howManyLetters)
53: {
54: cout << "I can't put " << howManyLetters;
55: cout << " letters in ";
56: cout << howManyPositions ;
57: cout << "positions without duplicates! Please try again.
\n";
58: howManyLetters = 0;
59: howManyPositions = 0;
60: }
61: else
62: valid = true;
63: }
64:
65:
66: srand((unsigned)time(NULL));
67:
68: for (int i = 0; i < howManyPositions;)
69: {
70: int nextValue = rand() % (howManyLetters);
71: char theChar = alpha[nextValue];
72: if (solution.Add(theChar))
73: i++;
74: }
75:
76: cout << "Exiting constructor. List: ";
77: solution.Display();
78:
79: }
80:
81: inline int Game::HowMany(const char * theString, char theChar)
82: {
83: int count = 0;
84: for (int i = 0; i < strlen(theString); i++)

85: if (theString[i] == theChar)
86: count ++;
87: return count;
88: }
89:
90: void Game::Play()
91: {
92: char guess[80];
93: int correct = 0;
94: int position = 0;
95: bool quit = false;
96:
97: while (position < howManyPositions)
98: {
99:
100: cout << "\nRound " << round;
101: cout << ". Enter " << howManyPositions;
102: cout << " letters between ";
103: cout << alpha[0] << " and ";
104: cout << alpha[howManyLetters-1] << ": ";
105:
106: cin >> guess;
107:
108: if (strlen(guess) != howManyPositions)
109: {
110: cout << "\n ** Please enter exactly ";
111: cout << howManyPositions << " letters. **\n";
112: continue;
113: }
114:
115:
116: round++;
117:
118: cout << "\nYour guess: " << guess << endl;
119:
120: Score(guess,correct,position);
121: cout << "\t\t" << correct << " correct, ";
122: cout << position << " in position." << endl;
123: }
124:
125: cout << "\n\nCongratulations! It took you ";
126:
127: if (round <= 6)

128: cout << "only ";
129:
130: if (round-1 == 1)
131: cout << "one round!" << endl;
132: else
133: cout << round-1 << " rounds." << endl;
134:
135: }
136:
137:
138: void Game::Score(
139: const char * thisGuess,
140: int & correct,
141: int & position
142:)
143: {
144: correct = 0;
145: position = 0;
146:
147:
148: for (int i = 0; i < howManyLetters; i++)
149: {
150: int howManyInGuess = HowMany(thisGuess, alpha[i]);
151: int howManyInAnswer = solution.HowMany(alpha[i]);
152: correct += howManyInGuess < howManyInAnswer ?
153: howManyInGuess : howManyInAnswer;
154: }
155:
156: for (i = 0; i < howManyPositions; i++)
157: {
158: if (thisGuess[i] == solution[i])
159: position++;
160: }
161:
162: ASSERT (position <= correct);
163:
164: }

Listing 8.6 Decryptix! Driver Program

0: #include "definedValues.h"
1: #include "game.h"
2:

3: int main()
4: {
5:
6: cout << "Decryptix. Copyright 1999 Liberty Associates,";
7: cout << " Inc. Version 0.3\n\n" << endl;
8: bool playAgain = true;
9:
10: while (playAgain)
11: {
12: char choice = ' ';
13: Game theGame;
14: theGame.Play();
15:
16: cout << "\nThe answer: ";
17: theGame.GetSolution().Display();
18: cout << "\n\n" << endl;
19:
20: while (choice != 'y' && choice != 'n')
21: {
22: cout << "\nPlay again (y/n): ";
23: cin >> choice;
24: }
25:
26: playAgain = choice == 'y' ? true : false;
27: }
28:
29: return 0;
30: }

NOTE: The Game class declaration is unchanged from the previous version, and is
reproduced here only as a convenience.

Let's start the analysis with the construction of the solution member variable of Game. Put a break point
on line 58 of Listing 8.2. When the break point is hit, the first thing you do is check the call stack to see
when in the execution of the program this constructor was called:

LinkedList::LinkedList() line 62
Game::Game() line 10 + 58 bytes
main() line 14 + 8 bytes

As you can see, main() called the Game constructor, which in turn called the LinkedList
constructor. Line 14 of main() looks like this:

 Game theGame;

It's just as you expected--the construction of a Game object. Line 10 of Game is the opening brace,
shown in the code as line 9 of Listing 8.4. Because the LinkedList member variable (solution)
was not initialized, the compiler calls its constructor just before entering the body of Game's constructor.

Returning to Listing 8.2, line 58, note that the LinkedList initializes its duplicates member
variable to true (line 59); then, on line 61, it creates a new TailNode and sets its own nextNode to
point to the Tail. This creates an empty linked list, as shown in Figure 8.5.

Figure 8.5 An empty linked list.

LinkedList is thus automatically initialized to a first Node (LinkedList) and a last Node
(TailNode); neither of them contains any data, but together they create the structure of the list.

If you continue stepping through the code, you find yourself in the body of the Game constructor (line
11 of Listing 8.4). Set a break point on line 66 and run to that break point so that you skip examining the
initial user interface code that has not changed from previous chapters.

When you are prompted, choose five letters in five positions. The break point is hit, and we generate a
seed for the random number generator, based on the time (as discussed in previous chapters). On line 70,
we generate a random number and use that as an offset into the alpha array to generate our first
character. By line 72 we have that first character, which in my case is 'd'.

Stepping into the Add method causes us to jump to line 92 of Listing 8.2. On line 94, duplicates is
tested and fails (we're not allowing dupes); therefore, the call to HowMany is made, passing in the
parameter.

Stepping in here brings us to line 74. The LinkedList implementation of this is to return the value
that is generated by calling HowMany on whatever the LinkedList points to. Step in, and you'll find
yourself in the HowMany() method of TailNode. This makes sense; right now, LinkedList points
to TailNode.

Because TailNode holds no data, it returns 0 regardless of what character it is given. This is returned
to LinkedList::HowMany(), which in turn returns it to LinkedList::Add() on line 94.
Because this satisfies the second condition in the OR statement, enter the body of the if statement on
line 96.

Stepping into the Call to Insert jumps to line 80, the implementation of LinkedList::Insert
(). LinkedList's strategy is to pass this request on to whatever it points to. Stepping in brings us to
line 47, the implementation of TailNode::Insert().

TailNode always inserts a node when it is asked to. It knows that it is the tail, so it doesn't have to
check--it can just make the insertion. This is the critical difference from the previous version. You'll
remember that in Chapter 6, "Using Linked Lists," Node responded to Insert as follows:

void Node::Insert(char theChar)
{
 if (! nextNode)
 nextNode = new Node(theChar);
 else
 nextNode->Insert(theChar);
}

That is, it was necessary to see whether there were any more Nodes in the list. If not (if the current
Node was the Tail), a new Node could be inserted. On the other hand, if the current Node was not
the Tail, and therefore was an InternalNode, the Insert request would be passed down the list.

The new design obviates the need for the test: The TailNode knows that it is the tail, and it can just
make the insertion. This simple division of responsibility is, in a small way, the very heart of object-
oriented software development.

Let's examine the implementation in some detail. Line 47 returns the address of the new
InternalNode that is created by passing in the character that is received as a parameter and the
this pointer of the TailNode.

This jumps to the constructor for InternalNode, shown on line 2. Here you see the creation of the
InternalNode. The character is inserted into the InternalNode's myChar member variable, and
the this pointer from the TailNode is stored in the nextNode pointer of InternalNode.

The address of this InternalNode is then passed back to the caller of TailNode::Insert(), and
in this case is assigned to the nextNode member variable of LinkedList (as shown on line 81).
Finally, this address is returned by LinkedList::Insert, but the calling function--
LinkedList::Add() on line 96--makes no use of it, and it is thrown on the floor. On line 97, we
return true to the calling function on line 72 of Listing 8.4

We have now added a first letter to the linked list, and it worked great. It takes a lot longer to explain the
process than to perform it. Next, let's track the second letter, now that you have an InternalNode in
the linked list.

Adding a Second Letter

Return to line 92 of Listing 8.2. Once again, this steps you into LinkedList::HowMany() (line 74),
this time passing in 'b'.

This time, LinkedList's nextNode points to an InternalNode (the one holding 'd'), so we
now jump to line 17. Here a local variable myCount is initialized to zero. The InternalNode's
member variable myCount ('d') is compared to the parameter theChar ('b'). Because they are not
the same, myCount remains zero.

We now invoke HowMany() on the node that is pointed to by this InternalNode's nextNode
pointer. Right now, the pointer points to TailNode, which we examined previously; it simply returns
zero. That zero is added to myCount (also zero) for a total of zero, which is the value that is returned to
LinkedList::Add().

This causes the second half of the OR statement on line 94 to return true (HowMany('b') equals
zero), so the body of the if statement executes. This causes the call on Insert() to execute, with a
jump to line 80, which is the implementation of LinkedList::Insert(). Again, LinkedList's
strategy is to pass this request on to whatever it points to, which in this case is InternalNode's
Insert() method (as shown on line 27). InternalNode's strategy is to call Insert() on the
object to which its nextNode pointer points (in this case TailNode), and then to set its nextNode
pointer to whatever value is returned.

Because the nextNode is the TailNode, InternalNode::Insert is now called. As you saw
just a moment ago, it creates a new InternalNode for 'b' and tells that new node to point to the
tail. It then returns the address of the new node, which is now assigned to the nextNode pointer of the
node that holds 'd'. Thus, 'b' is appended to the list, as shown in Figure 8.6.

Figure 8.6

Appending 'b'.Examining operator[]

Let's take a look at Game::Score, beginning on line 138 of Listing 8.4. You've examined the
fundamental logic in detail in previous chapters. (We're particularly interested in the letter by letter
comparisons.) You've seen how LinkedList::HowMany() works; now take a look at the offset
operator as it is used on line 158.

Stepping in to this code steps into Linkedlist::Operator[] on line 87 of Listing 8.2.

NOTE: Along the way, I've added test code at line 77 to print out the answer so that I can
examine the behavior of the system as I test it. You want to remove both lines 76 and 77
before releasing this code.

Not surprisingly, all LinkedList does here is invoke this same operator on the node to which it
points. Stepping in from line 87 brings you to line 31, InternalNode::operator[]. Take a look
at your auto member variables, and you'll find that myChar is 'd', just as you might expect. The offset
that was passed in is now tested. If it is 0, the call was for the first letter in the list. You will be at the
first letter in the list, and you can return myChar, which is the case now. The letter 'd' is returned to
LinkedList; LinkedList returns it to the calling method, score(), which--on line 158 of
Listing 8.4--is compared with the value of the first character in the guess.

This is repeated, but with i set to 1. A call to solution[1] is invoked, bringing us back into
LinkedList::operator[] on line 87 of Listing 8.2.

Stepping in from line 87 brings you back to InternalNode::operator[] on line 31. Take a look
at your auto member variables, and you'll find that myChar is again 'd'--you're back at the first
InternalNode in the list. The offset that was passed in (1) is now tested. Because it is not zero, the
if statement on line 33 fails and the body of the else statement on line 36 executes:

36: return (*nextNode)[--offSet];

This invokes the offset operator on the next Node in the list, passing in the decremented offSet value.
Stepping in appears to bring us back to the top of the same method, but check your variables--myChar
is now b, and offset is now zero. Perfect: You'll return the second letter in the list, exactly as you
wanted.

The linked list works as you want, and by using inheritance, you've delegated responsibility for
monitoring the head and tail of the list to specialized nodes. This simplifies the code and makes it easier
to maintain.

The problem with this linked list, however, is that it can only be used by nodes that hold single
characters. What if you have other data that you want to insert into your linked list? Must you really
rewrite the linked list each time you change the kind of object that is contained? The next chapter,
"Implementing Templates," takes a look at modifying your linked list so that it can handle any kind of
data.

© Copyright 1999, Macmillan Computer Publishing. All rights reserved.

