
JDBC
Stands for Java Database Connectivity, is an API specification that defines
the following:

1. How to interact with database/data-source from Java applets, apps,
servlets

2. How to use JDBC drivers
3. How to write JDBC drivers

The main point of JDBC is database interoperability: By using JDBC API to
database access you can change the underlaying database driver(or engine)
without modifying the application.

You write standard JDBC API application and plug in the appropriate JDBC
driver for the database the you want to use.

Java applet, app or servlets
|

JDBC API
|

JDBC Driver Manager
|

JDBC JDBC JDBC
 Driver Driver Driver

 | | |
ODBC Oracle Access

JDBC Driver Types : Four types of JDBC drivers.
Type 1: The JDBC-ODBC Bridge

 Java App JDBC-ODBC Bridge is provided
 | as a part of JDK higher than 1.1
 JDBC-ODBC Bridge bridge is part of sun.jdbc.odbc package
 |
 JDBC-ODBC Library
 |
 ODBC Driver
 |
 ODBC Database
 Uses:

1. Quick system prototype

2. Three-tier database design
3. Database systems that provide only ODBC driver and not JDBC
4. Low-cost database solution where you have an ODBC driver
Limitations:
1. Bridge was developed as a prototyping and marketing tool and one
should not use it for mission-critical application if native JDBC driver is
available.
2. Bridge uses C language code so can not be used in untrusted applets.
So this depends on operating systems.
3.Since Bridge uses existing ODBC driver any bug in the driver would be
carried-forward
4.If a thing that is not possible in ODBC driver that features will not be
available using bridge

Type 2: Java to NATIVE API

 It uses local native library provided by a vendor to communicate directly
to the database.
 This driver has many same restrictions as bridge because it uses native
library but they are faster than bridge.
 It can not be used in untrusted applets.
 This native library must be installed on each machine which uses the
driver.
 Java applet, apps
 |
 JDBC Driver
 |
Native Database Library
 |
Database

Low-cost database solution where we are already using a major database
system that provides a type 2 driver with their database.

Type 3: Java to Proprietary Network Protocol

Java application, applet, servlets
 |

Type 3 JDBC driver
 | _____ Internet/Proprietary Network protocol
Java Middleware
 |
JDBC Driver
 |
 DATABASE

• This type of JDBC driver is by far most flexible.
• Used in n-tier application and can be deployed over Internet.
• Type 3 driver are pure Java and communicate with some type of

middle tier via a proprietary network protocol created by the driver
vendor.

• This middle tier will most likely reside on a Web or database server
and, in turn, communicate with the database.

Uses:

• Web-based applet that do not require any pre-installation or
configuration

• Secure systems where the database producer will be protected
behind middle tier

• Flexible solution where many different database products in uses
• Clients require a small footprint-size of type 3 drivers is much

smaller than all other types.

Type 4: Java to Native database protocol

• Type 4 drivers are pure Java drivers that communicate directly wih

database engine via its native protocol.
• This driver can be deployed over Internet.
• This driver can give higher performance as compared to first two.

Java Apps, applets, Servlets Uses:
 | Performance-critical apps
 Type 4 JDBC Driver In environments where only one |
| database product is in use
 Database Engine Web-deployed applets
 |
 DATABASE

The JDBC program flow

1. Establish a connection to the database
2. Execute a SQL statement
3. Process the result
4. Disconnect from the database

Loading Drivers

Loading the driver or drivers you want to use is very simple and involves
just one line of code. If, for example, you want to use the JDBC-ODBC
Bridge driver, the following code will load it:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Your driver documentation will give you the class name to use. For
instance, if the class name is jdbc.DriverXYZ , you would load the
driver with the following line of code:

Class.forName("jdbc.DriverXYZ");

1. Establish a connection to the database

JDBC connections are specified by URL string which has format:
 Jdbc:<subprotocol>:URL
e.g. jdbc:odbc:dsnName

Connection con =
DriverManager.getConnection(“jdbc:odbc:MsAccess”);

If we are using the JDBC-ODBC Bridge driver, the JDBC URL will start
with jdbc:odbc: . The rest of the URL is generally your data source
name or database system.

Connection returned by the method DriverManager.getConnection is an
open connection you can use to create JDBC statements that pass your
SQL statements to the DBMS.

2. Execute SQL Statement
Statement – class
Prepared Statement – to create object using SQL Statement
Callable Statement – to call backend procedure

Public class simple query
{
 pubic static void main(String args[])
 {
 String driverName = “sun.jdbc.odbc.JdbcOdbcDriver”;
 String connectionURL = “jdbc:odbc:AccessDb”;
 Class.forName(driverName).newInstance();
 Connection con = DriverManager.getConnection(connectionURL);
}
}

Establishing a Database Connection: java.sql package

Public static synchronized Connection getConnection(string url, String user,
String password) throws SQLException
Con =
DriverManager.getConnection(“jdbc:odbc:AccessDSN”, ”uid”, ”pwd”)

Interacting with Database using SQL:

To execute SQL command using a JDBC connection, we must create a
JDBC Statement object.
By Connnection.createStatement() method.

Table : Stud_id integer, Stud_Name;

Import java.sql.*;
public class FirstSQLApp {

public static void main(String args[]) {
Connection con = null;
try {
Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
Con= DriverManager.getConnection(“jdbc.odbc.AccDSN”,””,””);

Statement s1 = con.createStatement();
Statement.excuteUpdate(“Create Table Stud “ +
 “(stud_id INTEGER, stud_name CHAR(30))”);
}
catch(SQLException e1)
{
 System.err.println(e1.getMessage());
}
catch(Exception e2)
{
 System.err.print(e1.getMessage());
}
finally
{
 try {

if(con!=null) {
 con.Close(); }
 }
catch (Exception e) { } }

Inserting Data into Table: Insert SQL Statement

s1.executeUpdate(“insert into Stud “ + “values (1,’stud1’)”);

Selecting Data from Table: SQL Select

JDBC ResultSet object is used as client-side cursor to select data.
try {
ResultSet rs = statement.executeQuery(“Select * from STUD”);

while(rs.next())
{
 System.out.println(“Stud Id = “ + rs.getString(“stud_id”));
 System.out.println(“Stud Id = “ + rs.getString(“name”));
}
rs.close();
}
getXXX methods

rs.getFloat(),
rs.getInt() …

Updating Tables
Statement.executeUpdate(“UPDate stud “ +
 “SET name = ‘stud2’” +
 “Where stud_id = 1”);

Deleting from Table

 Statement.executeUpdate(“DELETE from stud “ +
 “Where stud_id = 2”);

Types of Statements:

1. PreparedStatements - to create parameterised query
2. Callable statements – to execute stored procedure

Prepared Statements
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled.
We can use them for, which take parameters and the same SQL statement
is being executed again and again.

Creating a PreparedStatement Object

PreparedStatement s2 =
con.prepareStatement("UPDATE Stud SET name = ? Where stud_id =?");

updateSales.setString(1, “stud3”);
updateSales.setInt(2, 1);
s2.executeUpdate();

Return Value for PreparedStatement Object

int n = s2.executeUpdate();

Stored Procedures

Calling a Stored Procedure from JDBC

CallableStatement cs = con.prepareCall("{call SHOW_STUDLIST}");
ResultSet rs = cs.executeQuery();

 CallableStatement is subclass of PreparedStatement so callable statement
can also take input parameter in the same way.

Transactions
A transaction is a set of one or more statements that are executed together as
a unit, so either all of the statements are executed, or none of the statements
is executed.

Disabling Auto-commit Mode

When a connection is created, it is in auto-commit mode. This means that
each individual SQL statement is treated as a transaction and will be
automatically committed right after it is executed.

con.setAutoCommit(false);

Committing a Transaction

con.setAutoCommit(false);
…….
PreparedStatement/Statement/CallableStatement executeUpdate
…….
con.commit();
con.setAutoCommit(true);

RollingBack a Transaction

Con.RollBack();

Transaction Isolation Level:

To avoid conflicts during a transaction, a DBMS will use locks, mechanisms
for blocking access by others to the data that is being accessed by the
transaction.

Default Isolation Level:
TRANSACTION_READ_COMMITTED:
DBMS will not allow dirty reads to occur

Method:
GetTransactionIsolation - to get Isolation Level of DBMS
SetTransactionIsolation - to set Isolation Level of DBMS

