
Sun Microsystems, Inc.
MS BRM01-209
500 Eldorado Blvd
Broomfield, Colorado 80021
U.S.A.

®

JavaProgrammingLanguage
Workshop

Revision B.2, February 2000

SL-285

StudentGuide

Please

Recycle

Copyright © 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or document may be reproduced in any form by any means
without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Solaris, OpenWindows, Java, JavaSoft, and HotJava are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

X Window System is a trademark of X Consortium, Inc.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written
license agreements.

U.S. Government approval required when exporting the product.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Govt is subject to restrictions of FAR 52.227-14(g)
(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS,
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLAY INVALID.

iii
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Contents
About This Course ...xi

Course Overview ... xii
Course Map.. xiv
Module-by-Module Overview ... xv
Course Objectives.. xvii
Skills Gained by Module... xviii
Guidelines for Module Pacing .. xix
Topics Not Covered... xx
How Prepared Are You?.. xxi
Introductions .. xxiii
How to Use Course Materials .. xxiv
Course Icons and Typographical Conventions xxvi

Typographical Conventions .. xxvii

Java Application Design ...1-1
Relevance.. 1-2
Software Development Cycle.. 1-3

Analysis ..1-4
Design ...1-4

Software Development Cycle.. 1-5
Implementation ...1-5
Testing ..1-5
Revisions ..1-6

Developing Java Programs .. 1-7
Java Program Types..1-8
Class Definition ...1-9
Java API Design...1-9
Complete API Declarations ...1-10
Coding Conventions...1-11
Ensuring Project Success..1-14

The BrokerTool Program ... 1-15
Problem Definition..1-15
Legacy System ...1-16
What You Need to Do ..1-17

iv Java Programming Language Workshop
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Specifications of the Legacy Server1-18
Defining the BrokerTool Program..1-20
Project Constraints ..1-23

Notes ... 1-24
Exercise: The BrokerTool Program Initial Design...................... 1-25

Preparation...1-25
Tasks ...1-25

Notes ... 1-26
Exercise Summary... 1-27
Check Your Progress .. 1-28
Think Beyond .. 1-29

Managing Database Queries..2-1
Relevance.. 2-2
Relational Database Management Systems................................... 2-3
Relational Models ... 2-5

Tables ..2-5
Data Independence ...2-6
Structured Query Language (SQL) ..2-7

Introducing mSQL .. 2-9
Implementing mSQL ..2-11
mSQL Tools..2-12

mSQL Commands... 2-14
The SELECT Statement..2-15
The INSERT Statement..2-18
The DELETE Statement..2-18
The UPDATE Statement..2-18

Exercise: mSQL Database Queries.. 2-20
Preparation...2-20
Tasks ...2-20

Exercise Summary... 2-22
Check Your Progress .. 2-23
Think Beyond .. 2-24

Introduction to JDBC ..3-1
Relevance.. 3-2
Introducing the JDBC Interface... 3-3

ANSI SQL-2 Conformance...3-4
JDBC Driver Interface...3-6
MsqlDriver – A Real-World JDBC Driver............................3-8

Connecting Through the JDBC Interface..................................... 3-10
The java.sql Package...3-10

The JDBC Flow .. 3-11
JDBC Example ... 3-12

Explicitly Creating an Instance of a JDBC Driver3-14
Registering a Driver..3-17
Specifying a Database...3-18

v
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Opening a Database Connection ..3-19
Using Database Resolution..3-20

JDBC Statements ... 3-21
Submitting a Query ..3-21
Receiving Results ..3-22
Using the get XXX Methods ..3-24
Working With Prepared Statements3-25
An Example of Using a Prepared Statement.......................3-26
Using the set XXX Methods..3-27
Creating Callable Statements ..3-28
An Example of Using a Callable Statement3-29

Mapping SQL Data Types Into Java Data Types........................ 3-30
ABCStock – APIs to Access the StockMarket Database........... 3-31

The StockMarket Database ..3-31
The Database Utility Classes ...3-31

ABCStock – Support Classes for the StockMarket Database .. 3-33
CustomerRec.java ..3-33
SharesRec.java ...3-35
StockRec.java ...3-37

ABCStock – Database API ... 3-39
Methods..3-40

Exercise: Implementing A Database Class Wrapper 3-45
Preparation...3-45
Tasks ...3-45

Notes ... 3-46
Exercise Summary... 3-47
Check Your Progress .. 3-48
Think Beyond .. 3-49

Building GUIs...4-1
Relevance.. 4-2
GUI Design Principles .. 4-3

Basic Principles..4-3
Subjective Versus Objective...4-4
Assess Your Audience..4-4
Clarify User Tasks...4-5
Keep It Simple ...4-6
Maintain Consistency ...4-7
Style Is Everything ..4-10

Classes and Object-Oriented Design.. 4-12
AWT and Swing .. 4-15
The java.awt and javax.swing Packages 4-17
Building Blocks.. 4-18

Containers ..4-18
AWT..4-19
Swing ..4-20

vi Java Programming Language Workshop
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Panels ..4-21
Components...4-22
Layout Managers ..4-24
Wrap-up ...4-25

Exercise: Creating the Stock Market GUI 4-26
Preparation...4-26
Tasks ...4-26

Exercise Summary... 4-30
Check Your Progress .. 4-31
Think Beyond .. 4-32

Networking Connections ...5-1
Relevance.. 5-2
Networking With Java Technology.. 5-3

The Live-Feed Application ..5-4
The Live-Feed Application Specifications.............................5-5
The TickerTape Object..5-6

Adding the TickerTape Object .. 5-8
Class Hierarchy ...5-8
Instance Variables ...5-8
The TickerTape Class ...5-9
The MakeFraction Class ...5-11
The TickerReader Class ...5-12

Exercise: Creating the TickerReader .. 5-14
Preparation...5-14
Tasks ...5-14

Exercise Summary... 5-16
Check Your Progress .. 5-17
Think Beyond .. 5-18

Multiple-Tier Database Design ..6-1
Relevance.. 6-2
The Tiered Database Model... 6-3

One-Tier Databases...6-3
Two-Tier Databases ..6-4
Three-Tier Databases ..6-5

Business Rules ... 6-7
The BrokerTool Program ... 6-9

The Three-Tier Database Design...6-10
Protocol Design ...6-12
Command and Result Formats ...6-13
Result.java ...6-14
Command.java ...6-15
Command Implementation ...6-17

Exercise: Implementing the Protocol ... 6-23
Preparation...6-23
Tasks ...6-23

vii
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Notes ... 6-25
Exercise Summary... 6-26
Check Your Progress .. 6-27
Think Beyond .. 6-28

Porting Considerations and Wrap-Up ...7-1
Relevance.. 7-2
Solaris Operating Environment-to-Windows
Porting Issues... 7-3

Logical Layout, Not Absolute ...7-4
File Access ..7-5
Font Availability..7-6
Mouse Buttons...7-7
MouseTest.java ...7-7
Threads ...7-9
Platform-Specific Implementation Bugs..............................7-10

Making the BrokerTool Program Fully Functional.................... 7-11
Exercise: Integrating Modules... 7-12

Preparation...7-12
Tasks ...7-12

Exercise Summary... 7-13
Check Your Progress .. 7-14
Think Beyond .. 7-15

Building GUIs With AWT...A-1
The java.awt Package.. A-2
Building Graphical User Interfaces ... A-4

Containers and Components..A-4
Positioning Components...A-4
Component Sizing..A-4

Frames.. A-6
Creating a Simple Frame...A-6
Running the Program..A-7

Panels ... A-8
Creating Panels...A-8
Running the Program..A-9

Container Layouts.. A-10
Layout Managers ...A-10

A Simple GUI Example ... A-11
The main Method ...A-11
new Frame(“GUI Example”) ..A-12
f.setLayout(new FlowLayout())A-12
new Button(“Press Me”) ..A-12
f.add(b1) ...A-12
f.pack() ...A-12
f.setVisible(true) ...A-13

Layout Managers ... A-14

viii Java Programming Language Workshop
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Flow Layout Manager ...A-14
Border Layout Manager ..A-15
Grid Layout Manager..A-19
Card Layout Manager ...A-20
Other Layout Managers ..A-23

Containers ... A-24
Frames..A-24
Panels ...A-24
Creating Panels and Complex LayoutsA-25

Using the GridBagLayout Manager .. B-1
Layout Managers ... B-2
The GridBagLayout Manager ... B-4
The GridBagConstraints Class... B-8
Designing With GridBagLayout ... B-10

Design Steps.. B-10
RELATIVE and REMAINDER ... B-20

The AWT Event Model ..C-1
What Is an Event? .. C-2

Event Sources..C-2
Event Handlers...C-2
How Events Are Processed ..C-2
Hierarchical Model (JDK 1.0) ...C-3
Delegation Model...C-5

GUI Behavior .. C-8
Categories of Events ..C-8
A More Complex Example ...C-11
Multiple Listeners ..C-14

Event Adapters... C-15

Swing Foundations ...D-1
Comparing Swing and AWT Components D-2

Naming and Event Model ..D-2
Selecting Swing or AWT ...D-3

Converting From AWT to Swing... D-4
New Components in Swing.. D-5
Top-Level Swing Containers .. D-6
Using a RootPaneContainer ... D-7

The Root, Glass, and Layered PanesD-8
JFrame Essentials ... D-9

Reacting to the System Menu...D-10
Implementing an Icon ..D-12

The JLabel Class ... D-13
Tool Tips.. D-14
Buttons in Swing .. D-15
The JButton Class ... D-16

ix
Copyright 1999 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

The JCheckBox Class... D-17
The JRadioButton Class .. D-18
The JComboBox Class... D-20
The JMenu Class ... D-21
Additional Features of the JMenu Class...................................... D-22

Keyboard Accelerators ..D-22
Menu Positioning...D-23

The AWT Component Library ... E-1
Facilities of the AWT ... E-2
TextField ... E-11
List .. E-13
Frame ... E-14
Panel ... E-15
Dialog ... E-16
FileDialog .. E-17
ScrollPane .. E-18
Menus .. E-19

The Help Menu... E-19
MenuBar ... E-20
Menu.. E-21
MenuItem ... E-22
CheckboxMenuItem ... E-23
PopupMenu... E-24
Controlling Visual Aspects... E-25

Colors... E-25
Fonts... E-26

Printing .. E-27

Object Serialization .. F-1
Additional Resources .. F-1

Introduction .. F-2
Object Serialization: The Old Way .. F-2
Object Serialization: The New Way....................................... F-3

Serialization Architecture ... F-4
java.io Package.. F-4
ObjectOutput Interface.. F-5
ObjectInput Interface.. F-5
Serializable Interface.. F-6
What Gets Serialized .. F--6
Object Graphs ... F-7
Writing and Reading an Object Stream F-7
Serialization Versus Externalization F-8

xi
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

AboutThisCourse

Course Goal

The Java Programming Language Workshop course provides you with the
knowledge and skills necessary to design a program using Java™
technology and to carry the design through all phases of the software
development cycle. This includes developing programs for multiple-
tiered applications and understanding issues of porting between the
Sun™ Solaris™ Operating Environment and Microsoft Windows
environments.

xii Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Course Overview

During the next five days, you will have an opportunity to learn
how to develop Java programs from beginning to end. This course
is structured as a workshop because it focuses on the development
of a working Java intranet application.

This course might differ from previous courses you have attended;
there is less lecture time and more lab exercise time than in a
typical five-day course. Consequently, the role of the instructor is to
facilitate the lab environment rather than to lecture.

You will be divided into teams by the instructor, who will begin
each lab session with information relevant to your development
effort. Discussion among members of your team is encouraged.
During the labs, divide the tasks equally among your team
members. Consider taking on a task that you are less familiar with
to promote your own learning experience.

About This Course xiii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

As with any large software development effort, your team might
find they have made a design error. These errors can greatly
contribute to the learning experience—do not be discouraged, try
to solve the problem.

xiv Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Course Map

The course map enables you to see what you have accomplished
and where you are going in reference to the course goal.

Application Design

Java
Application

Design

Databases

Managing
Database
Queries

Introduction to
JDBC

GUIs

Building GUIs

Networks

Networking
Connections

Multiple-Tier
Database

Design

Solaris Operating Environment and Windows

Porting
Considerations
and Wrap-Up

About This Course xv
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Module-by-Module Overview

This course contains the following modules:

● Module 1 – "Java Application Design"

This module presents an overview of the phases of software
development and highlights object-oriented software
development techniques. In this module, you are presented
with the problem statement for the Java program you will
work on this week.

● Module 2 – "Managing Database Queries"

This module presents an overview of relational database
design and introduces the Structured Query Language (SQL)
syntax implemented by the mSQL database system, for which
you will be writing code using the Java programming
language.

xvi Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

● Module 3 – "Introduction to JDBC"

This module also introduces the JavaSoft™ Java DataBase
Connectivity (JDBC™) Application Programming Interface
(API), which you and your team will use to pass SQL
commands to the database.

● Module 4 – "Building GUIs"

This module presents design principles for good graphical user
interface (GUI) design. You and your team will create an
effective GUI design from the specifications provided in this
module.

● Module 5 – "Networking Connections"

This module presents information related to the live-data feed
application that you and your team will integrate into the Java
program you are creating.

● Module 6 – "Multiple-Tier Database Design"

This module presents a multiple-tier database design and
describes how the project could be expanded to include a
middle tier.

● Module 7 – "Porting Considerations and Wrap-up"

This module explores how to modify or enhance your team’s
code for portability across Java platforms.

About This Course xvii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Course Objectives

Upon completion of this course, you should be able to:

● Describe relational databases

● Explain the JDBC™ API

● Develop classes to connect Java programs to SQL database
systems

● Develop a GUI that uses database classes

● Create classes that make socket connections as well as retrieve
and format data

● Describe a multiple-tier design

● Create a multiple-tier database system

● Discuss porting issues between the Sun Solaris Operating
Environment and Microsoft Windows environment

● Analyze, design, implement, and test an original commercial
intranet application using Java technology

xviii Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Skills Gained by Module

The skills for Java Programming Language Workshop are shown in
column 1 of the matrix below. The black boxes indicate the main
coverage for a topic; the gray boxes indicate the topic is briefly
discussed.

 Module

Skills Gained 1 2 3 4 5 6 7

Describe relational databases

Explain the new JDBC API

Develop classes to connect Java
programs to SQL database systems

Develop a GUI that uses database classes

Create classes that make socket connections as
well as retrieve and format data

Describe a multiple-tier design

Create a multiple-tier database design

Discuss porting issues between Solaris Operating
Environment and Microsoft Windows

Analyze, design, implement, and test an original
commercial intranet application using Java
technology

About This Course xix
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Guidelines for Module Pacing

The following table provides a rough estimate of pacing for this
course.:

Module Day 1 Day 2 Day 3 Day 4 Day5

"About This Course" A.M.

"Java Application Design" A.M.

"Managing Database Queries" P.M.

"Introduction to JDBC" A.M.

"Building GUIs" P.M. A.M.

"Networking Connections" P.M.

"Multiple-Tier Database Design" A.M./
P.M.

"Porting Considerations and
Wrap-Up"

A.M./
P.M.

xx Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Topics Not Covered

This course does not cover the topics shown on the above
overhead. Many of the topics listed on the overhead are covered in
other courses offered by Sun Educational Services:

● Java programming language constructs – Covered in SL275:
Java Programming Language

● Object-oriented programming techniques – Covered in:

▼ OO-225: Object-Oriented Application Analysis and Design for
Java Technology (OMT)

▼ OO-226: Object-Oriented Application Analysis and Design for
Java Technology (UML)

● Code development documentation for the Solaris Operating
Environment or Microsoft Windows

Refer to the Sun Educational Services catalog for specific
information and registration.

About This Course xxi
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

How Prepared Are You?

To be sure you are prepared to take this course, you should be:

● Familiar with Abstract Window Toolkit (AWT) event handling,
layout managers, Java programming language constructs, and
creating classes and subclasses, all of which are necessary to
develop the code components in this course

● Able to demonstrate how to implement interfaces, handle
exceptions, and use the delegation event model

xxii Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

● Able to create programs using an object-oriented language
(such as the Java programming language or C++); including
creating an object, inheriting from a class, extending a class,
and so on

● Comfortable learning the main concepts of the JDBC API
presented in this course

● Able to learn from the real-world code examples and technical
explanations presented in this course

About This Course xxiii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Introductions

Now that you have been introduced to the course, introduce
yourself to each other and the instructor, addressing the items
shown on the above overhead.

xxiv Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

How to Use Course Materials

To enable you to succeed in this course, these course materials
employ a learning model that is composed of the following
components:

● Course map – An overview of the course content appears in
the "About This Course" module so you can see how each
module fits into the overall course goal.

● Objectives - What you should be able to accomplish after
completing this module is listed here.

● Relevance – The relevance section for each module provides
scenarios or questions that introduce you to the information
contained in the module and encourage thinking about how
the module content relates to carrying a design through every
phase of the software development cycle and to multiple-tier
database designs.

About This Course xxv
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

● Overhead image – Reduced overhead images for the course
are included in the course materials to help you easily follow
where the instructor is at any point in time. Overheads do not
appear on every page.

● Lecture – The instructor presents information specific to the
topic of the module. This information helps you learn the
knowledge and skills necessary to succeed with the exercises.

● Exercise – Lab exercises give you the opportunity to practice
your skills and apply the concepts presented in the lecture.

● Check your progress – Module objectives are restated,
sometimes in question format, so that before moving on to the
next module you are sure that you can accomplish the
objectives of the current module.

● Think beyond – Thought-provoking questions are posed to
help you apply the content of the module or predict the content
in the next module.

xxvi Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Course Icons and Typographical Conventions

The following icons and typographical conventions are used
in this course to represent various training elements and
alternative learning resources.

Demonstration - Indicates a demonstration is recommended
at this time.

Discussion – Indicates a small-group or class discussion on
the current topic is recommended at this time.

Exercise objective – Indicates the objective for the lab
exercises that follow. The exercises are appropriate for the
material being discussed.

Additional resources – Indicates additional reference
materials are available.

About This Course xxvii
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

Typographical Conventions

Courier is used for the names of commands, files, and directories,
as well as on-screen computer output. For example:

Use ls -al to list all files.
system% You have mail.

It is also used to represent parts of the Java programming language
such as class names, methods, and keywords. For example:

The getServletInfo method is used to...
The java.awt.Dialog class contains Dialog (Frame parent)

Courier bold is used for characters and numbers that you type.
For example:

system% su
Password:

It is also used for each code line that will be referenced in text.
For example:

1. import java.io.*;
2. import javax.servlet.*;
3. import javax.servlet.http.*;

Courier italic is used for variables and command-line
placeholders that are replaced with a real name or value. For
example:

To delete a file, type rm filename .

Palatino italics is used for book titles, new words or terms, or words
that are emphasized. For example:

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

xxviii Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Rev. B.2

The Java programming language examples use the following
additional conventions:

● Method names are not followed with parentheses unless a
formal or actual parameter list is shown. For example:

"The doIT method..." refers to any method called doIt.

"The doIt() method..." refers to a method called doIt, which
takes no arguments.

● Line breaks occur only where there are separations (commas),
conjunctions (operators), or white space in the code. Broken
code is indented four spaces under the starting code.

● If a command is different on the Solaris Operating
Environment and Microsoft Windows platforms, both
commands are shown. For example:

On Solaris Operating Environment:

cd server_root/bin

On Microsoft Windows:

cd server_root\bin

1-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

JavaApplicationDesign 1

Objectives

Upon completion of this module, you should be able to:

● Explain the goals of each phase of the software development cycle

● Demonstrate an understanding of the Java runtime environment
by relating the application components to the appropriate Java
program type

● Discuss the basic elements of API design

● Define the BrokerTool program components given the functional
requirements of the project

In this module, you will discuss the goals of each phase of the
software development cycle and how to apply application components
to the Java programming language data types. You will also begin the
analysis and design for a program called BrokerTool.

1

1-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – Analysis and design are critical steps in developing
an object-oriented (OO) solution. Designing correct classes up-front
can lead to increased performance and successful milestones as the
project progresses.

In contrast, a poorly designed project will fail quickly if developers
try to piece together ill-conceived software components. How
might “lack of planning” be obvious when trying to deploy project-
specific packages and classes?

1

Java Application Design 1-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Software Development Cycle

The software development cycle is an iterative process comprising
the following phases:

● Analysis

● Design

● Implementation

● Testing

● Revision

The amount of time spent on the first two phases can greatly
reduce the number of iterations during the development cycle. This
module focuses on the software analysis and design phase.

1

1-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The development cycle begins with prototyping iterations and then
moves through alpha and beta iterations until a final product is
completed. In developing the BrokerTool program, you make a
single pass through an initial prototype, and then conclude the
course with a discussion of the possible types of revisions that
might be desirable.

Analysis

During the analysis phase of OO software development, you
transform a minimum target specification and certain project
requirements into a complete entity. The specifications for the
analysis phase include functional, resource, and performance
requirements as well as a description of essential characteristics,
behavior, and project constraints.

Design

During the design phase, you generate a description of how to
build software objects that behave in accordance with the analysis
models and that meet all other system requirements.

The benefits of an object-oriented, modular design are:

● Independent development

● Ease of modification

● Extensibility

● Reusability

1

Java Application Design 1-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Software Development Cycle

Implementation

During the implementation phase, you generate code that
addresses the functional requirements of the project.

Testing

The testing phase ensures the integrity of the software developed
during implementation and validates that the software meets the
project specifications identified during the analysis phase. During
this phase, you can independently test each module of the
application.

1

1-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Revisions

Revisions are typically the most time-consuming aspect of any
software development project. Revisions are necessary to correct
any problematic code and to make any modifications in response to
changing requirements.

1

Java Application Design 1-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Developing Java Programs

Java program development follows the analysis, design,
development, test, and revision process. However, you should
consider the following:

● What types of program will you write – applets or
applications? Is there a need to write either a content or
protocol handler?

● What will the design look like?

● Which classes can you use as is, and which classes must you
use as subclasses?

1

1-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Java Program Types

The Java platform provides support for several different program
types:

● Applets run within a browser that contains a Java runtime
environment. Applets inherit functionality from an Applet
class. Included in this functionality is a graphics object that
contains drawing methods for displaying graphic images.

● Standalone applications run by themselves within a Java runtime
environment. Applications in Java technology must have
access to a runtime interpreter implemented for the specific
operating system.

● Content and protocol handlers are specialized Java classes that
enhance functionality by providing a means for introducing
new content types (audio, graphics, and animations) or new
protocol types (SQL, OLE [object linking and embedding] and
so on).

1

Java Application Design 1-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Class Definition

After you decide what type of program you will create, you must
then define classes, which make up the backbone of your program.

To define a class:

● Create a class name for each application component derived
from the project analysis

● Determine whether your class inherits functionality. You use
the extends keyword to indicate whether your class inherits
functionality.

To determine attributes and variables:

● Determine what attributes characterize the class

● Declare class variables of appropriate types

To declare methods:

● Determine if the class needs a constructor method

● Identify methods required to:

▼ Create or destroy supporting objects (GUI components,
threads, network connections)

▼ Set and get class attribute values

● Determine what methods will be required to:

▼ Respond to user-initiated events

▼ Respond to timing events or error conditions

Java API Design

The API of an object-oriented program identifies and describes the
classes and all public methods defined within those classes.

1

1-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Complete API Declarations

Once you have named your methods, you must specify three more
characteristics to complete the declaration. You must determine the
following:

● The parameters required by the method. If parameters are
required, should they be objects or primitive data types?

● The return type of the method, which can be one of the
following:

▼ boolean (indicating success or failure)

▼ Data type (for example, int , String , and so on)

▼ List of elements

▼ Nothing (void)

● The scope of the method, which can be one of the following:

▼ private

▼ protected

▼ public

▼ package/default

1

Java Application Design 1-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Coding Conventions

The coding conventions are:

● Classes – Use nouns for class names. Use mixed case, with the
first letter of each word capitalized.

● Interfaces – Capitalize interface names like class names.

● Methods – Use verbs in mixed case with the first letter
lowercase for method names. Within a method name, capital
letters start each of the separate words. The underscore in
method names is usually not used.

1

1-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

● Constants – Use all uppercase for primitive constants with
words separated by underscores. Object constants can use
mixed case letters.

● Variables – Use mixed case with a lowercase first letter for all
instance, class, and global variables. Words are separated by
capital letters. The underscore in variable names is usually not
used.

Variables should be meaningful and descriptive. The name should
indicate to the casual reader the intent of its use. Avoid one-
character names except for temporary “throwaway” variables (for
example, i, j, and k for a loop control variable that is not used
outside the loop).

1

Java Application Design 1-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

● Control structures – Use braces { } around all statements, even
single statements, when they are part of a control structure,
such as an if-else or for statement.

● Spacing – Place only a single statement on any line, and use a
four-space indentation to make your code more readable.

● Comments – Use comments to explain code segments that are
not obvious. Use the // comment delimiter for single-line or
short commenting, and /* . . . */ for large sections of
code. Use the /** . . . */ documenting comment and
javadoc to provide your future maintenance person with an
API.

1

1-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Ensuring Project Success

Integrating code is one of the most common stumbling blocks in
development projects that require team effort. When incorporating
code from many sources, writing the complete API declarations as
part of the design process helps reduce the time spent in the
revision cycle.

Freezing the development process periodically enables the team to
evaluate whether the system is meeting its design objectives and
provides a recovery position if future modifications result in the
need to return the code to a “known” state.

Adhering to coding standards improves the ability to read and
maintain code. Additionally, it enables team members to review
each other’s code, without having to learn new conventions.

Test often. Try to test every module you write. What seems time
consuming at first will make life easier in the end.

1

Java Application Design 1-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The BrokerTool Program

To adhere to a single program specification, the basic elements of
the BrokerTool program have been defined for you. Further details
of the BrokerTool API, such as GUI design and implementation,
database query, and network communication, are described in
subsequent modules.

Problem Definition

Some time ago, a consultant was hired to develop an application
for the ABC Stock Trading Company. Unfortunately, this person
won the local state lottery and promptly gave notice. The last
known communication from this person was a postcard from the
Cayman Islands.

For the duration of the week, assume that you are a group of
consultants hired by the ABC Stock Trading Company. Your only
internal resource is the MIS (management information systems)
manager, who has gathered you here today to complete the
development of the BrokerTool.

1

1-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Legacy System

The consultant was in the midst of developing an application that
would serve ABC’s new intranet (an internal and secure local area
network [LAN]). The following pieces of the application have been
completed:

● A relational database created on a small but powerful database
program called Mini-SQL (mSQL)

● A live-feed connection that gathers stock prices every 45
seconds and makes the current prices available through a
Transmission Control Protocol/Internet Protocol (TCP/IP)
connection

● An httpd server installation

1

Java Application Design 1-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

What You Need to Do

The MIS director recently attended the JavaOneSM conference and
was intrigued by the possibility of writing a single program that
would run on several hundred client machines, ranging from
Macintosh computers and Intel Pentium-based PCs (running
Microsoft Windows) to Sun workstations running the Solaris
Operating Environment.

This week, you will divide into teams and complete the following:

● Analyze the problem and develop a design using object-
oriented principles

● Develop the following;

▼ Connection to the database

▼ GUI

▼ Live-feed display that is integrated with the GUI

● Evaluate your design with others in the class

● Implement and test your code

1

1-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Specifications of the Legacy Server

The MIS director has given you the following information:

● The database, live feed, and httpd all run on a single server.

● The database is mSQL, a small but powerful SQL database.

▼ The database is designed with a specific schema that you
cannot change.

▼ The database can receive string SQL commands and return
string responses.

▼ You access the database through TCP/IP port 1112.

● The live feed is a custom-built Java application created by the
previous consultant. It has the following characteristics:

▼ Has data that changes every 45 seconds

▼ Updates the database at each 45-second interval

▼ Is accessed through TCP/IP port 5432

▼ Accepts client connections

● The httpd is a web server that does the following:

▼ Uses the standard port 80.

▼ Stores hypertext markup language (HTML) files in a
directory shared by the server.

1

Java Application Design 1-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Legacy Database

The existing database, StockMarket , contains the following
schema:

Customer Table

Field Name Type Comment

ssn char (15)

cust_name char (40)

address char (100)

idx1 index unique

Shares Table

Field Name Type Comment

ssn char (15) Not null

symbol char (8) Not null

quantity int (4)

Stock Table

Field Name Type Comment

symbol char (8)

price real

idx2 index unique

1

1-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Defining the BrokerTool Program

The BrokerTool program that you have been assigned to develop
will be a Java technology-based, interactive, client-server system
for creating, editing, updating, and viewing customer and stock
information that is contained in the legacy database.

Functional Requirements

Your program must enable the end-user to:

● Buy and sell stocks for customers in the database and update
the database and GUI appropriately

● Add and remove customers from the database

● Modify the customer’s name or address, but not a social
security number

● View the current price for any stock in the database

● Read the contents of the live-feed data stream from the server,
and see the contents as a scrolling ticker tape in the final GUI

1

Java Application Design 1-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Note – Use the APIs provided so that, at the end of the week, any
of your classes can be swapped with any of the other groups’
classes and integrated seamlessly.

Consider any other functions you think the end-users might need
to perform their job.

Figure 1-1 provides a visual overview of the BrokerTool program.

Figure 1-1 BrokerTool Program Overview

mSQL
database

msql2d

Live feed

httpd

BrokerTool program Legacy server

*Database

Msql

*GUI

TickerTape

*TickerReader

Port 80

Port 1112

Port 5432

* The pieces you will be implementing

1

1-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Resources

The following resources are provided:

● A server machine, installed with the legacy database, and live-
data feed networked to multiple clients.

● Multiple client graphic workstations installed with the Java 2
Platform.

● Appletviewer or a browser, such as Netscape Navigator™ or
HotJava™.

1

Java Application Design 1-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Project Constraints

Given the requirements for the project, the first step is to define
those requirements in terms of the resources and technology
available. Specifically, you must apply constraints to limit the
functionality of the project to the given technology, resource, and
time limitations.

Given the time limitations:

● Database queries should use the customer’s unique social
security number or a unique stock symbol.

● A ticker-tape class will be provided for integration into the
final GUI and to display the live-feed data coming from the
server.

● An API for the Database class that integrates modules from
different development groups will be provided.

1

1-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Notes

1

Java Application Design 1-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: The BrokerTool Program Initial Design

Exercise objective – Given the instructions for defining the
BrokerTool project, create a preliminary design.

Preparation

You must have a basic knowledge of the Java programming
language and object-oriented programming. You should also know
basic GUI design and how to use databases.

Tasks

Complete the following steps:

1. Form groups of three to five students.

2. Elect a group leader. This person guides the development effort
and represents your group.

3. As a group, perform a simple analysis of what you know, and
create a preliminary design. Consider the following design
issues:

▼ Applet or application – Which will you write?

▼ Define object – What kinds of things need objects?

▼ Define classes – How will you map objects?

▼ GUI capabilities – What will the GUI enable the user to do?

▼ Information flow – How will objects communicate with
each other?

4. Save any questions you have for the discussion.

1

1-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Notes

1

Java Application Design 1-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

1

1-28 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Explain the goals of each phase of the software development
cycle

❑ Demonstrate an understanding of the Java runtime
environment by relating the application components to the
appropriate Java program type

❑ Discuss the basic elements of API design

❑ Define the BrokerTool program components given the
functional requirements of the project

1

Java Application Design 1-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

Many legacy systems are not written in the Java programming
language.

How does a programmer that uses the Java programming language
address the integration of legacy software so that new components
take advantage of the legacy software’s functionality?

2-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ManagingDatabaseQueries 2

Objectives

Upon completion of this module, you should be able to:

● Describe relational database design

● Explain Codd’s first three rules of relational database design

● Construct mSQL queries

● Create a connection to an mSQL database

● Extract information from an mSQL database

This module describes how to connect to basic relational databases,
such as mSQL, and also describes how to extract and change
information.

2

2-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – Relational databases are prevalent in computing
today. Being able to integrate software solutions with databases
allows for persistent storage of just about any type of information.

What are some examples of the types of information that a
software project should make persistent (survive beyond the
application’s execution)?

Additional Resources

Additional resources – The following references can provide
additional details on the topics discussed in this module:

● Emerson, Darnovsky, and Bowman. 1989. The Practical SQL
Handbook, Addison-Wesley.

● Hughes. 1997. Mini SQL 2.0 User Guide. Available:
http://www.Hughes.com.au. There is also an online version
of the Mini SQL 2.0 User Guide included with the course
materials:
SL285_LF/labfiles/msql_documentation/manual-
html/manual.html .

2

Managing Database Queries 2-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relational Database Management Systems

The major technology of our age is not the computer, but
information management. Once the quantity of information
exceeds our natural capacity for memory, it is necessary to store the
information somewhere and store the data in a way that makes it
easy to retrieve and store additional information.

The solution is the relational database. Dr. E. F. Codd is credited as
the inventor of the relational model, which defines how a relational
system must operate. Codd’s Rules is a comprehensive, 12-part test
that describes the criteria that must be met for a system to be
classified as a relational database management system (RDBMS)1.

1. Source: The Practical SQL Handbook, Emerson, Darnovsky and Bowman,
Addison-Wesley Publishing, 1989.

2

2-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

To be considered fully relational, an RDBMS must:

● Represent all of the information in the database as tables

● Keep the logical representation of the data independent of its
physical storage characteristics

● Use a high-level language for structuring, querying, and
changing the data

● Support relational operations (such as selection and joining)
and set operations (such as intersection and difference)

● Support views, which allow alternative methods for looking at
data in tables

● Provide a method for differentiating between unknown values
and nulls, zeros, and blanks

● Support mechanisms for integrity, authorization, transactions,
and recovery

2

Managing Database Queries 2-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relational Models

Tables

The first rule of an RDBMS (according to Codd) is that data are
represented in tables. Tables have rows (horizontally) and columns
(vertically) and can represent any type of data. Table 2-1 illustrates
a table containing names, addresses, and phone numbers.

Tables identify the column names and, generally, give indices to
rows. Rows are also referred to as records, and the columns are
referred to as fields. One of the fields can be identified as a primary
key, which identifies the record as unique.

A set of tables forms a database and enables you to create relations
between data. Table 2-2 illustrates a table containing social security
numbers.

Table 2-1 Address Table

Name Address Phone Number

Brown, John 101 High Street (408) 555-2024

Callaway, Tim 1334 East Main (515) 555-1200

Devroe, Anthony 1 Park Place (212) 555-0908

Nikolai, Peter 108 High Plain Rd (508) 555-2701

Table 2-2 Social Security Table

Name Social Security Number Age

Brown, John 999-01-1313 23

Callaway, Tim 999-25-8976 34

Devroe, Anthony 999-98-0123 55

Nikolai, Peter 999-02-1009 2

2

2-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Data Independence

The second of Codd’s rules specifies that data must be stored
logically and physically and that the two are maintained
independent of each other. The underlying principle here is that
the user does not need to know how the data are stored. The user
treats the database system as a logical representation of the data.

Therefore, the underlying database storage mechanisms (hard disk,
memory, and so on) are irrelevant to the user. In fact, as long as the
tables are stored using the same logical representation, it should be
possible to completely replace one physical database system with
another.

2

Managing Database Queries 2-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Structured Query Language (SQL)

Codd’s third rule states that there is a comprehensive, high-level
language used to communicate with the database system. In the
world of commercial database systems, SQL is the language of
choice. Its name is officially pronounced “ess-cue-ell,” but many
people refer to the language as “sequel.” You decide which one you
want to use.

IBM created SQL between 1970–1980 and released its first SQL-
based product, SQL/DS, in 1981. Several other vendors followed
suit during the 1980s and, although the number of database
companies has dwindled since then, the majority provide some
variant of SQL in their product offerings.

2

2-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

SQL is lacking a true “standard” like the C and C++ programming
languages that became popular quickly. Many of the early SQL
adopters identified enhancements to the proposed 1988 ISO-ANSI
(International Organization for Standardization – American
National Standards Institute) standard, so it is difficult sometimes
to know what is and what is not part of the true SQL specification.

This course avoids the feature richness of Sybase and Oracle
databases and concentrates on core SQL. As it is, the SQL language
enables you to manipulate data, define tables, and administer
databases.

Rather than spend a lot of time looking at SQL query structure, the
next few pages describe the database you will use in the lab
exercises.

2

Managing Database Queries 2-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Introducing mSQL

This course uses a SQL database called mini-SQL, or mSQL for
short. mSQL is a licensed product created by David Hughes2. The
mSQL package includes the database engine, a terminal “monitor”
program, a database administration program, a schema viewer,
and a C-language API. The API and the database engine have been
designed to work in a client-server environment over a TCP/IP
network.

2. Mini SQL is provided with the courtesy of Hughes Technologies Pty Ltd,
Australia. Further information and an evaluation copy of Mini SQL can be
found on the Hughes Technologies Web server at
http://www.Hughes.com.au .

2

2-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Introducing mSQL

Mini SQL, or mSQL, as it is often called, is a light weight relational
database management system. It has been designed to provide
rapid access to data sets with as little system overhead as possible.
The system itself is comprised of a database server and various
tools that allow a user or a client application to communicate with
the server.

mSQL enables a program or user to store, manipulate, and retrieve
data in table structures. mSQL does not support all the relational
operations defined in the ANSI SQL specification but it does
provide the capability of “joins” between multiple tables.

2

Managing Database Queries 2-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Implementing mSQL

mSQL is written in native C and, for this class, has been compiled
using the Solaris 7 Operating Environment. At the heart of the
mSQL database is the msql2d daemon, which listens on a TCP/IP
port. The following description is from the Mini SQL 2.0 User
Guide:

The philosophy of mSQL has been to provide a database
management system capable of rapidly handling simple tasks.
It has not been developed for use in critical financial
environments (banking applications for example). The software
is capable of performing the supported operations with
exceptional speed whilst utilizing very few system resources.
Some database systems require high-end hardware platforms
and vast quantities of memory before they can provide rapid
access to stored data. mSQL has been designed to provide
exceptional data access performance on ‘small hardware’
platforms (such as PC class hardware). Because of these
characteristics, mSQL is well suited to the vast majority of data
management tasks.

2

2-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

mSQL Tools

The mSQL commercial package provides a rich toolset. From the
Hughes Technologies web site, http://www.Hughes.com.au , you
can download the mSQL manual, or view the online version of it.
The following sections contain information from that manual.

msql2d – mSQL Database Engine

The database engine is called msql2d and it is written in C and
compiled using the Solaris Operating Environment. The daemon is
started on the server machine and expects to run as either root or a
local user name. For the classroom use, the database is running as
root; the instructor will let you know on which host.

relshow– mSQL Schema Viewer

The schema viewer is called relshow and it allows you to query
the database for table names or for field names and field
descriptions. You can start the schema viewer either locally or
remotely.

relshow [-h hostname] database
relshow [-h hostname] database tablename

msql – mSQL Terminal Monitor

The terminal monitor is called mSQLand it provides a program to
enable you to interact with the database while it is “live.” The
terminal emulator accepts all of the mSQL commands and you can
run it in script mode where a preconfigured script of SQL
statements is run against the database.

You can start the mSQL terminal monitor either locally or remotely.

msql [-h hostname] database

If the host name is not specified, msql reads the environment
variable MSQL_HOST;if this variable is not set, msql uses the local
host name.

2

Managing Database Queries 2-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

msql accepts the following four runtime commands that have a
back slash (\) prefix to distinguish them from SQL statements.

● \g – Go, execute the preceding SQL statement

● \p – Print, display the contents of the query buffer

● \e – Edit the last command in the default editor

● \q – Quit mSQL

2

2-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

mSQL Commands

The SQL standard specifies a set of commands and a specific
syntax for the retrieval and modification of data, as well as
commands for the administration of tables. Each SQL statement is
issued to the database system and parsed. SQL statements begin
with a command keyword. mSQL supports the following
keywords:

● SELECT– Retrieves 0 or more records from the named table

● INSERT – Adds a new record to the named table

● DELETE– Removes one or more record(s) from the table

● UPDATE– Modifies one or more field(s) of particular record(s)

● CREATE– Builds a new table with the specified field names and
types

● DROP– Completely removes a table from the database

SQL commands are meant to be read and spoken aloud; for
example, “get me all of the fields in the table named employee
data, where the employee ID is 10223." If the employee data table
contained fields with the name, employee identifier (ID), date of
hire, social security number, and current salary, you would expect
to receive a single employee record with these values.

In mSQL, you could write this command using the following
statement syntax:3

SELECT * FROM employee_data WHERE employee_id =
’10223’

3. mSQL statements are not case sensitive, but the examples shown highlight the
keywords with capital letters.

2

Managing Database Queries 2-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The SELECTStatement

The SELECTstatement is the primary command used for data
retrieval from a SQL database. It supports the following:

● Joins

● DISTINCT row selection

● ORDER BYclauses

● Regular expression matching

● Column-to-column comparisons in WHEREclauses

The formal syntax for SELECTis the following:

SELECT [table.]column [, [table.]column]...
FROM table [, table]...
[WHERE [table.]column OPERATOR VALUE
[AND | OR [table.]column OPERATOR VALUE]...]
[ORDER BY [table.]column [DESC] [, [table.]column
[DESC]]

Where:

● OPERATORcan be <, >, =, <=, >=, <>, or LIKE

● VALUEcan be a literal value or a column name

The regular expression syntax supported by LIKE clauses is the
same as that in standard SQL.

● An underscore (_) matches any single character.

● A percent sign (%) matches 0 or more characters of any value.

● A back slash (\) escapes special characters (for example, \%
matches %and \\ matches \).

● All other characters match themselves.

2

2-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Examples

A basic inquiry would appear as follows:

SELECT first_name, last_name FROM emp_details
WHERE dept = 'finance'

To sort the returned data in ascending order by last_name and
descending order by first_name, the query would look like the
following:

SELECT first_name, last_name FROM emp_details
WHERE dept = 'finance'
ORDER BY last_name, first_name DESC

To remove any duplicate rows, you could use the following
DISTINCT operator:

SELECT DISTINCT first_name, last_name FROM emp_details
WHERE dept = 'finance'
ORDER BY last_name, first_name DESC

To search for anyone in the finance department whose last name
consists of a letter followed by "ughes", such as Hughes, the query
could look like the following:

SELECT first_name, last_name FROM emp_details
WHERE dept = 'finance' AND last_name LIKE '_ughes'

2

Managing Database Queries 2-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Joins

The power of a relational query language is apparent when you
start joining tables during a SELECToperation. For example, if you
have two tables defined—one containing staff details and another
listing the projects being worked on by each staff member—and
each staff member has been assigned an employee number that is
unique to that person, you can generate a sorted list of who was
working on what project with the following query:

1 SELECT emp_details.first_name,
emp_details.last_name,

project_details.project
2 FROM emp_details, project_details
3 WHERE emp_details.emp_id = project_details.emp_id
4 ORDER BY emp_details.last_name,
emp_details.first_name

mSQL places no restriction on the number of tables joined during a
query; so if there are 15 tables, all containing information related to
an employee ID in some manner, data from each of those tables can
be extracted (albeit slowly) by a single query.

Note – You must qualify all column names with a table name.
mSQL does not support the concept of uniquely named columns
spanning multiple tables. You must qualify every column name as
soon as you access more than one table in a single SELECT.

2

2-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The INSERTStatement

The INSERT statement is used to add new SQL records to a table.
You specify the names of the fields into which the data is to be
inserted. You cannot specify the values without the field name and
expect the server to insert the data into the correct fields by default.
The syntax for the INSERT state is the following:

INSERT INTO table_name (column [, column]...)
VALUES (value [, value]...)

For example:

INSERT INTO emp_details (first_name, last_name, dept,
salary)
VALUES ('David', 'Hughes', 'I.T.S.','12345')

The number of values supplied must match the number of
columns. However, the column names are optional if every column
value is matched with an INSERT value.

The DELETEStatement

The DELETEstatement is used to remove records from a SQL table.
The syntax for the mSQL DELETEstatement is the following:

DELETE FROM table_name
WHERE column OPERATOR value
[AND | OR column OPERATOR value]...

OPERATORcan be <, >, =, <=, >=, <>, or the keyword LIKE

For example:

DELETE FROM emp_details WHERE emp_id = ’12345’

The UPDATEStatement

The UPDATEstatement is the SQL mechanism for changing the
contents of a SQL record. To change a particular record, you must
identify what record from the table you want to change. The mSQL

2

Managing Database Queries 2-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

UPDATEstatement cannot use a column name as a value. Only
literal values can by used as an UPDATEvalue. The syntax for the
UPDATEstatement is the following:

UPDATE table_name SET column=value [, column=value
]...
WHERE column OPERATOR value
[AND | OR column OPERATOR value]...

OPERATORcan be <, >, =, <=, >=, <>, or LIKE .

For example:

UPDATE emp_details SET salary=30000 WHERE emp_id =
’1234’

2

2-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: mSQL Database Queries

Exercise objective – Create and execute queries on an mSQL
database.

Preparation

You should already have installed the mSQL tools to perform this
lab exercise. To use the JDBC in the next module, become familiar
with the operations of the mSQL database. You will be looking at
the StockMarket database using SQL statements from the mSQL
command-line interface.

Tasks

Complete the following steps:

1. Run msql against the StockMarket database. Your instructor
will provide the name of the server. Display all of the
information in the three tables. For example:

% msql -h server StockMarket
Welcome to the miniSQL monitor. Type \h for help.
mSQL > select * from Stock
 > \g
Query OK.
10 rows matched.
+-----------------+--------------+
| symbol | price |
+-----------------+--------------+
SUNW	68.75
CyAs	22.625
DUKE	6.25
ABStk	18.5
JSVCo	9.125

TMAs	82.375
BWInc	11.375
GMEnt	44.625
PMLtd	203.375
JDK	33.5
+-----------------+--------------+

mSQL >

2

Managing Database Queries 2-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

2. Create and execute queries for each of the following:

Note – Do not delete or create any tables.

● Display all stocks with a price greater than 50.

● Add your own name, social security number, and address to
the database.

● Display all customers alphabetically.

● Add two stocks to your portfolio, and verify your purchases by
viewing the Shares table.

● Sell all shares of one of your stocks, and sell half of your shares
of another stock.

2

2-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

2

Managing Database Queries 2-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Describe relational database design

❑ Explain Codd’s first three rules of relational database design

❑ Construct mSQL queries

❑ Create a connection to an mSQL database

❑ Extract information from an mSQL database

2

2-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

SQL, has evolved over time due to its standardization of the syntax
of “how to talk to” a database.

What parallels exist between what SQL means to database
programming and what the evolution and standardization of the
Java programming language means to programming in general?

3-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Introduction to JDBC 3

Objectives

Upon completion of this module, you should be able to:

● Describe JDBC

● Explain how using the abstraction layer provided by JDBC can
make a database front-end portable across platforms

● Describe the five major tasks involved with the JDBC
programmer’s interface

● State the requirements of a JDBC driver and its relationship to the
JDBC driver manager

This module covers the basics of JDBC.

3

3-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – Attaching to a database with a provided tool (as was
done with mSQL in the last module) is fine. However, you need to
attach to databases from within code. Without a layer of database
connectivity, you would have to learn a lot about the database’s
API and invoke API calls from each and every manufacturer’s API
libraries using the Java Native Interface (JNI) to do so.

In the Java programming language, there is a well-defined
specification for multiple levels of adherence to a specification
called the JDBC layer. This layer simplifies what you need to
connect to and identifies the information you need from a
database.

What difficulties would arise from calling a manufacturer’s API
libraries directly when you switch from one major vendor’s
database to another?

Additional Resources

Additional resources – The following references can provide
additional details on the topics discussed in this module:

● JDBC specification. Available:
http://splash.javasoft.com/jdbc

● Emerson, Darnovsky, and Bowman. 1989. The Practical SQL
Handbook. Addison-Wesley.

3

Introduction to JDBC 3-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Introducing the JDBC Interface

When you use a database, you have a number of choices about the
database engine on which to build. Should you build on an SQL
database, an Oracle database, or a Sybase database?

By introducing a layer of abstraction, JDBC leaves the choice of
using SQL and a certain vendor up to the integrator. JDBC takes
this freedom of choice a step further and enables you to write a
single API that takes care of the necessary communication between
your front end and the database’s back end.

If you subsequently decide to change the back end to use another
database engine, you can easily substitute this alternative database
engine, provided a JDBC-compliant driver has been created for that
database engine.

3

3-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ANSI SQL-2 Conformance

Database systems support a wide range of SQL syntax and
semantics. While they can vary on more advanced functionality,
such as outer joins, they share common support for ANSI SQL-2.
Because you can write Java applications to use only statements
compliant with this ANSI standard, these applications are portable
across the various databases.

However, this should not be construed to say that JDBC only
supports ANSI SQL-2. JDBC enables any query string to be passed
through, so an application can use as much SQL functionality as
desired, at the risk of receiving an error on other databases.

3

Introduction to JDBC 3-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Two Components of JDBC

There are two major components of JDBC: an implementation
interface for database manufacturers, and an interface for
application and applet writers. The following sections describe
JDBC from the perspective of a vendor writing a JDBC driver, and
then cover in greater detail the steps involved in writing a Java
application using a vendor’s JDBC driver interface.

3

3-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

JDBC Driver Interface

The JDBC Driver interface provides vendor-specific
implementations of the abstract classes provided by the JDBC API.
Each vendor’s driver must provide implementations of the
following:

● java.sql.Connection

● java.sql.Statement

● java.sql.PreparedStatement

● java.sql.CallableStatement

● java.sql.ResultSet

● java.sql.Driver

Each database driver must provide a class that implements the
java.sql.Driver interface used by the generic
java.sql.DriverManager class when it needs to locate a driver
for a particular database using a uniform resource locator (URL)
string. JDBC is patterned after ODBC (open database connectivity);
this makes providing a JDBC implementation on top of ODBC easy
and efficient.

3

Introduction to JDBC 3-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 3-1 JDBC Drivers

Figure 3-1 illustrates how a single Java application (or applet) can
access multiple database systems through one or more drivers.

Java application

JDBC

JDBC-NET
driver Driver A Driver B

JDBC implementation
alternatives

JDBC-ODBC
bridge driver

ODBC and
DB drivers

(JDBC API)

URL URLURL URL

driver manager

3

3-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

MsqlDriver – A Real-World JDBC Driver

JDBC allows you to write database applications in Java without
having to concern yourself with the underlying details of a
particular database. All it requires is a driver that passes the
appropriate JDBC API calls to the database engine. The JDBC
driver insulates you from the specifics of the database. As a
programmer, you can write generic JDBC API calls that work with
any JDBC-compliant database, as long as the appropriate JDBC
driver is present that interprets your JDBC API calls.

Mini SQL (also called mSQL) is a type of SQL database created by
Hughes Technologies. The Center for Imaginary Environments
(CIE, http://www.imaginary.com/), created a JDBC driver for
mSQL databases. Their JDBC driver, MsqlDriver, allows Java
applications and applets to access mSQL databases. It uses the
mSQL-JDBC API, a database access API for mSQL databases that
conforms to the Sun Microsystems JDBC access API.

The MsqlDriver file comes packaged in a .jar file called msql-
jdbcxxx.jar. To make this driver file available to your Java runtime
environment, copy it to a location that is included in your class
path.

3

Introduction to JDBC 3-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

In this class, you use com.imaginary.sql.msql.MsqlDriver 1; a
JDBC driver written to connect to a mSQL database.

1. mSQL-JDBC API is provided courtesy of George Reese
(borg@imaginary.com). For more information and latest developments,
consult George’s home page at http://www.imaginary.com/~borg .

3

3-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Connecting Through the JDBC Interface

JDBC Programming Tasks

This section covers some of the common tasks you perform with
JDBC.

● Create an instance of a JDBC driver or load JDBC drivers
through jdbc.drivers

● Register a driver

● Specify a database

● Open a database connection

● Submit a query

● Receive results

Again, the following sections assume that you communicate with
the MsqlDriver class using the JDBC API.

The java.sql Package

The eight interfaces associated with the JDBC are the following:

● java.sql.Driver

● java.sql.Connection

● java.sql.Statement

● java.sql.PreparedStatement

● java.sql.CallableStatement

● java.sql.ResultSet

● java.sql.ResultSetMetaData

● java.sql.DatabaseMetaData

3

Introduction to JDBC 3-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JDBC Flow

Each of these interfaces enables an application programmer to
open connections to particular databases, execute SQL statements,
and process the results.

Figure 3-2 JDBC Flowchart

As illustrated by Figure 3-2:

● A URL string is passed to the getConnection method of the
DriverManager , which in turn locates a Driver .

● With a Driver , you can obtain a Connection .

● With the Connection , you can create a Statement .

● When a Statement is executed with an executeQuery
method, a ResultSet can be returned.

DriverManager

DriverDriver

ConnectionConnection

Statement

ResultSet

Connection

StatementStatementStatement

ResultSetResultSet

3

3-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

JDBC Example

The following is a simple example that uses the mSQL database in
the lab. This example uses the elements of a JDBC application:
creating a Driver instance, getting a Connection object, creating a
Statement object, executing a query, and processing the returning
ResultSet object.

Note – The source code for the following example can be found
and compiled in /SL285_XXX_LF/labfiles/complete2tier .

1 import java.sql.*;
2 import com.imaginary.sql.msql.*;
3
4 public class JDBCExample {
5
6 public static void main (String args[]) {
7
8 if (args.length < 1) {
9 System.err.println ("Usage:");
10 System.err.println (" java JDBCExample <db server
hostname>");
11 System.exit (1);
12 }
13 String serverName = args[0];
14 try {
15 // Create the instance of the Msql Driver
16 new MsqlDriver ();
17
18 // Create the "url"
19 String url = "jdbc:msql://" + serverName +
20 ":1112/StockMarket";
21
22 // Use the DriverManager to get a Connection
23 Connection mSQLcon =

DriverManager.getConnection (url);
24
25 // Use the Connection to create a Statement object
26 Statement stmt = mSQLcon.createStatement ();
27
28 // Execute a query using the Statement and return a
ResultSet
29 ResultSet rs = stmt.executeQuery

("SELECT * FROM Customer ORDER BY ssn");

3

Introduction to JDBC 3-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

30 // Print the results, row by row
31 while (rs.next()) {
32 System.out.println ("");
33 System.out.println ("Customer: " + rs.getString(2));
34 System.out.println ("Id: " + rs.getString(1));
35 }
36
37 } catch (SQLException e) {
38 e.printStackTrace();
39 }
40 }
41 }

If you run the code

java JDBCExample < server name >

the contents of the Customer table in the StockMarket database
are similar to the following:

Customer: Tom McGinn
Id: 999-11-2222

Customer: Jennifer Sullivan Volpe
Id: 999-22-3333

Customer: Georgianna DG Meagher
Id: 999-33-4444

Customer: Priscilla Malcolm
Id: 999-44-5555

3

3-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Connecting Through the JDBC Interface

Explicitly Creating an Instance of a JDBC Driver

To communicate with a particular database engine using JDBC,
you must first create an instance of the JDBC driver. This driver
remains behind the scenes, handling any requests for that type of
database.

// Create an instance of Msql’s JDBC Driver
new com.imaginary.sql.msql.MsqlDriver();

You do not have to associate this driver with a variable, the driver
exists after it is instantiated and successfully loaded into memory.

3

Introduction to JDBC 3-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Loading JDBC Drivers Through jdbc.drivers

Sometimes more than one database driver is loaded into memory
or more than one driver is loaded into memory (either ODBC or a
JDBC generic network protocol) that is capable of connecting to the
same database. If this is the case, JDBC allows you to specify a list
of drivers in a specific order. The order of selection is specified by
the jdbc.drivers properties tag. The jdbc.drivers property
should be defined as a colon-separated list of driver class names.

jdbc.drivers=com.imaginary.sql.msql.MsqlDriver: Acme.db.driver

Properties are set through the -D option to the java interpreter (or
the -J option to the appletviewer application). For example:

java -Djdbc.drivers=com.imaginary.sql.msql.MsqlDriver:Acme.db.driver
myApp

3

3-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

When attempting to connect to a database, JDBC uses the first
driver it finds that can successfully connect to the given URL. It
first tries each driver specified in the properties list, in order from
left to right. It then tries any drivers that are already loaded in
memory, in the order that the drivers were loaded. If the driver
was loaded by untrusted code, it is skipped, unless it has been
loaded from the same source as the code that is trying to open the
connection.

3

Introduction to JDBC 3-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Registering a Driver

When a driver is loaded, it is the responsibility of the driver
implementation to register itself with the driver manager. For
example, the mSQL driver
com.imaginary.sql.msql.MsqlDriver :

● Creates an instance of itself in a static code block

● When the constructor is called either explicitly or implicitly,
registers itself with the driver manager

3

3-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Specifying a Database

Now that you have created the instance of the JDBC driver, you
need some way to specify the database to which you want to
connect. To do this in JDBC, specify a URL string that indicates the
database type. The proposed URL syntax for a JDBC database is:

jdbc:subprotocol:subname

This is not a java.net.URL , but a java.lang.String in URL
format, where subprotocol names a particular kind of database
connectivity mechanism supported by one or more drivers. The
contents and syntax of the subname depend on the subprotocol .

// Construct the URL for JDBC access
String url = new String ("jdbc:msql://" +
 serverName + ":1112/StockMarket");

This is the URL for JDBC access to the mSQL StockMarket
database you have been using in the classroom. It could have been
any other type of protocol that is accessed through a JDBC-ODBC
bridge

jdbc:odbc:Object.StockMarket

3

Introduction to JDBC 3-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Opening a Database Connection

Now that you have created a URL specifying msql as the database
engine, you are ready to make a database connection. To do this,
you obtain a java.sql.Connection object by calling the JDBC
driver’s java.sql.DriverManager.getConnection method.

// Establish a database connection through the msql
// DriverManager
mSQLcon = DriverManager.getConnection(url);

The DriverManager.getConnection method takes a URL string
as an argument. The JDBC driver management layer attempts to
locate a driver that can connect to the database represented by the
URL. If a driver succeeds in establishing a connection, it returns an
appropriate java.sql.Connection object.

mSQLconis defined as type Connection earlier in the code. The
Connection represents a session with a specific database and
provides methods that enable you to obtain java.sql.Statement
and java.sql.PreparedStatement objects.

3

3-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Using Database Resolution

Figure 3-3 illustrates how a DriverManager resolves a URL string
passed by the getConnection method. A program can load more
than one driver, so each registered driver gets stored in a vector.
This vector is traversed in the order in which the drivers were
loaded. When the driver returns a null, the driver manager
continues to call the next registered driver in turn until either the
list is exhausted or a Connection object is returned.

Figure 3-3 Example of Database Resolution

Driver Manager

jdbc:A jdbc:B jdbc:msql

Connection to
StockMarket database

StockMarket

driver driver driver

Explanation

The DriverManager calls getConnection(URL),
which calls driver.connection(URL) for each
driver in the vector in turn until a match is found.

The URL is parsed (jdbc :drivername).

When the driver in the vector matches the parsed
drivername , a connection to the database is
made.

If the driver does not match, NULLis returned and
the next driver in the vector is checked.

getConnection(URL-string);

Program
URL-string

3

Introduction to JDBC 3-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

JDBC Statements

Submitting a Query

To submit a standard query, get a Statement object from the
Connection.createStatement method.

// Create a Statement object
1 try {
2 stmt = mSQLcon.createStatement();
3 } catch (SQLException e) {
4 System.out.println (e.getMessage());
5 }

Use the Statement.executeUpdate method to submit an INSERT,
UPDATE,or DELETEstatement to the database. JDBC passes the
SQL statement to the underlying database connection unaltered, it
does not attempt to interpret queries.

// Pass a query via the Statement object
6 int count = stmt.executeUpdate ("DELETE from
7 Customer WHERE ssn=’999-55-6666’");

The Statement.executeUpdate method returns an int ,
representing the number of rows affected by the INSERT, UPDATE,
or DELETEstatements.

Use the Statement.executeQuery method to submit a SELECT
statement to the database.

// Pass a query via the Statement object
8 ResultSet rs = stmt.executeQuery ("SELECT * from
9 Customer order by ssn");

The Statement.executeQuery method returns a ResultSet
object for processing.

3

3-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Receiving Results

The result of executing a query statementis a set of rows that are
accessible using a java.sql.ResultSet object. The rows are
received in order. A ResultSet object keeps a cursor pointing to
the current row of data and is initially positioned before its first
row. You can use the ResultSet.next method to move between
the rows of the ResultSet object. The first call to next makes the
first row the current row, the second call makes the second row the
current row, and so on.

The ResultSet object provides a set of get methods that enable
access to the various columns of the current row.

while (rs.next()) {
System.out.println ("Customer: " + rs.getString(2));
System.out.println ("Id: " + rs.getString(1));
System.out.println ("");

}

The various getXXX methods can take either a column name or an
index as their argument. It is a good idea to use an index when
referencing a column. Column indexes start at 1. When using a

3

Introduction to JDBC 3-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

name to reference a column, more than one column can have the
same name, thus causing a conflict. Within a given row, fields can
be accessed in random order.

To retrieve data from the ResultSet object, you must be familiar
with the columns returned and their data types. Tables 3-1 and 3-2
show the mapping between Java and SQL datatypes.

3

3-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Using the get XXXMethods

Table 3-1 get XXXMethods and the Java Type Returned

Method Java Type Returned

getASCIIStream java.io.InputStream

getBigDecimal java.math.BigDecimal

getBinaryStream java.io.InputStream

getBoolean boolean

getByte byte

getBytes byte[]

getDate java.sql.Date

getDouble double

getFloat float

getInt int

getLong long

getObject Object

getShort short

getString java.lang.String

getTime java.sql.Time

getTimestamp java.sql.Timestamp

getUnicodeStream java.io.InputStream of Unicode characters

3

Introduction to JDBC 3-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Working With Prepared Statements

If the same SQL statements are going to be executed multiple
times, it is advantageous to use a PreparedStatement object. A
prepared statement is a precompiled SQL statement that is more
efficient than calling the same SQL statement over and over. The
PreparedStatement class extends the Statement class to add the
capability of setting parameters inside of a statement.

When declaring the PreparedStatement object, use the question
mark (?) character as a placeholder for the incoming parameter.
When passing the parameter to the statement, indicate which
placeholder you are referencing by its sequential position in the
statement.

3

3-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

An Example of Using a Prepared Statement

An example of using a PreparedStatement object is shown in the
following code:

1 Connection conn = DriverManager.getConnection(url);
.
.
2 java.sql. PreparedStatement stmt =

conn.prepareStatement
("UPDATE table3 set m = ? WHERE x = ?");

3
4 // We pass two parameters. One varies each time
around
5 // the for loop, the other remains constant.
6 stmt.setString(1, "Hi");
7 for (int i = 0; i < 10; i++) {
8 stmt.setInt(2, i);
9 int j = stmt.executeUpdate();
10 System.out.println(j +" rows affected when i="
+i);
11 }

The PreparedStatement object has an executeQuery method as
well, which returns a ResultSet object.

The setXXX methods for setting SQL IN parameter values must
specify types that are compatible with the defined SQL type of the
input parameter. For example, if the IN parameter has SQL type
Integer, then you should use the setInt parameter.

Once a parameter value has been defined for a given statement,
you can use it for multiple executions of that statement until it is
cleared by a call to the PreparedStatement.clearParameters
method.

3

Introduction to JDBC 3-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Using the set XXXMethods

Table 3-2 setXXX Methods and SQL Types

Method SQL Type(s)

setASCIIStream LONGVARCHAR produced by an ASCII stream

setBigDecimal NUMERIC

setBinaryStream LONGVARBINARY

setBoolean BIT

setByte TINYINT

setBytes VARBINARY or LONGVARBINARY (depending on
the size relative to the limits on VARBINARY)

setDate DATE

setDouble DOUBLE

setFloat FLOAT

setInt INTEGER

setLong BIGINT

setNull NULL

setObject The given object that is converted to the target
SQL type before being sent

setShort SMALLINT

setString VARCHAR or LONGVARCHAR (depending on the
size relative to the driver’s limits on VARCHAR)

setTime TIME

setTimestamp TIMESTAMP

setUnicodeStream UNICODE

3

3-28 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Creating Callable Statements

A callable statement allows non-SQL statements (such as stored
procedures) to be executed against the database. The
CallableStatement class extends the PreparedStatement class,
which provides the methods for setting IN parameters. Because the
PreparedStatement class extends the Statement class, a method
for retrieving multiple results with a stored procedure is supported
with the Statement.getMoreResults method.

3

Introduction to JDBC 3-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

An Example of Using a Callable Statement

For example, you could use a CallableStatement if you wanted
to store a precompiled SQL statement to query a database
containing available seat information about an airline flight

1 String planeID = "727";
2 CallableStatement querySeats = msqlConn.prepareCall("{call

return_seats[?, ?, ?, ?]}");
3 try {
4 querySeats.setString(1, planeID);
5 querySeats.registerOutParameter(2, java.sql.Types.INTEGER);
6 querySeats.registerOutParameter(3, java.sql.Types.INTEGER);
7 querySeats.registerOutParameter(4, java.sql.Types.INTEGER);
8 querySeats.execute();
9 int FCSeats = querySeats.getInt(2);
10 int BCSeats = querySeats.getInt(3);
11 int CCSeats = querySeats.getInt(4);
12 } catch (SQLException SQLEx){
13 System.out.println("Query failed");
14 SQLEx.printStackTrace();
15 }

Before executing a stored procedure call, you must explicitly call
registerOutParameter to register the java.sql.Type of any
SQL OUTparameters.

3

3-30 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Mapping SQL Data Types Into Java Data Types

Table 3-3 lists the standard Java types for mapping various
common SQL types.

Table 3-3 Mapping SQL Types to Java Data Types

SQL Type Java Type

CHAR String

VARCHAR String

LONGVARCHAR String

NUMERIC java.math.BigDecimal

DECIMAL java.math.BigDecimal

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

BINARY byte[]

VARBINARY byte[]

LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

3

Introduction to JDBC 3-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ABCStock – APIs to Access the StockMarket Database

The StockMarket Database

In the lab exercise, you use the StockMarket database. As
described in Module 1, the StockMarket database contains three
tables: Customer , Shares , and Stock , each with the following
columns:

The Database Utility Classes

To access this mSQL database, you must create a class containing
methods specific to the tables and create classes to represent the
information retrieved. When accessing the StockMarket database,

Customer Shares Stock

ssn ssn symbol

cust_name symbol price

address quantity

3

3-32 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

classes to hold information from the specific records could be
CustomerRec , SharesRec , and StockRec . The class to handle all
the database access could be called Database .

3

Introduction to JDBC 3-33
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ABCStock – Support Classes for the StockMarket Database

CustomerRec.java

An instance of the following could represent a single customer
record in the database.

1 package broker.database;
2
3 import java.io.Serializable;
4 import java.util.*;
5
6 // CustomerRec class
7 // This class represents a single customer record in the
8 // database, including the number of shares the customer
9 // owns.
10 //
11 public class CustomerRec implements Serializable {
12
13 private String ssn;
14 private String name;
15 private String addr;
16 private Vector portfolio;
17
18 // Constructors
19 public CustomerRec (String ssn, String name, String addr,
20 Vector portfolio) {
21 this.ssn = ssn;
22 this.name = name;
23 this.addr = addr;
24 this.portfolio = portfolio;
25 }
26
27 public CustomerRec (String ssn, String name, String addr) {
28 this (ssn, name, addr, null);
29 }
30
31 public CustomerRec (String ssn) {
32 this (ssn, null, null, null);
33 }
34
35 public CustomerRec () {
36 this (null, null, null, null);
37 }

3

3-34 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

38 // Accessor methods
39
40 public String getSSN () {
41 return ssn;
42 }
43
44 public String getName () {
45 return name;
46 }
47
48 public String getAddr () {
49 return addr;
50 }
51
52 // Get and return portfolio for this customer.
53 // This method will return the Vector object
54 // that contains the portfolio
55 public Vector getPortfolio () {
56 return portfolio;
57 }
58
59 // Mutator methods - you cannot change ssn
60
61 public void setName (String newName) {
62 name = newName;
63 }
64
65 public void setAddr (String newAddr) {
66 addr = newAddr;
67 }
68
69 public void setPortfolio (Vector newPortfolio) {
70 portfolio = newPortfolio;
71 }
72 }

3

Introduction to JDBC 3-35
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

SharesRec.java

An instance of the following could represent a single shares record
in the database.

1 package broker.database;
2 import java.io.Serializable;
3
4 // The SharesRec class
5 // Stores a single instance of a Shares record
6 // These are dynamic objects that belong to customers
7 public class SharesRec implements Serializable {
8
9 private String ssn;
10 private String symbol;
11 private int quantity;
12
13 // SharesRec constructor
14 public SharesRec (String ssn, String symbol, int quantity) {
15 this.ssn = ssn;
16 this.symbol = symbol;
17 this.quantity = quantity;
18 }
19
20 public SharesRec (String ssn) {
21 this (ssn, "", 0);
22 }
23
24 public SharesRec () {
25 this ("", "", 0);
26 }
27
28 // Accessor methods
29 public String getSSN () {
30 return ssn;
31 }
32
33 public String getSymbol () {
34 return symbol;
35 }
36
37 public int getQuantity () {
38 return quantity;
39 }
40 // Mutator methods - note no setSSN method
41

3

3-36 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

42 public void setSymbol (String newSymbol) {
43 symbol = newSymbol;
44 }
45
46 public void setQuantity (int newQuantity) {
47 quantity = newQuantity;
48 }
49 }

3

Introduction to JDBC 3-37
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

StockRec.java

An instance of the following could represent a single stock record
in the database.

1 package broker.database;
2 import java.io.Serializable;
3
4 // The StockRec class
5 // Keeps a single record instance of a stock object
6 //
7 // These are created from a dynamic query against the DB
8 public class StockRec implements Serializable {
9
10 private String symbol;
11 private float price;
12
13 // StockRec constructors
14 // Create a instance of a stock from the queried data
15 public StockRec (String symbol, float price) {
16 this.symbol = symbol;
17 this.price = price;
18 }
19
20 // create a instance of a stock with no data
21 public StockRec () {
22 symbol = "";
23 price = 0.0f;
24 }
25
26 // Accessor Methods
27 public float getPrice () {
28 return price;
29 }
30
31 public String getSymbol () {
32 return symbol;
33 }
34
35 public void setPrice (float newPrice) {
36 price = newPrice;
37 }
38
39 public void printPrice () {
40 System.out.print(price);
41 }

3

3-38 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

42
43 public void printStock () {
44 System.out.print(symbol);
45 }
46 }

3

Introduction to JDBC 3-39
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ABCStock – Database API

The instance variables and methods that you should use to connect
to the database are listed on the following pages.

The instance variables are:

● Connection mSQLcon – Creates a java.sql.Statement

● Statement stmt – Enables queries to be submitted to the database
and, optionally, ResultSets to be returned.

● ResultSet result – Stores rows returned by queries

● static String database = "StockMarket " – Stores the name
of the database

3

3-40 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Methods

You use the following methods to access the database.

public Database (String serverName) throws SQLException

Return Type: (None) – Constructor

Exceptions: SQLException if there is a problem connecting to
the server or accessing StockMarket database

Arguments: String serverName

Behavior: Establishes a connection with the database server

public void close () throws SQLException

Return Type: void

Exceptions: SQLException if there is a problem connecting to
the server

Arguments: None

Behavior: Closes the connection with the database server

3

Introduction to JDBC 3-41
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public void addCustomer (String name, String ssn, String
address) throws DuplicateIDException

Return Type: void

Exceptions: DuplicateIDException if ssn already exists in the
Customer table

Arguments: String name, String ssn, String address

Behavior: Adds a customer to the Customer table

public void deleteCustomer (String ssn) throws
RecordNotFoundException

Return Type: void

Exceptions: RecordNotFoundException if ssn is not found in
the Customer table

Arguments: String ssn

Behavior: Deletes a customer from the Customer table

public void updateCustomer (String name, String ssn,
String address) throws RecordNotFoundException

Return Type: void

Exceptions: RecordNotFoundException if ssn is not found in
the Customer table

Arguments: String name, String ssn, String address

Behavior: Updates customer information in the Customer
table; ssn cannot be changed

3

3-42 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public CustomerRec getCustomer (String ssn) throws
RecordNotFoundException

Return Type: CustomerRec

Exceptions: RecordNotFoundException if ssn is not found in
the Customer table

Arguments: String ssn

Behavior: Returns a CustomerRec populated with data from
the Customer and Shares tables

public CustomerRec [] getAllCustomers ()

Return Type: CustomerRec []

Exceptions: None

Arguments: None

Behavior: Returns an array of CustomerRecs populated with
data from the Customer and Shares tables

public Vector getPortfolio (String ssn) throws
RecordNotFoundException

Return Type: Vector

Exceptions: RecordNotFoundException if ssn is not found in
the Customer table

Arguments: String ssn

Behavior: Returns a Vector of SharesRec objects,
representing the portfolio for the customer

3

Introduction to JDBC 3-43
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public StockRec [] getAllStocks ()

Return Type: StockRec []

Exceptions: None

Arguments: None

Behavior: Returns an array of StockRecs populated with
data from the Stock table

‘public void sellShares (String ssn, String symbol,
int quantity) throws RecordNotFoundException,
InvalidTransactionException

Return Type: void

Exceptions: RecordNotFoundException if ssn is not in the
Customer table, InvalidTransactionException
if ssn does not own any shares of given stock or
does not own enough shares of given stock

Arguments: String ssn, String symbol, int quantity

Behavior: Updates Shares table with new quantity of shares

public void sellShares (String ssn, String symbol)
throws RecordNotFoundException,
InvalidTransactionException

Return Type: void

Exceptions: RecordNotFoundException if ssn is not in the
Customer table, InvalidTransactionException
if ssn does not own any shares of given stock

Arguments: String ssn, String symbol

Behavior: Deletes an entry from the Shares table (sells all
shares of a stock for a customer)

3

3-44 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public void buyShares (String ssn, String symbol, int
quantity) throws RecordNotFoundException

Return Type: void

Exceptions: RecordNotFoundException if ssn is not found in
the Customer table

Arguments: String ssn, String symbol, int quantity

Behavior: Either adds a new entry to the Shares table or
updates an existing entry

public void updateStockPrice (String symbol, float
price)

Return Type: void

Exceptions: None

Arguments: String symbol, float price

Behavior: Updates the price for a stock in Stock table: this
assumes valid stock symbol

public float getStockPrice (String symbol)

Return Type: float

Exceptions: None

Arguments: String symbol

Behavior: Returns a price from Stock table, -1.0 on failure

3

Introduction to JDBC 3-45
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: Implementing A Database Class Wrapper

Exercise objective – Create and implement a database using the
java.sql interface methods.

Preparation

In this exercise you will construct a class to wrap the JDBC classes
and methods to access the database. While technically two-tiered,
you will still experience the “implementation detail hiding” aspect
of code wrapping that allows others to use a class without having
to know about the JDBC layer and database access details.

Tasks

Complete the following steps:

1. Implement all methods in the Database class by making calls
to the database through the java.sql interface. In the
constructor, create an instance of the driver implementation,
and get an instance of a connection to the StockMarket
database.

Note – The model outlined in this module is one of many options.
Your team can use another object model, just make sure it meets
the functional specifications. Add supporting methods to your
Database class, if so desired.

2. Write a harness program to test the Database class. Do not
create or remove any existing tables— just add and delete
information from these tables.

3. Verify that your program is actually updating the
StockMarket database by running msql in another window.

4. Prepare a brief report highlighting the features of your class
design.

3

3-46 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Notes

3

Introduction to JDBC 3-47
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

3

3-48 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Describe JDBC

❑ Explain how using the abstraction layer provided by JDBC can
make your database front-end portable across platforms

❑ Describe the five major tasks involved with the JDBC
programmer’s interface

❑ State the requirements of a JDBC driver and its relationship to
the JDBC driver manager

3

Introduction to JDBC 3-49
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

Using JDBC requires a working knowledge of the SQL language
syntax.

How does wrapping JDBC functionality with Java classes and
packages help reduce what programmers need to know about
SQL?

4-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

BuildingGUIs 4

Objectives

Upon completion of this module, you should be able to:

● Apply the principles of good GUI design

● Differentiate, at a high level, between the new Java Foundation
Classes (Swing components) and the AWT model

● Explain how to create the class structure needed for an object-
oriented GUI

● Design and implement a GUI for the BrokerTool project using
your choice of containers, components, and layout managers

This module reinforces the foundations of GUI design and creation
using layout managers and components from the Abstract Window
Toolkit (AWT). This module also compares the Swing package found
in the Java foundation classes with the AWT.

4

4-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – GUIs are part of everyday life. They make interacting
with software easy, intuitive, and fun. Most modern software is
expected to have a GUI interface if it is to be adopted and accepted
by a user base.

● What would happen if you released a complex piece of
software with only a command-line interface?

● How do you think the software and user communities would
view your software product?

4

Building GUIs 4-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

GUI Design Principles

How can you design GUIs that guide the end-user, and how can
you tell when a GUI has the potential to hamper the user’s
productivity? This section addresses these questions and describes
how to put this information to work for your user.

Basic Principles

Why is it important to have an effective GUI? How can you design
an application that improves the efficiency and effectiveness of the
user? Much of a user’s opinion of an application is a direct result of
the experience with its GUI, so it is imperative that you put time
and thought into designing the GUI. A tremendously powerful and
productivity-enhancing application can be significantly diminished
in the mind of the user if the GUI appears to be lacking, despite the
application’s underlying technical excellence.

4

4-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Subjective Versus Objective

Remember that the decisions you make about your GUI might be
based on subjective impressions, objective impressions, or more
likely, a combination of the two. Often it is best to gather subjective
information through usability studies with actual end-users. You
can meet objective system goals based on several criteria: knowing
the audience, having task-oriented organization and visual
structure, striving for an elegant and simple design that provides
intuitive functionality, being consistent, using scale and contrast
with care, and keeping a style that is familiar to your users.

Assess Your Audience

The first step is to start with a thorough assessment of the users of
your system. Their experience levels, typical working
environments, and expectations of your application greatly
influence how they react to your front-end interface. A beginner
user does not want complex cross-screen tasks, while an expert
might want to customize the GUI to accomplish specific goals more
efficiently.

Design the GUI so that it can grow gracefully. As the needs of the
audience increase, your GUI must expand. An adaptable GUI that
can have features added without a complete redesign serves users
better over an extended period of time.

4

Building GUIs 4-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Clarify User Tasks

Once you know your audience, you must plan the tasks that your
GUI will assist the user in completing. With separate tasks laid out,
you can group components related to each task. If needed, provide
individual screens to step the user through the tasks. Logical flow
within an area keeps the user on the right track. Keep in mind that
simplicity is almost always better than complexity so limit the
number of screens, menus, and dialogs to those necessary for each
job.

Similarly, avoid placing nonmeaningful information on the screen.
The two extremes of user categories, beginner versus expert,
usually have different information needs. Design your GUI so that
you can reuse as many setups as possible. This allows for a smooth
transition as the user’s experience level increases. In this way,
information that is inappropriate for some users can be accessed
only when necessary.

4

4-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

One indicator of a less than optimally designed GUI is when the
end-user frequently asks, “Where am I?” This is often the result of
chopping up a single task into multiple, disconnected steps. With a
task-oriented design, keep the relevant information within the
user’s view as much as possible. If it is necessary to use multiple
screens or menus to accomplish a task, ensure that enough
information is available at each stage so the user does not have to
rely on memory to track the process. This helps continuity and
flow.

Keep It Simple

There is a fine line between providing enough information and
providing too much information. The determination of how much
is enough is often subjective. Usability studies with a prototype of
your GUI can help you determine this.

You can make more objective decisions about the amount of visual
stimulus caused by the GUI. Presenting the user with too many
visual stimulants such as colorful patterns or excessive graphics
can turn using the application into a mentally exhausting
experience. Strive to simplify the visual complexity while not
eliminating relevant information.

4

Building GUIs 4-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Maintain Consistency

An extremely important aspect of good GUI design is maintaining
consistency. Without a consistent interface, users are frequently left
with questions and confusion about the user interface. It is
particularly important to be consistent across screens and dialogs
used for similar tasks.

Consistency Among Applications

The design philosophy behind Java technology goes a long way
towards maintaining consistency on a platform-by-platform basis.
Java technology is designed so that you have complete control over
how each of your GUI components appears. You do not have to
specify every component’s look and feel, but you do have the
choice. Should your button look like a Motif button or should it
have a customized design? These options are provided by the AWT
and Java Foundation Classes (JFC) Swing packages.

4

4-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Java technology’s layout managers help maintain the consistency
of your GUI’s visual layout, regardless of the platform on which
your application is run. This is a compelling reason why exact
placement of components within containers is not recommended.
A further discussion of AWT, Swing and Layout Managers follows
the GUI principles section of this module.

Consistency Within Applications

While maintaining visual consistency among applications across
platforms can be fully automated if you choose, you do need to
work to maintain consistency within your application. If you label
most of your buttons in the affirmative, do not suddenly throw one
in labeled in the negative. For example, if most of your buttons say
“Save,” do not suddenly switch to “Don’t save.” The size and color
of components also affect consistency.

GUI Components Have Weight

Avoid buttons that vary in size because GUI components, such as
buttons have “weight,” and weight denotes importance. If the user
is presented with three buttons, two small and one considerably
larger, the user’s attention is drawn to the larger button. Font sizes
and styles can have the same effect.

But size is not the only aspect that gives a GUI component weight.
Color has the same effect. If a button stands out boldly due to its
unusual color, it draws the user’s attention.

Differences Should Be Meaningful

The human brain appears to be wired in such a way that it has a
natural disposition toward assigning meaning to colors. If your
screen has six buttons, each a different color, your user will become
confused trying to sort out the meaning behind the colors
(especially if there is no meaning).

You can use visual differences to convey information to the end-
user. For example, graying out a disabled menu option or visually
distinguishing an editable versus a noneditable text field informs
the end-user of what is allowed at that given point in time.

4

Building GUIs 4-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 4-1 GUI Component Visual Differences

Remember judicious use of weight, size, and color can have
noticeable effects. However, international audiences can interpret
the elements differently.

Window Resizing

When the user resizes the windows, how does this affect the layout
of the GUI? If the window is reduced in size, the application might
not be usable, even if the user increases the window’s size. If the
application does not adjust appropriately to an increase in size, the
user is likely to conclude that the application is misbehaving.

If increasing the size of the window causes a trivial button instead
of the text area to increase in size, the user might ask, “Why did it
do that?” Ensure that changes, particularly enlargements, to your
window do not increase confusion due to weight issues, and thus
decrease your GUI’s functionality.

Difference in shading
conveys meaning

4

4-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Style Is Everything

You should strive to maintain the style in which your user is
accustomed to working. This involves not only everything that has
been mentioned previously, but also topics, such as menu handling,
use of standard language, look-and-feel for the user’s platform, and
challenges presented by a multinational user group.

Provide Shortcuts

You should provide key stroke equivalents, pop-up menus, and
tool bars to increase the efficiency of experienced users. However,
make sure you do not violate the “Keep It Simple” principle. That
is, do not provide shortcuts or alternatives that cause confusion
due to the inability to track the task’s process or the experience
level of the user.

De Facto Standards

Consider the types of environments in which your application is
deployed. For example, if the environment contains Macintosh
machines, then you must consider the language that Macintosh

4

Building GUIs 4-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

users understand. Not only does the language you choose for your
components affect usability, issues, such as mouse buttons, menu
positioning, and components’ look-and-feel also come into play. A
single-platform environment makes these decisions easier. If the
environment is mixed, then it is a matter of agreeing on a set of
standards that is acceptable to all users.

Internationalization

Internationalization is receiving more attention now because of the
advent of the World Wide Web and Java technology. If you plan to
distribute your GUI to other countries, be sensitive to cultural
differences. Experiment with prototype user interface designs
before committing major programming resources.

A good example of this is how people read dates and numbers. Is
7/10/1998 July the tenth or October the seventh? Is 5.000 five
thousand or five with three decimal places? These issues can have
an impact on your users.

4

4-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Classes and Object-Oriented Design

Despite good intentions, it is deceptively easy to code a GUI that
breaks all of your goals for proper object-oriented design. You do
your user-analysis, set out all of your tasks, and plan for a smooth,
consistent layout. Then a terrible thing happens—it all lands in one
big, overgrown class!

Since it is just as important to use good object-oriented design
(OOD) principles when creating GUI classes as it is when
designing business logic or database access classes, this section
describes how to do this. One valuable technique in OOD is the use
of design patterns. Design patterns are language-independent
strategies for solving common object-oriented design problems.
These design patterns are found throughout the Java programming
language; for example, the "Singleton" pattern is used in the
System class. An important design pattern for GUI programming
is the Model-View-Controller (MVC) pattern made popular by the
SmallTalk™ language.

4

Building GUIs 4-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 4-2 Model-View-Controller Design Pattern

Figure 4-2 illustrates the MVC design pattern. The view of the data
is separated from the model of the data. In this case, the view of the
data is the user’s representation of the data (shown on the GUI).
The model of the data is the internal representation that contains
the state of the data. If any change in the state occurs, the model
notifies the view. The controller is a way for the user to interact with
the model and view. It is a GUI aspect that sends instructions to the
model. These instructions commonly cause the model’s state to
change, which requires notification to the view.

This design approach allows GUI classes to change without
affecting the underlying data, and it allows the underlying data
representation to change without modifying the GUI. That is, MVC
decouples the GUI view from the data model.

You can extend this approach to the GUI components themselves,
in which the look-and-feel of the components is separated from the
behavior of the components. You can see this in the design of the
JFC Swing classes in which a single component’s interface—the
view—and its controller code are in one class, while the data model
for the component is in another class. This allows for maximum

GUI (view)
Data (model)

xxxx
yyyy
zzzz

Notification

Controller

Instruction

4

4-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

flexibility in modifying the behavior or appearance of Swing
components without necessarily changing the class definition for
the other part of the component.

Using the principles of MVC when you implement a GUI-based
Java application, you can put the data in a flat file, an SQL RDBMS,
or an object-oriented database management system (OODBMS)
without concern for the particulars of the storage mechanism. If
you design your model-view interface to provide a consistent
transition back and forth between the data and the GUI, then
changes in implementation of any one will not affect the
implementation of the others. That is, changes in the data storage
affect the implementation of the model alone, not the view or the
controller. This reduced dependency makes system upgrades
substantially easier.

Following the MVC design pattern also reduces the temptation to
put too much code in too few classes. The following is a review of
some of the classes you use in designing and building your GUI.

4

Building GUIs 4-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

AWT and Swing

The Java Foundation Classes (JFC) is a group of packages used to
enhance GUI design and is built on top of some fundamental
aspects of AWT, specifically Window and Container . These
packages include Swing, 2D graphics, and Accessibility.

The JDK 1.1 revamped AWT event processing and some of the GUI
components. The Graphics , Component , and LayoutManager
classes are part of the core AWT package. Other AWT packages
provide functionality for cut and paste, event handling, and image
manipulation.

Swing is an enhanced component set. Some of the components
provided by Swing overlap and extend the functionality found in
AWT components. In general, the Swing equivalent of an AWT
component has the same name with the addition of the letter J, so
Button becomes JButton , and Label becomes JLabel . Other
Swing components implement completely new and more flexible
GUI elements (for example, the JTree control for hierarchical
display of information). Swing components are lightweight,
meaning that they do not rely on the underlying operating system
for their implementation.

4

4-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Although the Swing components work well when used alongside
AWT components, complications can arise. Because of this, a user
interface should use Swing components exclusively and not mix
Swing and AWT in the same program.

Swing is implemented entirely in the Java programming language
to promote cross-platform consistency and easier maintenance. It
provides a single API capable of supporting multiple look-and-
feels so that developers and end-users are not locked into a single
platform’s look-and-feel. It is compatible with AWT APIs when
there is overlapping functionality, the AWT knowledge base is
leveraged, and porting ease is required.

A complete description of Swing is outside the scope of this course,
but information about the basics of Swing is included in Appendix
D, ‘‘Swing Foundations." For in-depth information, refer to the Sun
Educational Services course SL-320: User Interface, JFC, and Swing.

4

Building GUIs 4-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The java.awt and javax.swing Packages

The java.awt and javax.swing packages contain classes to
generate GUI components.

The three functional categories of classes in the GUI packages are:

● Containers

● Components

● Layout managers

Other packages that are subordinate in the package hierarchy are:

● java.awt.event

● java.awt.image

● javax.swing.table

● javax.swing.plaf

4

4-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Building Blocks

Containers

A container can hold one or many components and, if desired, can
hold other containers.

Note – The fact that a container can hold not only components, but
also other containers is important and fundamental to building
more complex layouts.

A Frame is a building block for an interface and represents a
window on the screen. The Frame has a title and resize corners. If
you do not explicitly use the setLayout method, a Frame uses a
border layout manager by default.

4

Building GUIs 4-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

AWT

In AWT, the class you use is Frame . The constructor
Frame(String) creates a new, invisible frame object with the title
specified by the string. You can resize a Frame using the setSize
method inherited from the Component class.

Note – You must call the setVisible and setSize methods to
make the Frame visible and of usable size.

4

4-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Swing

As previously mentioned, you should not use AWT and Swing
components in the same layout, so you need to know about
JFrame , a top-level Swing container. Like all top-level Swing
containers, JFrame implements a special interface called
RootPaneContainer . A RootPaneContainer is actually a
container for a number of other panes; the root, glass, layered, and
content panes. Most of the time, you need to be concerned only
with the content pane.

To perform most operations, such as setting a layout manager or
adding new components to the container as a whole, you must
refer to the content pane. This is obtained from a
RootPaneContainer using the method getContentPane .

Content panes have a border layout manager by default, so, to add a
JButton to a JFrame referred to by the variable myFrame, you
would use code similar to the following:

myFrame.getContentPane().add(myJButton, BorderLayout.NORTH);

4

Building GUIs 4-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Panels

Two other containers to investigate are Panel and JPanel . Unlike
JFrame , JPanel does not have a special content pane to which
you add components.

4

4-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Components

Components are the visible aspect of a GUI, such as a Button or a
JCheckBox . AWT components rely on the underlying operating
system for their appearance and behavior. Swing components are
more flexible in that they can either have a system- or user-defined
look-and-feel.

Converting From AWT to Swing

Because you are familiar with AWT components, using Swing is
fairly straightforward. Often it requires little more than the
addition of “J” in front of the AWT component class name. For
example, rather than adding a Button to a Panel , you would add
a JButton to a JPanel .

4

Building GUIs 4-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

However, sometimes adding a “J” to the front of a class name is not
enough to make a complete translation from AWT to Swing. For
example:

● The Checkbox class in AWT is replaced by the JCheckBox
class. There are two aspects to note here:

▼ The spelling of JCheckBox has a capital B, unlike Checkbox

▼ The Swing set has a separate class, JRadioButton , which
should be used with ButtonGroup objects to implement
radio button behavior.

● In Swing, components do not have automatic scrolling.
Instead, components such as JList and JTextArea are added
to the JScrollPane container if they need scrollbars.

● As the class names change by the addition of a “J”, so the
method setMenuBar of a java.awt.Frame is paralleled with
a new method setJMenuBar in a JFrame .

4

4-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Layout Managers

The position of a component in a container is determined by the
container’s layout manager. There are several types of layout
managers defined in both AWT and Swing. The two most common
AWT layout managers are FlowLayout , the default layout manager
of panels and applets, and BorderLayout , the default layout
manager of windows, dialogs, and frames. Other layout managers
from AWT are presented in Appendix A, ‘‘Building GUIs With
AWT." For more information about layout managers, see the online
API documentation.

Because the layout manager is generally responsible for the size
and position of components on a container, do not attempt to set
the size or position of components yourself. If you use
setLocation , setSize, or setBounds), certain layout managers
can and will override your decision.

4

Building GUIs 4-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Wrap-up

With all of the topics discussed in this module, you now have the
tools to design and build a GUI that is effective, functional, object-
oriented, and visually pleasing. The following pages describe the
requirements specifications that you must include.

4

4-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: Creating the Stock Market GUI

Exercise objective – Given the functional GUI specifications, your
team must develop a reasonable GUI design, first on paper, then in
code, using the standard delegation event model and classes.

Preparation

Get together in a group, sketch out your GUI design based on the
inputs and outputs required to interface with the StockMarket
database.

The GUI specifications are listed on the following page.

Tasks

GUI Specifications

The BrokerTool program was designed with a functional
specification in mind. To continue to provide the end-user with the
necessary functionality, you must ensure that any modifications
made to the BrokerTool program continue to meet the following
minimal functional requirements.

The GUI must enable the end-user to:

● Add a customer record with a name, social security number,
and address

● Delete a customer record

● Update a customer record

● View a customer record

4

Building GUIs 4-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

● View the current price of any stock in the database

● View the customer’s portfolio

● Buy an arbitrary quantity of a single stock for a particular
customer at the current price

● Sell any quantity of a single stock that the selected customer
owns

● Sell all shares of a single stock that the selected customer owns

● Determine current stock prices by way of a live-data ticker tape

Your group should decide how your GUI looks and behaves.
However, remember the principles of GUI design discussed earlier,
and work to ensure that your GUI remains interchangeable with
the GUIs created by the other groups.

4

4-28 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 4-3 Sample GUI

4

Building GUIs 4-29
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

GUI Design and Coding

Complete the following steps:

1. As a team, design a GUI based on the requirements on the
previous page.

2. Compare your design to the sample screen illustrated in
Figure 4-3. What problems have you solved?

3. Code the GUI based on your design.

4. Integrate the database classes you created in Module 2 with
the new GUI.

5. Test your GUI and (optionally) present it to the rest of class.

Going Further (Optional)

6. Modify your GUI design so that it can operate as either an
applet or an application. What, if any, concerns are there with
this approach?

7. Add a password or login screen to your design.

4

4-30 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

4

Building GUIs 4-31
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Apply the principles of good GUI design

❑ Differentiate, at a high level, between the new Java Foundation
Classes (Swing components) and the AWT model

❑ Explain how to create the class structure needed for an object-
oriented GUI

❑ Design and implement a GUI for the BrokerTool project using
your choice of containers, components, and layout managers

4

4-32 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

Could you write the entire GUI interface as an applet to better
enable the BrokerTool program to operate within a Web browser?

How difficult would it be?

What complications would arise?

5-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

NetworkingConnections 5

Objectives

Upon completion of this module, you should be able to:

● Create a class that reads data from a socket connection

● Integrate a class into a GUI application

Network programming with sockets is a built-in language feature that
makes Java technology powerful for creating network applications.
This module explains wrapping functionality as it applies to socket
connections for transporting data in usable formats (for example, stock
market fractional representations).

5

5-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – Data packaging with layers of objects is fundamental
to computing with networked applications.

What do you hope to accomplish by massaging data at higher and
higher levels in the class hierarchy? Why is this important?

5

Networking Connections 5-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Networking With Java Technology

The BrokerTool program uses a socket connection to the mSQL
database daemon to transmit queries and receive data. This
functionality is provided in the mSQL API
(com.imaginary.sql.msql) . In this module, you integrate
another component into the BrokerTool program, one that displays
information from another socket that presents live-feed data.

This component receives data by way of another TCP/IP socket
when a synchronous request is made. The data provided on the
port is a simulated stream of current stock symbols and prices that
are dynamically changed every 45 seconds.

You create a class that makes a client socket connection and reads
data from the server. The class to display your data is already
written. Integrate both classes into your GUI application.

5

5-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Live-Feed Application

In addition to a database connection, the host server also includes
an application that continuously provides the most recent stock
prices. This application simulates a live-feed socket. Data requested
from the live-feed represents the most recent stock prices.

In this module, you write class methods that access this data. Use
the ticker tape class provided to display the data in the BrokerTool
GUI. The ticker tape provides a continuously scrolling data area, as
illustrated in Figure 5-1.

Figure 5-1 Live-Feed TickerTape

Slowly scrolling

5

Networking Connections 5-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Live-Feed Application Specifications

The live-feed application is located on the same host as the
database. This application updates the current price in the Stock
table every
45 seconds. You can request a current quote from the live-feed
application at any time by issuing a string to the live-feed
application over a TCP/IP socket connection.

The following describes additional live-feed specifications:

● The TCP/IP port for the live-feed application is port number
5432.

● You can request a quote by issuing any file-system safe,
universal character set transformation format (UTF) string to
the live-feed application at any time.

● The live-feed application responds by sending a response in
the following format:

int String float String float ...

where:

int – The number of symbol/price pairs (header)

String – A UTF string containing the Stock symbol, such
as SUNW

float – A floating-point value that is the current Stock
price

● The live-feed application updates the Stock table in the
database at each 45-second interval.

● The live-feed application creates a new socket and thread for
each client connection.

5

5-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The TickerTape Object

TheTickerTape object is a multithreaded canvas object that is used
to display an image containing a string, one pixel at a time. An
Image object is created, and a string is drawn onto its graphic
context. The Image object is “stepped” across the Canvas , one pixel
at a time, from right to left. When the last pixel crosses the left-
most edge, the thread that controls the painting of the Canvas calls
the getNextString method.

Figure 5-2 TickerTape Overview

You must implement the class that establishes the socket
connection with the live feed and supplies the getNextString
method.

Canvas object

String StringString

Image

getNextString method

5

Networking Connections 5-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 5-3 illustrates the flow of the TickerTape object.

Figure 5-3 TickerTape Flow Chart

TickerTape
constructor

Create TickerReader
instance

getNextString ()

start run()

run() method

sleep()

repaint()

paint()

Move the string

If (at end) getNextString()
Yes

Increment position

No

Scheduled

5

5-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Adding the TickerTape Object

The BrokerTool GUI needs a placeholder for the ticker-tape
component, so initially you create an instance of that component
for BrokerTool. The API for a TickerTape class is provided in the
following sections. This class enables you to scroll a string slowly
across a Canvas object.

The TickerTape object must obtain text strings from a class that
you will write in the lab. A sample of the API for a recommended
class is provided, as well as a utility class that converts floating-
point numbers to a ticker-tape format.

Class Hierarchy

The TickerTape class inherits from the Canvas class. The
Runnable interface is implemented so that the TickerTape
instances can be executed by a thread.

class TickerTape extends Canvas implements Runnable

Instance Variables

The TickerTape class provides several instance variables, but the
most important ones are highlighted as follows:

● TickerReader tickerHost – An object that represents the
socket connection manager between the live-feed application
and TickerTape .

● private static final int TICKERHOSTPORT – The port
that the TickerReader connects to on the live-feed server is
number 5432.

5

Networking Connections 5-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The TickerTape Class

You use the following methods to access the TickerTape class.

Methods

public TickerTape (String feedhost, int width)

Return type: (None) – Constructor

Exceptions:

Arguments: String feedhost, int width

What it does: Constructs a TickerTape object that communicates
on the live-feed port to feedhost and has an initial
size of width in pixels (height is fixed by the height
of the font).

public String getNextString ()

Return type: String

Exceptions:

Arguments:

What it does: Gets the next string (formatted for display) from the
live-feed by calling the TickerReader method,
readData .

public void setupTape ()

Return type: void

Exceptions:

Arguments:

What it does: Adjusts the size of the ticker tape after a resize (for
example, the applet resize).

5

5-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public void paint (Graphics g)

Return type: void

Exceptions:

Arguments: graphics g

What it does: Overloads the Canvas paint method. In this
method, the String is drawn one pixel at a time,
starting with the string at the far right edge of the
Canvas . This method illustrates the use of graphics
buffering for smooth animation of the ticker tape.

public void run ()

Return type: void

Exceptions:

Arguments:

What it does: Controls the thread body. The timing of the
animated scrolling is controlled by sleeping for a
period of time, then calling the repaint method.

public void close ()

Return type: void

Exceptions:

Arguments:

What it does: Calls the TickerReader method closePort to close
the socket.

5

Networking Connections 5-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The MakeFraction Class

This class resembles the java.lang.Math class. Its constructor is
private, and each of its methods is declared as static. This enables
you to use the class through the class name without having to
create an instance of the class. MakeFraction cannot be subclassed.

Class Hierarchy

final class MakeFraction

Methods

public static String convertToFraction (float num)

Return type: String

Exceptions:

Arguments: float num

What it does: Converts a floating point representation of a
number into its ticker-tape format. For example,
80.25 is converted to a String containing “80 1/4”

public static String convertToFraction (String num)

Return type: String

Exceptions:

Arguments: String num

What it does: Converts a string representation of a floating-point
number into a fraction by converting num into a
float, and then calling the previous
convertToFraction method.

5

5-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The TickerReader Class

This is the class that you will implement in the lab. In the following
API, some of the methods are provided.

The following are the instance variables in the TickerReader class.

● Socket tickerSocket

● DataInputStream recvStream

● DataOutputStream sendStream

● String symbol []

● float price []

Methods

The following are the methods of the TickerReader class.

public TickerReader (String feedhost, int port)

Return type: (None) – Constructor

Exceptions:

Arguments: String feedhost, int port

What it does: Saves local copies of feedhost and port. Call
makeConnection .

public void makeConnection(String hostname, int port)

Return type: void

Exceptions:

Arguments: String hostname, int port

What it does: Opens a connection to the socket at hostname and
port, and creates both an input and output stream
object.

5

Networking Connections 5-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public String readData ()

Return type: String

Exceptions:

Arguments:

What it does: Requests symbol/price pairs from the live-feed
application, formats each symbol/price pair, and
concatenates them into a single string which is
passed back to the ticker tape. Returns null if
connection to the live- feed fails.

public void closePort ()

Return type: void

Exceptions:

Arguments:

What it does: Closes the connection with the live-feed application.

5

5-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: Creating the TickerReader

Exercise objective – Given the specifications for the
TickerReader class and its methods, write the code to implement
them.

Preparation

Review the code for the TickerTape class in your labfiles/mod4
directory.

Tasks

Complete the following steps:

1. Discuss with your team how you should make the
connection.

2. Review the existing MakeFraction class.

3. Write your own TickerReader class, and implement the
following methods:

▼ TickerReader constructor

▼ makeConnection (or equivalent)

▼ readData method

▼ closePort method

4. Build a test application to test the TickerReader class
directly from the mod5 directory. Make the test application
output three lines of data read from the socket.

5. Test the TickerReader class with TickerTape and
MakeFraction in a test applet.

6. (Optional) Integrate these classes into your GUI.

7. (Optional) Write the MakeFraction class from the provided
API.

5

Networking Connections 5-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Going Further

Consider what happens when the connection with the live-feed
socket goes down. How can you write a method or class that will
reconnect the socket when it becomes available?

8. Create a method or class that periodically polls the
connection and reconnect when the live-feed application is
once again available.

9. Ask the instructor to take the live feed off line when you are
ready to test your code, or write a close method that
simulates the connection terminating.

10. Modify TickerTape so that a mouse click in the Canvas
causes TickerTape to obtain the latest stock report data from
the live-feed.

11. Modify your GUI to update the stock prices currently
displayed elsewhere on the screen when a String is read from
the TickerReader .

5

5-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

5

Networking Connections 5-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Create a class that reads data from a socket connection

❑ Integrate a class into a GUI application

5

5-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

How would you create a daemon called StockTicker that
provides the stock information on a port? How would you make
the data random?

6-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Multiple-TierDatabaseDesign 6

Objectives

Upon completion of this module, you should be able to:

● Describe one-, two-, and three-tier database architectures

● Explain the issues related to implementing a three-tier design

● Create a multiple-tier Java applet or application

In this module, you will explore the issues associated with one-, two-,
and multiple-tier database design.

6

6-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – N-tier systems allow for better flexibility and
maintenance of a software system. The most common one is three-
tier. How do the components of a three-tier system interact with
each other?

What is the deciding factor for these divisions?

Additional Resources

Additional resources – The following references can provide
additional details on the topics discussed in this module:

● Balick, Fritzinger, and Siegel. 1996. Effective 3-tiered Engineering.
SunSoft, Sun Microsystems Inc.

● Appendix F, ‘‘Object Serialization”

6

Multiple-Tier Database Design 6-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Tiered Database Model

The BrokerTool program is based on a two-tier database design. An
upcoming section discusses why modifying the BrokerTool
program to a three-tier database design might be desirable. The
following is a brief discussion of the tier model of databases.

One-Tier Databases

Originally, databases were written as a single unit with both the
database engine and the user interface tightly coupled.

Figure 6-1 The One-Tier Database Model

There are two disadvantages to the design illustrated in Figure 6-1.
The one-tier database is:

● Not readily extensible

● Not easily accessible through a network

Monolithic
database

6

6-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Two-Tier Databases

The two-tier model addresses the one-tier design limitations by
separating the database front end from the database engine.

Figure 6-2 The Two-Tier Database Model

This enables the data to reside locally or remotely. If other users need a
different interface to the same data, you need to develop only a
database front end.

There are some disadvantages to this design; issues arise if the
decision is made to add any of the following to the database:

● Mirroring

● Caching

● Proxy services

● Secure transactions

While you can add functionality to the database engine, this tends to
result in database engines that are feature rich. That is, if the database
you are implementing requires only mirroring, you might not want the
extra baggage associated with the other functionalities.

Database
front end

Database
engine

6

Multiple-Tier Database Design 6-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Three-Tier Databases

The three-tier database design resolves all of the issues that a two-
tier design addresses without the limitations associated with a two-
tier database.

Figure 6-3 The Three-Tier Database Model

Database
front-end

Intermediate
tier

Database
engine

Marshals data
requests and responses

Presentation tier Data tierBusiness logic tier

6

6-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Functionality, such as mirroring and secure transactions can be
introduced through the intermediary tier. Additionally, the
intermediary tier can be tailored to your needs. The three tiers are:

● Presentation – This tier receives the data and data processing
requests.

● Business logic – This tier implements business rules.

● Data – This tier stores and allows access to the data.

6

Multiple-Tier Database Design 6-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Business Rules

Until now, you have probably created code to do error checking on
the client side of the BrokerTool program. This is because the server
(mSQL) does not provide any error checking. The database cannot
recognize negative stock values or invalid social security number
tables.

6

6-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Business rules enable the second tier to control access to the
database by enforcing a set of rules. For example, consider what
kind of error checking would be required to purchase stock:

● Customer must exist; validate social security number

● Stock to be purchased must exist; validate stock symbol

● Stock quantity to purchase; confirm a positive integer value

● Valid SQL queries must be issued; buy stock by issuing the
correct SQL statements

Moving the enforcement of the rules to the middle tier, between the
client and database, enables the rules to be created once and then
kept in a single, easily maintained location.

6

Multiple-Tier Database Design 6-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The BrokerTool Program

The BrokerTool program is built upon a two-tier database design,
as illustrated in Figure 6-4.

Figure 6-4 The Two-Tier Database Design

Caching of database queries can be supported by introducing the
caching functionality into the database front end (for example, Java
technology) or the database engine (for example, mSQL).

If you decided to switch to a three-tier design and introduce
caching into the intermediate tier, your front-end application can
remain unchanged. The Java applet or application communicates
with an intermediate layer of code. You can write code in the Java
programming language and use native methods, or you can write
in C or C++. This new tier enables you to develop your own
functionality: secure socket classes, cache data, or implement
business rules.

Figure 6-5 illustrates the three-tier database design.

Figure 6-5 The Three-Tier Database Design

Database

Applet/application mSQL database

Database

TCP/IP socket

front end back end

Database

Applet/application mSQL database

Database

TCP/IP

back endfront end

Java application
Socket
port
1112

business rules
port
5500

6

6-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Three-Tier Database Design

In this course, to insulate or abstract the client program from the
database, another tier is going to be created. This new tier receives
commands that are specific to the BrokerTool program. For
example, you know that the current program supports the
following functions:

● Buy shares

● Sell shares

● Get a list of stock symbols and prices

● Get the current price for a particular stock

● Get a list of all the customer names and social security
numbers (SSNs)

● View a customer, including the customer’s portfolio

● Add a new customer

● Update an existing customer

● Delete an existing customer

The middle tier receives these commands and executes the
appropriate business rules. A status that includes an error code or
argument list is returned.

This middle-tier application introduces the concept of a protocol
handler in Java technology. The design precipitates a new protocol
that the middle tier receives and interprets. In this case, it converts
the new command protocol to SQL using the appropriate business
rules.

6

Multiple-Tier Database Design 6-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure 6-6 illustrates the modified two-tier database design.

Figure 6-6 The Modified Two-Tier Database Design

Figure 6-7 illustrates the modified three-tier database design.

Figure 6-7 The Modified Three-Tier Database Design

Broker.java

Database.java

MsqlDriver

Client Server

Port 1112
msql2d

StockMarket

Client

Broker.java

Protocol.java

ProtocolHandler.java

Middle-Tier Server

msql2d

StockMarket

Port
5500

Port
1112

6

6-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Protocol Design

For the purposes of this course, the protocol of the middle tier is
simple and straightforward. A command object is sent by way of
an ObjectOutputStream associated with a TCP/IP socket to the
middle tier, and a status of some kind is expected on the other end.
Both the client and server use object and data streams to handle
communication of the commands and status.

6

Multiple-Tier Database Design 6-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Command and Result Formats

Command objects are sent to the protocol handler in the middle
tier. The resulting SQL command is executed by the middle tier,
and the Commandobject is returned to the client with the
appropriate modified Result . Each Commandinstance indicates the
type of request being made by having an instance of a String
array pass arguments, and a Result to extract return values.

The Result object is created in the Commandconstructor, and has an
initial status of -1, indicating an error occurred. If all goes well in
the middle tier (no exceptions are thrown as a result of the query),
the status field of the Result instance is changed to 0, indicating
that the command was executed successfully.

6

6-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Result.java

1 import java.util.*;
2 import java.io.*;
3
4 public class Result extends Vector
5 implements Serializable {
6
7 // Default to error status
8 private int status = -1;
9
10 public Result () {
11 super(1,1);
12 }
13
14 public int getStatus () {
15 return status;
16 }
17
18 public void setStatus(int value) {
19 status = value;
20 }
21
22 public int getNumRows () {
23 return this.size();
24 }
25 }

6

Multiple-Tier Database Design 6-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Command.java

1 import java.io.*;
2
3 public class Command implements Serializable {
4
5 private int commandValue;
6 private Result results;
7 private String [] args = {""};
8
9 public static final int BUYSHARES = 10;
10 public static final int SELLSHARES = 20;
11 public static final int READSTOCKLIST = 30;
12 public static final int READASTOCK = 40;
13 public static final int READCUSTLIST = 50;
14 public static final int VIEWACUSTOMER = 60;
15 public static final int ADDACUSTOMER = 70;
16 public static final int UPDATECUSTOMER = 80;
17 public static final int DELETECUSTOMER = 90;
18
19 // Constructor - takes an int that represents
20 // the type of action that was requested from
21 // the GUI
22 public Command (int comm) {
23 commandValue = comm;
24 results = new Result();
25 }
26
27 // Determine which type of action was requested
28 // from the GUI
29 public int getCommandValue() {
30 return commandValue;
31 }
32
33 // Assign any args to pass to the SQL statement
34 public void setArgs(String [] params) {
35 args = params;
36 }
37

6

6-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

38 // Get any args to pass to the SQL statement
39 public String [] getArgs() {
40 return args;
41 }
42
43 // Get result returned from DB transaction
44 public Result getResult() {
45 return results;
46 }
47 }

6

Multiple-Tier Database Design 6-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Command Implementation

Each command requires certain arguments. For example, the Buy
Shares command would consist of the following:

Status

Every command returns a status associated with its Result
instance. For example, the Buy Shares command could return the
following status values:

● 0 – OK

● -1 – Customer not found

● -2 – Invalid stock symbol

● -3 – Invalid quantity

Note – If the middle tier receives a command that it does not
recognize, it returns a command setting the result status to -4.

Command (int) args[0]= ssn args[1]= symbol args[2]= quantity

10 999-55-3434 SUNW 100

6

6-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Buy Shares Command

This command returns one of the following statuses:

● 0 – OK

● -1 – Customer not found

● -2 – Invalid stock symbol

● -3 – Invalid quantity

The Sell Shares Command

This command returns one of the following statuses:

● 0 – OK

● -1 – Customer not found

● -2 – No shares owned

● -3 – Invalid quantity

● -5 – Invalid stock symbol

Command (int) commandValue

10

Social security number args[0]

Stock symbol args[1]

Quantity shares args[2]

Command (int) commandValue

20

Social security number args[0]

Stock symbol args[1]

Quantity shares args[2]

6

Multiple-Tier Database Design 6-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Read Available Stock List Command

This command returns one of the following statuses:

● 0 – OK (results Vector contains one element, an array of
StockRec)

● -1 – Error

The Read a Specific Stock Price Command

This command returns one of the following statuses:

● 0 – OK (results Vector contains one element, the price, stored in
a Float object)

● -1 – Error

Command (int) commandValue

30

Command (int) commandValue

40

Stock symbol args[0]

6

6-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Read Available Customer List Command

This command returns one of the following statuses:

● 0 – OK (results Vector contains one element, an array of
CustomerRec)

● -1 – Error

The View a Customer Record Command

This command returns one of the following statuses:

● 0 – OK (results Vector contains one element, a CustomerRec)

● -1 – Customer not found

Command (int) commandValue

50

Command (int) commandValue

60

Social security number args [0]

6

Multiple-Tier Database Design 6-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Add a New Customer Record Command

This command returns one of the following statuses:

● 0 – OK

● -1 – This social security number already exists in the database

The Update a Customer Record Command

This command returns one of the following statuses:

● 0 – OK

● -1 – Customer not found

Command (int) commandValue

70

Social security number args[0]

Name args[1]

Address args[2]

Command (int) commandValue

80

Social security number args[0]

Name args[1]

Address args[2]

6

6-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Delete a Customer Record Command

This command returns one of the following statuses:

● 0 – OK

● -1 – Customer not found

Command (int) commandValue

90

Social security number args[0]

6

Multiple-Tier Database Design 6-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: Implementing the Protocol

Exercise objective – Given the specifications for the Database
class, implement the methods in this class.

Preparation

Back up your Database.java file by copying it to another file, for
example, Database.java.orig . Then, using the same method
signatures (and retaining any error checking not explicitly done by
the protocol handler), strip out all references to java.sql . Create
Commandinstances to pass your database queries and updates to
the middle tier through a TCP socket connection.

Tasks

Complete the following steps:

1. Create a class that implements the protocol as it is described
in this module and replaces the existing Database class. If
you name your new class anything other than
Database.java , remember to make the appropriate changes
in your GUI code to reference this class.

2. Use the same method signatures that are in your original
Database class (retain any error checking not explicitly done
by the protocol handler). Strip out all references to java.sql .
Create Command instances to pass your database queries and
updates to the middle tier through a TCP socket connection.

3. Modify your code to implement the new class. Remember
that each of the classes, CustomerRec.java ,
SharesRec.java, and StockRec.java , now need to
implement the java.io.Serializable interface to be passed
across the object stream.

4. Test your new BrokerTool program.

6

6-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

5. Prepare a short report.

Going Further (Optional)

6. Create a transaction system by modifying both the Protocol
and ProtocolHandler class.

7. Keep the current command protocol, but do not “commit” a
transaction until a command + 1 is sent.

For example, to commit an Add Customer transaction, send
the 70 command string followed by a 71 command.

8. Allow “rollbacks” by sending a negative command. To
rollback the Add Customer, send -71.

6

Multiple-Tier Database Design 6-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Notes

6

6-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

6

Multiple-Tier Database Design 6-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing on to the next module, check that you are able to
accomplish or answer the following:

❑ Describe one-, two-, and three-tier database architectures

❑ Explain the issues related to implementing a three-tier design

❑ Create a multiple-tier Java applet or application

6

6-28 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

In implementing additional n-layers of abstraction, you add to the
amount of design and coding (and the project costs). At what point
does the real return on investment come for the additional
engineering? How can you estimate the break-even point?

7-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

PortingConsiderations
andWrap-Up 7

Objectives

Upon completion of this module, you should be able to:

● Enumerate issues involved in porting from a Solaris Operating
Environment to a Windows platform and from a Windows to a
Solaris Operating Environment platform.

● Demonstrate the success of your modular design by building
hybrid applications, mixing server and client modules

● Debug problems when interchanging modules

● Describe how design decisions made in program design now
affect the extensibility of the application

This module covers issues relating to porting between the Solaris
Operating Environment and Windows platforms.

7

7-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Relevance

Discussion – While the 100% Pure Java™ technology paradigm
means you can port bytecodes successfully across platforms, what
other issues can you expect to face?

7

Porting Considerations and Wrap-Up 7-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Solaris Operating Environment-to-Windows Porting Issues

While Java technology tries to maintain the Write Once, Run
Anywhere™ paradigm, some of the issues to remember when
porting from a Solaris Operating Environment to a Windows
platform and from a Windows platform to a Solaris Operating
Environment are the following:

● Logical layout, not absolute

● File access

● Font availability

● Mouse buttons

● Threads

● Platform-specific implementation bugs

7

7-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Logical Layout, Not Absolute

When writing for both the Solaris Operating Environment and
Windows platforms, refrain from thinking in terms of either Motif
or Windows GUI components. You are not programming in Motif
or Windows. You are programming in the Java programming
language.

The size, shape, and appearance of buttons, text fields, lists, and so
on, will vary between the two platforms. Solaris Operating
Environment has Motif buttons, whereas Windows has Windows
buttons. This, of course, is by design. The intent is to maintain a
consistent interface on the respective platforms.

While you might be accustomed to placing GUI components using
absolute layout (that is, using absolute coordinates) in other
windowing systems, GUI-component placement in Java technology
is orchestrated by layout managers.

The variance in the shape and size of each platform’s GUI
components is part of the reason behind the logical layout design
decision. The need for logical rather than absolute layout becomes
apparent when you consider the wide variance in monitor sizes on
which your Java code can run.

7

Porting Considerations and Wrap-Up 7-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

File Access

Solaris Operating Environment file-naming conventions differ from
those of Windows. Whereas the Solaris Operating Environment
uses the forward slash (/) as the path separator, Windows uses the
back slash (\).

Generic file access is handled automatically by the Java
programming language. However, if you are doing something,
such as creating strings that contain the path name, use the
getProperties method to retrieve the path separator.

7

7-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Font Availability

Fonts available in the Solaris Operating Environment might not be
available on a Windows platform and fonts for Windows might not
be available in Solaris Operating Environment. Do not assume that
fonts available on one platform are available on the other. Always
check the availability of a font before attempting to use it. You can
get a list of available fonts by calling
getAvailableFontFamilyNames() . This method returns an array
containing the names of all font families available in this
GraphicsEnvironment .

7

Porting Considerations and Wrap-Up 7-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Mouse Buttons

Due to the variety of mouse-types (one-, two-, and three-button
devices), Java technology enables you to hide the mouse
functionality by generating a mouse event for any mouse key.
However, you can determine the number of the button that was
pressed by examining the modifier portion of the event generated.

The java.awt.event.InputEvent class defines the input masks
associated with each mouse button press. Figure 7-1 illustrates the
event mask that is associated with a mouse click on a Solaris
Operating Environment system using a type 5c keyboard.

Figure 7-1 Mouse Buttons

You can use the following test code to determine what event masks
you would receive on the platform you are using.

MouseTest.java

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class MouseTest extends Canvas {
5

1 2 3

+ BUTTON2_MASK

+ BUTTON3_MASK

7

7-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

6 public static void main (String args[]) {
7
8 MouseTest mt = new MouseTest ();
9 Frame f = new Frame ("mouse test");
10 f.add(mt, BorderLayout.CENTER);
11 f.pack();
12 f.setVisible (true);
13
14 }
15
16 public MouseTest () {
17 setSize (100, 100);
18 addMouseListener (new MouseHandler());
19 } // Inner class
20 private class MouseHandler extends MouseAdapter {
21 public void mousePressed (MouseEvent me) {
22
23 System.out.println ("Mouse pressed");
24
25 if ((me.getModifiers() & InputEvent.BUTTON1_MASK) != 0) {
26 System.out.println ("Mouse button 1 pressed");
27 }
28 if ((me.getModifiers() & InputEvent.BUTTON2_MASK) != 0) {
29 System.out.println ("Mouse button 2 pressed");
30 }
31 if ((me.getModifiers() & InputEvent.BUTTON3_MASK) != 0) {
32 System.out.println ("Mouse button 3 pressed");
33 }
34 if ((me.getModifiers() & InputEvent.CTRL_MASK) != 0) {
35 System.out.println ("Mouse button and

Control key pressed");
36 }
37 if ((me.getModifiers() & InputEvent.META_MASK) != 0) {
38 System.out.println ("Mouse button and

Meta key pressed");
39 }
40 if ((me.getModifiers() & InputEvent.SHIFT_MASK) != 0) {
41 System.out.println ("Mouse button and

Shift key pressed");
42 }
43 }
44 }
45 }

7

Porting Considerations and Wrap-Up 7-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Threads

The JVM Specification does not define the threading model, nor
does the Java runtime environment (JRE) provide methods for
determining the model under which you are running. The only
genuinely portable solutions involve making no assumptions, and
using the sleep or yield methods.

Under a Solaris Operating Environment, once a thread is running it
continues to run until it is pre-empted by a higher-priority thread,
it becomes “not runnable,” or its run method is completed.

Under a Microsoft Windows platform, the JVM uses Windows
threads. Like Solaris Operating Environment, threads running at a
given priority are pre-empted by threads running at a higher
priority. Similarly, under Windows, a thread runs until it is pre-
empted by a higher priority thread, it becomes “not runnable”, or
its run method is completed. However, unlike the Java scheduler
for Solaris Operating Environment, threads of equal priority are
time-sliced.

7

7-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Other Java-enabled browsers, such as Netscape Navigator, use
their own threading packages. In instances such as this, you might
not know how threads are implemented. Make no assumptions,
use the sleep or yield methods.

Platform-Specific Implementation Bugs

Keep abreast of the latest information on platform-specific issues.
The best resource for this information is found by searching
JavaSoft’s home page:

http://www.javasoft.com

7

Porting Considerations and Wrap-Up 7-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Making the BrokerTool Program Fully Functional

The BrokerTool application has additional functionality not
covered in this module. To understand this functionality, you
should discuss the following questions.

● What issues must be kept in mind when porting Java programs
between platforms?

● What modifications are required to allow the BrokerTool
program to be run as an applet or as an application?

● How have the original design decisions affected the
extensibility of your BrokerTool program?

● What modifications should be made in the following:

▼ Original design?

▼ GUI module?

▼ Query processing module?

▼ Network connection module?

7

7-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise: Integrating Modules

Exercise objective – Given modules written by other students in
the class, create a hybrid application and locate potential
integration problems.

Preparation

All of the modules in the previous exercises should be completed
before beginning this exercise.

Tasks

Complete the following steps:

1. Exchange the GUI or database module(s) with those
developed by your classmates, and create your own hybrid
applications.

2. Mix both server and client modules.

If you run into unexpected integration problems, view this not as a
failure but as an opportunity to learn from hands-on experience.
Work in conjunction with the classmate who developed the other
module, debug it, and be prepared to report back to the class what
you learned.

7

Porting Considerations and Wrap-Up 7-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Exercise Summary

Discussion – Take a few minutes to discuss what experiences,
issues, or discoveries you had during the lab exercises.

● Experiences

● Interpretations

● Conclusions

● Applications

7

7-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Check Your Progress

Before continuing, check that you are able to accomplish or answer
the following:

❑ Enumerate issues involved in porting from a Solaris Operating
Environment to a Windows platform, and from a Windows to
Solaris Operating Environment platform.

❑ Demonstrate the success of your modular design by building
hybrid applications, mixing server and client modules

❑ Debug problems when interchanging modules

❑ Describe how design decisions made in program design now
affect the extensibility of the application

7

Porting Considerations and Wrap-Up 7-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Think Beyond

How can porting issues be permanently overcome in the
computing world? What standards organization would oversee
these issues?

A-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

BuildingGUIsWithAWT A

This appendix describes how to build GUIs using AWT components
such as containers, frames, panels, and layout managers.

A

A-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The java.awt Package

The java.awt package contains classes to generate widgets and
GUI components. A basic overview of this package is shown in
Figure A-1. The classes shown in bold highlight the main points
covered in this section.

A

Building GUIs With AWT A-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure A-1 The java.awt Package

java.lang. Object

Button
Canvas
Checkbox
Choice
Container
Label
List
Scrollbar
TextComponent

BorderLayout
CardLayout
CheckboxGroup
Color
Dimension
Event
Font
FlowLayout
FontMetrics
Graphics
GridBagConstraints
GridBagLayout
GridLayout
Image
Insets
Point
Polygon
Rectangle
Toolkit
MenuComponent
Component

MenuBar
MenuItem Menu

CheckboxMenuItem

TextArea
TextField

Panel
Window
ScrollPane Dialog

Frame

Applet (java.applet package)

FileDialog

Exceptions – AWTException Errors – AWTError

A

A-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Building Graphical User Interfaces

Containers and Components

Containers and components are fundamental to the AWT. A
container can hold one or many components and, if desired, it can
hold other containers.

Components are the visible aspect of a GUI, such as a button or a
label. You place components into a display by “adding” them to a
container.

Note – Because containers can hold not only components but also
containers, they are important and fundamental to building layouts
of realistic complexity.

Positioning Components

The position of a component in a container is determined by a layout
manager. A container keeps a reference to a particular instance of
LayoutManager . When the container needs to position a component,
it invokes the layout manager to do so. The same delegation occurs
when deciding on the size of a component.

Component Sizing

Because the layout manager is responsible for the size and position
of components on its container, do not attempt to set the size or
position of components yourself. If you try to do so (using any of
the setLocation , setSize , or setBounds methods), the layout
manager overrides your decision.

If you must control the size or position of components in a way that
cannot be done using the standard layout managers, disable the
layout manager by issuing this method call to your container:

setLayout(null);

A

Building GUIs With AWT A-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Then use the setLocation , setSize , or setBounds methods on
components to locate them in the container.

Be aware that this approach results in platform-dependent layouts
due to the differences between window systems and font sizes. A
better approach is to create a new class of LayoutManager.

A

A-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Frames

A Frame is a subclass of Window. It is a Window with a title and
resize corners.

Creating a Simple Frame

The constructor Frame(String) in the Frame class creates a new,
invisible Frame object with the title specified by String . A Frame
can be resized using the setSize method inherited from the
Component class.

Note – The setVisible and setSize methods must be called to
make the Frame visible.

The following program creates a simple frame with a specific title,
size, and background color:

1 import java.awt.*;
2 public class MyFrame extends Frame {
3 public static void main (String args[]) {
4 MyFrame fr = new MyFrame("Hello Out There!");
5 // Component method setSize()
6 fr.setSize(500,500);
7 fr.setBackground(Color.blue);
8 fr.setVisible(true); // Component method
show()
9 }
10 public MyFrame (String str) {
11 super (str);
12 }
13 ...
14 }
15

A

Building GUIs With AWT A-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Running the Program

The following is an example of compiling and then running the
program MyFrame.

javac MyFrame.java
java MyFrame

Figure A-2 Example of a Frame

A

A-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Panels

Panels, like frames, provide the space for you to attach any GUI
component, including other panels.

Creating Panels

You use the constructor Panel to create panels. Once you create a
Panel object, you must add it to a Window or Frame object to be
visible. This is done using the add method of the Container class.

The following program creates a small yellow panel, and adds it to
a Frame object:

1 import java.awt.*;
2 public class FrameWithPanel extends Frame {
3
4 // Constructor
5 public FrameWithPanel (String str) {
6 super (str);
7 }
8
9 public static void main (String args[]) {
10 FrameWithPanel fr =
11 new FrameWithPanel ("Frame with Panel");
12 Panel pan = new Panel();
13
14 fr.setSize(200,200);
15 fr.setBackground(Color.blue);
16 fr.setLayout(null); //override default layout
mgr
17 pan.setSize (100,100);
18 pan.setBackground(Color.yellow);
19
20 fr.add(pan);
21 fr.setVisible(true);
22 }
23 ...
24 }

A

Building GUIs With AWT A-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Running the Program

The following is an example of compiling and then running the
program FrameWithPanel .

javac FrameWithPanel.java
java FrameWithPanel

Figure A-3 Example of a Panel in a Frame

A

A-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Container Layouts

The layout of components in a container can be governed by a layout
manager. Each container, such as a panel or a frame, has a default layout
manager associated with it, which can be changed by the Java software
developer when an instance of that container is created.

Layout Managers

The layout managers included with the Java programming
language are the following:

● FlowLayout – The default layout manager of Panels and
Applets .

● BorderLayout – The default layout manager of Windows ,
Dialogs, and Frames .

● GridLayout

● CardLayout

● GridBagLayout

The GridBagLayout manager is not discussed in this appendix.

A

Building GUIs With AWT A-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

A Simple GUI Example

This simple example code demonstrates several important points,
and is discussed in the following sections.

1 import java.awt.*;
2
3 public class ExGui {
4 private Frame f;
5 private Button b1;
6 private Button b2;
7
8 public static void main(String args[]) {
9 ExGui that = new ExGui();
10 that.go();
11 }
12
13 public void go() {
14 f = new Frame(“GUI example”);
15 f.setLayout(new FlowLayout());
16 b1 = new Button(“Press Me”);
17 b2 = new Button(“Don’t press Me”);
18 f.add(b1);
19 f.add(b2);
20 f.pack();
21 f.setVisible(true);
22 }
23 }

The main Method

The main method in this example does two jobs: it creates an
instance of the ExGui object and once the data space has been
created, calls the instance method go in the context of that instance.
Until an instance exists, there are no real data items called f , b1,
and b2 for use. It is in go , that the real action occurs.

A

A-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

new Frame(“GUI Example”)

This method creates an instance of the class java.awt.Frame . A
frame in the Java programming language is a top-level window,
with a title bar—defined by the constructor argument “GUI
Example” in this case—and resize handles and other conventional
decorations. The frame has a zero size and is currently not visible.

f.setLayout(new FlowLayout())

This method creates an instance of the flow layout manager, and
installs it into the frame. There is a default layout manager for
every frame, but it is not used in this example. The flow layout
manager is the simplest manager in the AWT and positions
components somewhat like words on a page, line by line. The flow
layout manager centers each line by default.

new Button(“Press Me”)

This method creates an instance of the class java.awt.Button . A
button is the standard push button taken from the local window
toolkit. The button label is defined by the string argument to the
constructor.

f.add(b1)

This method tells frame f, which is a container, that it is to contain
the component b1, a button. The size and position of b1 are under
the control of the frame’s layout manager from this point onward.

f.pack()

This method tells the frame to set a size that “neatly encloses” the
components that it contains. The layout manager, which is
responsible for the size and position of everything it contains,
accomplishes this.

A

Building GUIs With AWT A-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

f.setVisible(true)

This method causes the frame and all its contents to become visible
to the user.

The final result of this code, on an OpenLook system is the
following:

A

A-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Layout Managers

Flow Layout Manager

The flow layout manager used in the first example positions
components on a line by line basis. Each time a line is filled, a new
line is started.

Unlike other layout managers, the flow layout manager does not
constrain the size of the components it manages, but instead allows
them to have their preferred size.

Note – All components have a method called
getPreferredSize , which is used by layout managers to
determine the size of the component.

Options on a flow layout allow the components to justify the
components to the left or to the right. By default, the components
are centered.

You can specify insets if you want to create a bigger border area
between each component.

When you resize the area that is being managed by a flow layout,
the layout might change.

After resizing

A

Building GUIs With AWT A-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The following examples show how to implement the FlowLayout ,
using the setLayout method inherited from Component :

setLayout(new FlowLayout(FlowLayout.RIGHT, 20, 40));
setLayout(new FlowLayout(FlowLayout.LEFT));
setLayout(new FlowLayout());

The following example adds several buttons to a flow layout on a
frame:

1 import java.awt.*;
2
3 public class MyFlow {
4 private Frame f;
5 private Button button1, button2, button3;
6
7 public static void main (String args[]) {
8 MyFlow mflow = new MyFlow ();
9 mflow.go();
10 }
11
12 public void go() {
13 f = new Frame ("Flow Layout");
14 f.setLayout(new FlowLayout());
15 button1 = new Button("Ok");
16 button2 = new Button("Open");
17 button3 = new Button("Close");
18 f.add(button1);
19 f.add(button2);
20 f.add(button3);
21 f.setSize (100,100);
22 f.setVisible(true);
23 }
24 }

Border Layout Manager

The BorderLayout manager provides a more complex scheme for
placing your components within a panel or window. The
BorderLayout contains five distinct areas: North , South , East ,
West, and Center .

A

A-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

North occupies the top of a panel, East occupies the right side,
and so on. The Center area represents everything left over once the
North , South , East , and West areas are filled.

The BorderLayout manager is the default layout manager for
dialogs and frames. The code for the following image can be found
on the next page.

Figure A-4 Border Layout Manager

Note – The relative positions of the buttons do not change as the
window is resized, but the sizes of the buttons do change.

Resized

A

Building GUIs With AWT A-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The following code is a modification of the previous example and
demonstrates the behavior of the border layout manager:

1 import java.awt.*;
2
3 public class ExGui2 {
4 private Frame f;
5 private Button bn, bs, bw, be, bc;
6
7 public static void main(String args[]) {
8 ExGui2 that = new ExGui2();
9 that.go();
10 }
11
12 public void go() {
13 f = new Frame("Border Layout");
14 bn = new Button("B1");
15 bs = new Button("B2");
16 bw = new Button("B3");
17 be = new Button("B4");
18 bc = new Button("B5");
19
20 f.add(bn, BorderLayout.NORTH);
21 f.add(bs, BorderLayout.SOUTH);
22 f.add(bw, BorderLayout.WEST);
23 f.add(be, BorderLayout.EAST);
24 f.add(bc, BorderLayout.CENTER);
25
26 f.setSize (200, 200);
27 f.setVisible(true);
28 }
29 }

A

A-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

You must add components to named regions in the border layout
manager, otherwise they are not visible.

You can use a border layout manager to produce layouts with
elements that stretch in one direction or the other, or both, upon
resizing.

If you leave a region of a border layout unused, it behaves as if its
preferred size was zero by zero. So the center region still appears as
background even if it contains no components, but the four
peripheral regions effectively shrink to a line of zero thickness and
disappear.

You must add only a single component to each of the five regions
of the border layout manager. If you try to add more than one, only
one is visible. You will see later how you can use intermediate
containers to allow more than one component to be laid out in the
space of a single border layout manager region.

A

Building GUIs With AWT A-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Grid Layout Manager

The grid layout manager provides flexibility for placing
components. You create the manager with a number of rows and
columns. Components then fill up the cells defined by the manager.
For example, a grid layout with three rows and two columns,
created by the statement new GridLayout(3, 2) creates six
cells as follows:

Figure A-5 Grid Layout Manager

As with the BorderLayout manager, the relative position of
components does not change as the area is resized. Only the size of
the components change.

Observe that the width of all cells is identical, and is determined as
a simple division of the available width by the number of cells.
Similarly the height of all cells is determined by the available
height divided by the number of rows.

The order in which components are added to the grid determines
the cell that they occupy. Lines of cells are filled left to right like
text, and the “page” is filled with lines from top to bottom.

Resized

A

A-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The following code displays the application shown on the previous
page:

1 import java.awt.*;
2 public class GridEx {
3 private Frame f;
4 private Button b1, b2, b3, b4, b5, b6;
5
6 public static void main(String args[]) {
7 GridEx grid = new GridEx();
8 grid.go();
9 }
10
11 public void go() {
12 f = new Frame(“Grid example”);
13
14 f.setLayout (new GridLayout (3, 2));
15 b1 = new Button(“1”);
16 b2 = new Button(“2”);
17 b3 = new Button(“3”);
18 b4 = new Button(“4”);
19 b5 = new Button(“5”);
20 b6 = new Button(“6”);
21
22 f.add(b1);
23 f.add(b2);
24 f.add(b3);
25 f.add(b4);
26 f.add(b5);
27 f.add(b6);
28
29 f.pack();
30 f.setVisible(true);
31 }
32 }

Card Layout Manager

The CardLayout Manager enables you to treat the interface as a
series of cards, one of which you can view at any one time. A
CardLayout object is a layout manager for a container. It treats each
component in the container as a card. Only one card is visible at a

A

Building GUIs With AWT A-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

time, and the container acts as a stack of cards. The first component
added to a CardLayout object is the visible component when the
container is first displayed.

The ordering of cards is determined by the container’s own
internal ordering of its component objects. CardLayout defines a
set of methods that allow an application to flip through these cards
sequentially, or to show a specified card.

The following application CardTest demonstrates the use of the
CardLayout Manager.

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class CardTest implements MouseListener {
5 private Panel p1, p2, p3, p4, p5;
6 private Label lb1, lb2, lb3, lb4, lb5;
7
8 // Declare a CardLayout object to call its
methods.
9 private CardLayout myCard;
10 private Frame f;
11
12 public void go() {
13 f = new Frame ("Card Test");
14 myCard = new CardLayout();
15 f.setLayout(myCard);
16
17 // Create the panels that I want
18 // to use as cards.
19 p1 = new Panel();
20 p2 = new Panel();
21 p3 = new Panel();
22 p4 = new Panel();
23 p5 = new Panel();
24
25 // Create a label to attach to each panel, and
26 // change the color of each panel, so they are
27 // easily distinguishable
28
29 lb1 = new Label("This is the first Panel");
30 p1.setBackground(Color.yellow);
31 p1.add(lb1);
32
33 lb2 = new Label("This is the second Panel");

A

A-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

34 p2.setBackground(Color.green);
35 p2.add(lb2);
36
37 lb3 = new Label("This is the third Panel");
38 p3.setBackground(Color.magenta);
39 p3.add(lb3);
40
41 lb4 = new Label("This is the fourth Panel");
42 p4.setBackground(Color.white);
43 p4.add(lb4);
44
45 lb5 = new Label("This is the fifth Panel");
46 p5.setBackground(Color.cyan);
47 p5.add(lb5);
48
49 // Set up the event handling here.
50 p1.addMouseListener(this);
51 p2.addMouseListener(this);
52 p3.addMouseListener(this);
53 p4.addMouseListener(this);
54 p5.addMouseListener(this);
55
56 // Add each panel to my CardLayout
57 f.add(p1, "First");
58 f.add(p2, "Second");
59 f.add(p3, "Third");
60 f.add(p4, "Fourth");
61 f.add(p5, "Fifth");
62
63 // Display the first panel.
64 myCard.show(f, "First");
65
66 f.setSize(200,200);
67 f.setVisible(true);
68 }
69
70 public void mousePressed(MouseEvent e) {
71 myCard.next(f);
72 }
73
74 public void mouseReleased(MouseEvent e) { }
75 public void mouseClicked(MouseEvent e) { }
76 public void mouseEntered(MouseEvent e) { }
77 public void mouseExited(MouseEvent e) { }
78
79 public static void main (String args[]) {

A

Building GUIs With AWT A-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

80 CardTest ct = new CardTest();
81 ct.go();
82 }
83 }

Other Layout Managers

In addition to the flow, border, grid, and card layout managers, the
core AWT also provides the GridBagLayout Manager.

The GridBagLayout manager provides complex layout facilities,
based on a grid, and allows single components to take their
preferred size within a cell, rather than fill the whole cell. Also, a
grid bag layout manager allows a single component to extend over
more than one cell.

A

A-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Containers

The AWT provides several containers. This section discusses the
two essential ones.

Frames

You have already seen the frame used in the preceding examples. It
presents a “top-level” window with a title, border, and resizeable
corners according to the local platform conventions.

If you do not explicitly use the setLayout method, a frame uses a
border layout manager by default.

Most applications use at least one frame as the starting point for
their GUIs, but it is possible to use multiple frames in a single piece
of code.

Panels

Panels are containers and almost nothing else. They do not have an
appearance of their own, and they cannot be used as stand-alone
windows. By default, a panel has a flow layout manager associated
with it, but you can change this by using the setLayout method
used earlier on frames.

Panels are created and added to other containers in the same way
components, such as buttons are created and added. However,
when a panel is added to a container, you can do the following two
crucial tasks in the resulting panel:

● Give it a layout manager of its own, imposing a different
layout approach on a region of the display

● Add components to the panel even if, for example, the panel
itself constitutes the only component that can be properly
added to a region of a border layout

A

Building GUIs With AWT A-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Creating Panels and Complex Layouts

Panels are created using the constructor Panel . Once a Panel
object is created, you must add it to another container. This is done
as before using the add method of the container.

The following program uses a panel to allow two buttons to be
placed in the North region of a border layout. This kind of nesting
is fundamental to complex layouts. The panel is treated just like
another component as far as the frame is concerned.

1 import java.awt.*;
2 public class ExGui3 {
3 private Frame f;
4 private Panel p;
5 private Button bw, bc;
6 private Button bfile, bhelp;
7
8 public static void main(String args[]) {
9 ExGui3 gui = new ExGui3();
10 gui.go();
11 }
12 public void go() {
13 f = new Frame(“GUI example 3”);
14 bw = new Button(“West”);
15 bc = new Button(“Work space region”);
16 f.add(bw, BorderLayout.WEST);
17 f.add(bc, BorderLayout.CENTER);
18 p = new Panel();
19 f.add(p, BorderLayout.NORTH);
20 bfile = new Button(“File”);
21 bhelp = new Button(“Help”);
22 p.add(bfile);
23 p.add(bhelp);
24 f.pack();
25 f.setVisible(true);
26 }
27 }

A

A-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

When the previous example is run, the resulting display is
illustrated in Figure A-6.

Figure A-6 Window

If the window is resized, the resulting display is illustrated in
Figure A-7.

Figure A-7 Resized Window

Observe that the North region of the border layout is now
effectively holding two buttons. In fact it holds only the single
panel but that panel contains the two buttons.

The size and position of the panel is determined by the border
layout manager: the preferred size of a panel is determined from
the preferred size of the components in that panel. The size and
position of the buttons in the panel are controlled by the flow
layout manager that is associated with the panel by default.

B-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

UsingtheGridBagLayout Manager B

This appendix describes the use of the GridBagLayout manager in the
production of complex user interfaces.

B

B-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Layout Managers

GUIs should make extensive use of layout managers because the
alternative, absolute positioning by pixel coordinates is not
platform portable. Issues, such as the sizes of fonts and screens
ensure that a layout that is correct and based on coordinates will be
unusable on any other platform.

Layout managers avoid these difficulties by laying out the GUI
according to a policy. For example, the policy of the GridLayout
manager is to position child components in equal-sized cells,
starting at the top left and working left to right, top to bottom until
the grid is full.

This course assumes you know about the basic three layout
managers, FlowLayout , GridLayout , and BorderLayout . If you
are unsure about any of these, ask your instructor if you can
discuss them during a break.

B

Using the GridBagLayout Manager B-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

If you know the basic three layout managers, you also know that
they are somewhat limited in their capabilities, and that it can be
hard, often involving many nested panels, to produce a layout that
is useful in a production program. This appendix looks at the
GridBagLayout manager, which is more powerful.

B

B-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The GridBagLayout Manager

The GridBagLayout manager lays out components using a grid.
However, unlike the GridLayout manager, child components are
not necessarily constrained to occupy exactly one entire grid cell,
neither are all rows and columns equal in size. Rather, you can
assign a component multiple cells, horizontally, vertically, or both,
and the component can exist within that region.

B

Using the GridBagLayout Manager B-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure B-1 Sample GridBagLayout With Four Rows and Four
Columns

The number of rows and columns in a GridBagLayout is
determined by the number of cells that are in use. This contrasts
with the GridLayout where (generally) you specify the row and
column count at the time the layout is constructed.

The basic height of a row is determined by the largest component
in that row. Similarly, the basic width of a column depends on the
largest component in it. In Figure B-1, each grid cell is the basic size
of a JButton with a single-digit label.

B

B-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure B-2 Sample GridBagLayout Showing Cells Expanded
by Weight

Where the total space available to the GridBagLayout exceeds that
needed for all the basic dimensions, the extra space is shared using
a concept called weight. In Figure B-2, the weight has been applied
to the last column and to the third row (that is, the row and column
that includes the button labeled “8”).

A component in a GridBagLayout can occupy multiple
consecutive rows, and multiple consecutive columns if desired. The
total space alloted to one component is referred to as the
component’s region. In Figure B-2, the button labelled “4” extends
across two columns horizontally.

The size of a component in a GridBagLayout is not necessarily
constrained to occupy the entire assigned region. Instead, the
component can have its natural size, its natural height with the full
width of its region, or its natural width with the full height of its
region. Of course, it can also be constrained to fill the region. This
property is known as the fill of a component. In Figure B-2, the
buttons labelled “5” and “6” do not fill the vertical space available
to them; similarly, the button labelled “8” fills vertically, but not
horizontally.

B

Using the GridBagLayout Manager B-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Figure B-3 Sample GridBagLayout Showing the Effect of
Anchor

Where a component does not fill the entire region allocated to it, its
position within that region can be controlled using a concept called
anchor. Anchor takes one of nine values. Eight of these values are
compass points, NORTH, SOUTHWEST,and so on. The ninth is
CENTER. If a component has its natural size and an anchor of
NORTHWEST, then it is positioned at the top left of its allocated
region.

In Figure B-3, the two examples have differing anchor settings.
Specifically, the button labelled “5” has a CENTERanchor in the left-
hand example, but a SOUTHanchor in the right-hand example. The
button labelled “8” has a CENTERanchor in the left-hand example,
but a WESTanchor in the right-hand example.

Clearly, there is some interaction between anchor and the fill of a
component. If the fill specifies that the component occupies the
entire region alloted to it, then anchor has no significance. If the fill
value specifies that a component occupies the allocated region
entirely in the horizontal direction, then the only anchor values
that are useful are NORTH, CENTER, and SOUTH.

B

B-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The GridBagConstraints Class

You have seen the principles by which the GridBagLayout
manager makes positioning decisions, but not how those
preferences are supplied to it. This is done using an object of the
class GridBagConstraints . Each time you add a Component to a
Container that has a GridBagLayout , you provide an instance of
GridBagConstraints that contains the values needed to describe
the layout of that Component .

The most significant fields of the GridBagConstraints object are:

● gridx and gridy . These integer fields specify the row and
column numbers at the top left of the component’s region.
They are effectively the component’s coordinates.

● gridwidth and gridheight . These integer fields describe the
number of columns and rows, respectively, over which the
component’s region extends.

B

Using the GridBagLayout Manager B-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

● fill . This field indicates how the component is sized within
its region. Values for this field are constants in the
GridBagConstraints class. The four symbolic values are:
NONE, HORIZONTAL, VERTICAL, and BOTH.

● anchor . This field indicates the anchor applied to the
component. Values are constants in the GridBagConstraints
class. The nine symbolic values are: NORTH, SOUTH, EAST, WEST,
NORTHEAST, NORTHWEST, SOUTHEAST, SOUTHWEST, and CENTER.

● weightx and weighty . These fields are somewhat unusual in
that they apply to the column and row to which the component
is being added, not the component itself. The weight values are
used to distribute “spare” space when the layout has more
screen area available to it than it needs. The actual values of
weight are significant only in a relative sense. That is, it doesn’t
matter if a particular value is 5 or 0.5. What matters is the
proportion of the weight allocated to the sum of all weights
allocated.

Note – Avoid setting weights on the same row or column for more
than one component. Doing so confuses anyone reading the
program.

B

B-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Designing With GridBagLayout

Design Steps

When designing with a GridBagLayout :

1. Sketch the components as you want them to appear.

2. Make another sketch with the window enlarged, and plan how
you want the extra space to be allocated.

B

Using the GridBagLayout Manager B-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Basic, unexpanded layout proposal

Basic, expanded layout proposal

B

B-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

3. Identify the gridlines based on the edges of components in
your pictures. Be particularly careful if your diagram shows
two component edges in nearly the same alignment—did you
mean them to be aligned? When you have identified the
gridlines on one drawing, do this again on the second sketch.

4. Decide how the extra space is to be allocated. In some cases, it
might be easiest to do this in terms of percentages. Once you
have determined your percentages, you can use them as
weightx and weighty values directly (even if they do not
finally add up to 100).

Extra column

Loose component

0 1 2 3 4

0 1 2 3 4

0

1

2

3

4

5

6

0

1

2

3

4

5

6

B

Using the GridBagLayout Manager B-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The expanded version brings out the existence of an extra column,
which is not really noticeable until the display is expanded. You
would be unlikely to recognize this column’s existence in the
unexpanded diagram.

The “loose component” in column 0, third row down, does not
match any of the grid cell boundaries. Rather, it appears to overlap
rows 4 and 5. The component actually is located in the region that
extends over rows 3 through to 6 inclusive, and is vertically
centered in that region.

Columns 0, 2, and 4 do not change size, but columns 1 and 3 do. It
is not entirely clear how the space is shared, but a reasonable
working guess is that new space is allocated equally between them.

Rows 0, 1, and 6 do not change size, but rows 2 through 5 all
stretch equally.

5. Now that you have designed the underlying grid, you can start
to position each component over that grid. Start by identifying
the top left row and column for each component region; this
gives you the gridy and gridx values for each.

1

2 3 4 5

6 7

8

9

10

11

12

B

B-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

6. Determine the width and height of the region in terms of
columns and rows; these are the gridwidth and gridheight
values.

7. For each component, consider how it occupies the region
allocated to it. If it fills the region entirely, it has a fill value
of BOTH. If it fills the region from side to side but not vertically,
then its fill value is HORIZONTAL. If it fills its region vertically
but not horizontally, then its fill value is VERTICAL. If it does
not fill the region in either direction, then its fill value is NONE.

Component gridx gridy gridwidth gridheight

1 0 0 5 1

2 0 1 1 1

3 1 1 1 1

4 2 1 1 1

5 3 1 2 1

6 0 2 1 4

7 1 2 3 4

8 4 2 1 1

9 4 3 1 1

10 4 4 1 1

11 4 5 1 1

12 0 6 5 1

1

2 3 4 5

6 7

8

9

10

11

12

B

Using the GridBagLayout Manager B-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The fill value should be BOTHfor all components that take the full
size of their available regions. This is important even if the region
does not stretch. For example, the cells occupied by components 8,
9, 10, and 11 do not stretch horizontally, so you might think that a
horizontal component of fill was unnecessary. However, if you
specify only a fill of VERTICAL, you will find that the components
are given their preferred sizes, and because their labels are shorter,
components 8 and 9 are slightly smaller than components 10 and
11.

So, in this example, the only component that is not set to fill BOTHis
component 6. This should have a fill value of HORIZONTAL, to
ensure that it takes up the full width of its region.

8. For each component, consider how it is positioned within the
region allocated to it and hence the anchor value for the
component. If a component has a fill value of BOTH, then the
anchor value is irrelevant. Components with HORIZONTAL
fill should have an anchor of NORTH, CENTER, or SOUTH.
Components with VERTICAL fill should be anchored WEST,
CENTER, or EAST. Components with a fill of NONE, can have
an anchor of any of the nine values.

Anchor values are significant only where a component’s region is
larger than the component itself. In this example, this applies only
to component 6. Here the component must be centered vertically,
although it fills the available width. Any of the anchor values EAST,
WEST, or CENTERwould result in the required behavior, but CENTER
is the most reasonable because it most directly expresses the
required result.

9. Add the components and allocate the weights to the rows and
columns. Choose one component for each row and one
component for each column for the weight values. These
components should occupy only one column if they are
providing weightx , and one row if they are providing

B

B-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

weighty . If possible, use components on the top row to specify
weightx and components in the left column to specify
weighty .

To allocate weights to the rows and columns, identify one
component in each column that needs to stretch horizontally, and
one component in each row that stretches vertically. These
components should occupy only a single cell along the axis of
stretch, and be near the edges of the layout. This improves the
consistency and readability of your code.

For this example, the stretch is in columns 1 and 3, and rows 2
through 5.

Components 8, 9, 10, and 11 are suitable to apply the vertical
weight values for rows 2 through 5, and component 3 is
appropriate to apply the horizontal weight for column 1. However,
there is no obvious component with which a horizontal weight can
be applied to
column 3.

0 1 2 3 4

0

1

2

3

4

5

6

1

2 54

1

3

6
7

8

9

12

10

11

B

Using the GridBagLayout Manager B-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

One way to approach this is to add a dummy component to the cell
at row 2, column 3. This component must have zero by zero size so
that it does not obscure component 8. A new Component(){} is
suitable for this because its preferred size is zero by zero, unless
explicitly set otherwise. Once added into row 3 column 4, it
remains at zero size provided it has a fill value of NONE.

Figure 2-4 Sample Screen Shots

Once the GridBagConstraints values have been applied to
components added to a GridBagLayout , the desired behavior is
achieved. The screen shots shown here are derived from the
implementation program listed on the next page.

B

B-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The main part of the program for this example, with the values
used in the GridBagConstraints, is shown as follows:

1 import java.awt.*;
2 import javax.swing.*;
3
4 public class ExampleGB {
5 public static void main(String args[]) {
6 JFrame f = new JFrame("GridBag Example");
7 Container c = f.getContentPane();
8 c.setLayout(new GridBagLayout());
9 GridBagAdder.add(c, new Canvas(), 3, 2, 1, 1, 1, 0,
10 GridBagConstraints.NONE, GridBagConstraints.CENTER);
11 GridBagAdder.add(c, new JButton("1"), 0, 0, 5, 1, 0, 0,
12 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
13 GridBagAdder.add(c, new JButton("2"), 0, 1, 1, 1, 0, 0,
14 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
15 GridBagAdder.add(c, new JButton("3"), 1, 1, 1, 1, 1, 0,
16 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
17 GridBagAdder.add(c, new JButton("4"), 2, 1, 1, 1, 0, 0,
18 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
19 GridBagAdder.add(c, new JButton("5"), 3, 1, 2, 1, 0, 0,
20 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
21 GridBagAdder.add(c, new JButton("6"), 0, 2, 1, 4, 0, 0,
22 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
23 GridBagAdder.add(c, new JButton("7"), 1, 2, 3, 4, 0, 0,
24 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
25 GridBagAdder.add(c, new JButton("8"), 4, 2, 1, 1, 0, 1,
26 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
27 GridBagAdder.add(c, new JButton("9"), 4, 3, 1, 1, 0, 1,
28 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
29 GridBagAdder.add(c, new JButton("10"), 4, 4, 1, 1, 0, 1,
30 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
31 GridBagAdder.add(c, new JButton("11"), 4, 5, 1, 1, 0, 1,
32 GridBagConstraints.BOTH, GridBagConstraints.CENTER);
33 GridBagAdder.add(c, new JButton("12"), 0, 6, 5, 1, 0, 0,
34 GridBagConstraints.HORIZONTAL, GridBagConstraints.CENTER);
35 f.pack();
36 f.setVisible(true);
37 }

B

Using the GridBagLayout Manager B-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Supporting the code on the previous page is this inner class. It
provides the add method that simplifies setting up the
GridBagConstraints values.

38 static class GridBagAdder {
39 // OK to reuse this as we overwrite all elements every time
40 // Note that this is not threadsafe however!
41 static GridBagConstraints cons = new GridBagConstraints();
42 public static void add(Container cont,Component comp,int x, int
y,
43 int width,int height,int weightx,int weighty,
44 int fill,int anchor) {
45
46 cons.gridx = x;
47 cons.gridy = y;
48 cons.gridwidth = width;
49 cons.gridheight = height;
50 cons.weightx = weightx;
51 cons.weighty = weighty;
52 cons.fill = fill;
53 cons.anchor = anchor;
54 cont.add(comp, cons);
55 }
56 }
57 }

B

B-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

RELATIVE and REMAINDER

Where a layout involves a large number of components in a fairly
simple layout, it can be time consuming to set up the gridx and
gridy values for each one. This situation is aggravated when you
make changes; for example, to insert one new component.

To help with this situation, you can use the value RELATIVE to
indicate that a component should be positioned just to the right, or
just underneath, the one previously added.

In addition, you can use RELATIVE as a value in the gridwidth
and gridheight fields, to make the component extend over all
rows below, or all columns to the right, of the one to which the
component is added, except the last row or column.

If you set the value REMAINDERin a gridwidth or gridheight
field, the component extends to the last row or column.

B

Using the GridBagLayout Manager B-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Careful use of these shorthand features can make code easier to
write and shorter, which can make it easier to read. However, in
some situations, the layout is dependent on the order of adding
components and actually makes the code more difficult to read.

C-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

TheAWTEventModel C

This appendix describes how to write code to handle events that occur
at the user interface.

C

C-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

What Is an Event?

When the user performs an action at the user interface, this causes
an event to be issued. Events are objects that describe what
happened. A number of different types of event classes exist to
describe different general categories of user action.

Event Sources

An event source (at the user interface level) is the result of some
user action on an AWT component. For example, a mouse click on
a button component generates (sources) an ActionEvent . The
ActionEvent is an object (class) that contains the following
information about the status of the event:

● ActionCommand – The command name associated with the
action

● Modifiers – Any modifiers held during the action

Event Handlers

When an event occurs, the event is received by the component with
which the user interacted; for example, the button, slider, text field,
and so on. An event handler is a method that receives the Event
object so that the program can process the user’s interaction.

How Events Are Processed

Between JDK 1.0 and JDK 1.1, there were significant changes in the
way that events are received and processed. This section compares
the previous event model (hierarchical) and the current event
model (delegation).

C

The AWT Event Model C-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Hierarchical Versus Delegation Event Model

JDK 1.0 uses a hierarchical event model and the Java 2 Platform (as
well as the JDK 1.1) uses a delegation event model. While this
course covers the Java 2 Platform, it is important to recognize how
these two event models compare.

Hierarchical Model (JDK 1.0)

The hierarchical event model is based on containment. Events are
sent to the component first, and then propagate up the containment
hierarchy. Events that are not handled at the component level
automatically continue to propagate to the component’s container.

Figure C-1 Hierarchical Event Handling

For example, in Figure C-1, a mouse click on the Button object
(contained by a Panel on a Frame) sends an action event to the
Button . If it is not handled by the Button , the event is then sent to
the Panel , and if not handled there, the event is sent to the Frame.

Frame

Button

Panel

Action event

C

C-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

There is an obvious advantage to this model:

● It is simple and well-suited to an object-oriented programming
environment; after all, Java technology components extend
from the java.awt.Component class, which is where the
handleEvent method resides.

However, there are some disadvantages:

● There is no simple way to filter events.

● To handle events, you must either subclass the component that
receives the event or create a big handleEvent method at the
base container.

C

The AWT Event Model C-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Delegation Model

A new event model was introduced in JDK 1.1, called the
delegation event model. In the delegation event model, events are
sent to a component, but it is up to each component to register an
event handler routine (called a listener) to receive the event. In this
way, the event handler can be in a class separate from the
component. The handling of the event is then delegated to the
separate class.

Figure C-2 Delegation Event Handling

Events are objects that are reported only to registered listeners.
Every event has a corresponding listener class (interface). The class
that implements the listener interface defines each method that can
receive an Event object.

Frame

Button

Panel

actionPerformed (ActionEvent e) {

...
}

Panel and Frame
event handlers

Action event

Action handler

C

C-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

For example, the following is a simple Frame with a single Button
on it:

1 import java.awt.*;
2 import ButtonHandler;
3 public class TestButton {
4 public static void main(String args[]) {
5 Frame f = new Frame("Test");
6 Button b = new Button("Press Me!");
7 b. addActionListener (new ButtonHandler());
8 f.add("Center", b);
9 f.pack();
10 f.setVisible(true);
11 }
12 }

The ButtonHandler class is the handler class to which the event is
delegated.

1 import java.awt.event.*;
2 public class ButtonHandler implements

ActionListener {
3 public void actionPerformed(ActionEvent e) {
4 System.out.println("Action occurred");
5 }
6 }

Where:

● The Button class has an
addActionListener(ActionListener) method.

● The ActionListener interface defines a single method,
actionPerformed , which receives an ActionEvent.

● When a Button object is created, the object can register a
listener for ActionEvents through the addActionListener
method, specifying the class object that implements the
ActionListener interface.

● When the Button object is clicked on using the mouse, an
ActionEvent is sent to any ActionListener that is registered
through the actionPerformed (ActionEvent) method.

C

The AWT Event Model C-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

There are several advantages to this approach:

● Events are not accidentally handled; in the hierarchical model
it is possible for an event to propagate to a container and get
handled at a level that is not expected.

● You can create filter (adapter) classes to classify event actions.

● There is better distribution of work among classes.

● It provides support for JavaBeans™.

There are also some issues and disadvantages with this model that
are worth considering:

● It is more complex, at least initially, to understand.

● Moving code with the hierarchical event model to the
delegation event model is not easy.

● Although the current release of the Java programming
language supports the JDK 1.0 hierarchical event model in
addition to the delegation model, you cannot mix the two
event models.

C

C-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

GUI Behavior

Categories of Events

The general mechanism for receiving events from components has
been described in the context of one single type of event. A number of
events are defined in the java.awt.event package, and you can add
third-party components to this list.

For each category of events, there is an interface that must be defined
by any class that wants to receive the events. That interface demands
that one or more methods be defined. Those methods are called when
particular events arise. Table C-3 lists the event categories, and gives
the interface name for each category and the methods demanded. The
method names are mnemonic, indicating the conditions that cause the
method to be called.

Figure C-3 Event Categories

java.util.EventObject

java.awt.AWTEvent
ActionEvent

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

WindowEvent

KeyEvent

MouseEvent

java.beans.beanContext.BeanContextEvent

C

The AWT Event Model C-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Table C-1 Event Categories

Category Interface Name Methods

Action ActionListener actionPerformed(ActionEvent)

Item ItemListener itemStateChanged(ItemEvent)

Mouse
motion

MouseMotionListener mouseDragged(MouseEvent)

mouseMoved(MouseEvent)

Mouse
button

MouseListener mousePressed(MouseEvent)

mouseReleased(MouseEvent)

mouseEntered(MouseEvent)

mouseExited(MouseEvent)

mouseClicked(MouseEvent)

Key KeyListener keyPressed(keyEvent)

keyReleased(keyEvent)

keyTyped(keyEvent)

Focus FocusListener focusGained(FocusEvent)

focusLost(FocusEvent)

Adjustment AdjustmentListener adjustmentValueChanged(AdjustmentEvent)

Component ComponentListener componentMoved(ComponentEvent)

componentHidden(ComponentEvent)

componentResized(ComponentEvent)

componentShown(ComponentEvent)

Window WindowListener windowClosing(WindowEvent)

windowOpened(WindowEvent)

windowIconified(WindowEvent)

windowDeiconified(WindowEvent)

windowClosed(WindowEvent)

C

C-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Category Interface Name Methods

windowActivated(WindowEvent)

windowDeactivated(WindowEvent)

Container ContainerListener componentAdded(ContainerEvent)

componentRemoved(ContainerEvent)

Text TextListener textValueChanged(TextEvent)

Table C-1 Event Categories

C

The AWT Event Model C-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

A More Complex Example

A more complex example might be tracking the movement of the
mouse while the mouse button is pressed (mouse dragging), and
detecting mouse movement.

The events caused by moving the mouse with a button pressed can
be picked up by a class that implements the
MouseMotionListener interface. That interface requires two
methods, mouseDragged and mouseMoved. Even if you are
interested only in the drag movement, you must provide both
methods. However, the body of the mouseMoved method can be
empty.

To pick up mouse events, including mouse clicking, implement the
MouseListener interface. This interface includes several events,
including mouseEntered , mouseExited , mousePressed ,
mouseReleased , and mouseClicked .

When the mouse drag or key typed events occur, report the
information about the position of the mouse and the key that was
pressed into label fields.

C

C-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The following program tracks the movement of the mouse when
the mouse button is pressed.

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class TwoListen implements
5 MouseMotionListener, MouseListener {
6 private Frame f;
7 private TextField tf;
8
9 public static void main(String args[]) {
10 TwoListen two = new TwoListen();
11 two.go();
12 }
13
14 public void go() {
15 f = new Frame("Two listeners example");
16 f.add (new Label ("Click and drag the mouse"),

BorderLayout.NORTH);
17 tf = new TextField (30);
18 f.add (tf, BorderLayout.SOUTH);
19
20 f.addMouseMotionListener(this);
21 f.addMouseListener (this);
22 f.setSize(300, 200);
23 f.setVisible(true);
24 }
25
26 // These are MouseMotionListener events
27 public void mouseDragged (MouseEvent e) {
28 String s =
29 "Mouse dragging: X = " + e.getX() +
30 " Y = " + e.getY();
31 tf.setText (s);
32 }
33
34 public void mouseMoved (MouseEvent e) {
35 }
36
37 // These are MouseListener events
38 public void mouseClicked (MouseEvent e) {
39 }
40
41 public void mouseEntered (MouseEvent e) {
42 String s = "The mouse entered";

C

The AWT Event Model C-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

43 tf.setText (s);
44 }
45
46 public void mouseExited (MouseEvent e) {
47 String s = "The mouse has left the building";
48 tf.setText (s);
49 }
50
51 public void mousePressed (MouseEvent e) {
52 }
53
54 public void mouseReleased (MouseEvent e) {
55 }
56 }

Declaring Multiple Interfaces

The class is declared using the following:

implements MouseMotionListener, MouseListener

You can declare multiple interfaces by using comma separation.

Listening to Multiple Sources

The following methods:

f.addMouseListener(this);
f.addMouseMotionListener(this);

cause handler methods to be called in the TwoListen class. You can
listen to as many event sources as you want, both different
categories of event and different sources (for example, Frames and
Buttons).

Obtaining Details About the Event

When the handler methods, such as mouseDragged, are called,
they receive an argument that contains potentially important
information about the original event. To determine the details of
what information is available for each category of event, check the
appropriate class documentation in the java.awt.event
package.

C

C-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Multiple Listeners

The AWT event listening framework allows multiple listeners to be
attached to the same component. In general, if you want to write a
program that performs multiple actions based on a single event,
code that behavior into your handler method. However, sometimes
a program’s design requires multiple unrelated parts of the same
program to react to the same event. This might happen if, say, a
context sensitive help system is being added to an existing
program.

The listener mechanism allows you to call an addListener method
as many times as is needed, specifying as many different listeners
as your design requires. All registered listeners have their handler
methods called when the event occurs.

Note – The order in which the handler methods are called is
undefined. Generally, if the order of invocation matters, then the
handlers are not unrelated, and this facility is not used to call them.
Instead, register only the first listener, and have that one call the
others directly.

C

The AWT Event Model C-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Event Adapters

It is a lot of work to have to implement all of the methods in each
of the Listener interfaces, particularly the MouseListener
interface and ComponentListener interface.

The MouseListener interface, for example, defines the following
methods:

● mouseClicked (MouseEvent)

● mouseEntered (MouseEvent)

● mouseExited (MouseEvent)

● mousePressed (MouseEvent)

● mouseReleased (MouseEvent)

As a convenience, the Java programming language provides an
adapter class for each Listener interface that implements the
appropriate Listener interface, but leaves the implemented
methods empty.

This way, the Listener routine that you define can extend the
Adapter class and override only the methods that you need.
For example:

1 import java.awt.*;
2 import java.awt.event.*;
3
4 public class MouseClickHandler extends MouseAdapter {
5
6 // We just need the mouseClick handler, so we use
7 // the Adapter to avoid having to write all the
8 // event handler methods
9 public void mouseClicked (MouseEvent e) {
10 // Do stuff with the mouse click...
11 }
12 }

D-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

SwingFoundations D

This appendix introduces some of the essential aspects of the Swing
set and addresses issues that you must understand to succeed in
translating a GUI from the AWT to Swing. This appendix also
introduces some fundamental Swing components, including Icons and
Buttons.

D

D-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Comparing Swing and AWT Components

Naming and Event Model

The AWT, while limited, provides a selection of important
components, and the functionality is replicated in the Swing set. In
general, the Swing equivalent of an AWT component has the same
name with the addition of the letter “J,” so Button becomes
JButton , Label becomes JLabel , and so on.

For the most part, the behavior of these AWT-equivalent Swing
components is an exact replica of the AWT version, although there
might be some additional functionality. However, one important
restriction, is that the Swing components require the use of the
delegation event model.

Therefore, converting a user interface from AWT to Swing is fairly
straightforward, requiring little more than the addition of “J” in
front of the AWT component class names.

D

Swing Foundations D-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Selecting Swing or AWT

Although the Swing components do work fairly well when used
alongside AWT components, complications can arise. Because of
this, you should ensure that a user interface uses exclusively Swing
components and does not mix Swing and AWT in the same
program.

D

D-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Converting From AWT to Swing

Sometimes, simply adding a “J” to the front of classnames is not
enough to make a complete translation from AWT to Swing.

● The Checkbox class in AWT is replaced by the JCheckBox
class. There are two aspects to note here:

▼ The spelling of JCheckBox has a capital B, unlike
Checkbox.

▼ The Swing set has a separate class, JRadioButton , that
should be used with ButtonGroup objects to implement
radio button behavior.

● In Swing, components do not have automatic scrolling.
Instead, components like JList and JTextArea are added to
the JScrollPane container if they need scrollbars.

● As the class names change by the addition of a “J,” the method
setMenuBar of a java.awt.Frame becomes setJMenuBar in
a JFrame .

D

Swing Foundations D-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

New Components in Swing

In addition to replacements for the existing AWT component set,
Swing provides many new components. Some of these are
relatively simple to use, and probably do not require much
discussion. A few, however, do need to be covered in more detail.
They are reserved for discussion later in this appendix.

You can investigate the full set of Swing components using the
SwingSet demonstration that is provided with the Swing or Java 2
platform distribution.

D

D-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Top-Level Swing Containers

As previously mentioned, you should not use AWT and Swing
components in the same layout, so you should investigate the top-
level Swing containers that form the starting point for your
interfaces.

There are three top-level Swing containers: JFrame , JWindow, and
JDialog . There is also a special class, JApplet, which is not
strictly a top-level container but is worth mentioning here because
it should be used as the “top level” of any applet that uses Swing
components.

Each of these four containers (including JApplet) implements a
special interface called RootPaneContainer .

D

Swing Foundations D-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Using a RootPaneContainer

RootPaneContainer is a container for a number of other panes;
these are the root, glass, layered, and content panes. Most of the
time, you should be concerned with only the content pane.

To perform most operations, such as setting a layout manager or
adding new components to the container as a whole, refer to the
content pane. It is obtained from a RootPaneContainer using the
method getContentPane .

Content panes have a BorderLayout by default, so, to add a
JButton to a JFrame referred to by the variable myFrame, use code
of this form:

myFrame.getContentPane().add(myJButton, BorderLayout.NORTH);

D

D-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Root, Glass, and Layered Panes

The JRootPane forms the basis of a stack of several components. It
contains a GlassPane and a LayeredPane , and has a layout
manager that controls all the other panes and the menu if it is
present.

The LayeredPane can contain a menu bar, and the all-important
ContentPane .

A LayeredPane allows a specific stacking order to be enforced on
the components that it contains. This is used for pop-up menus,
tool tips, and similar elements.

The GlassPane is a transparent pane that is used to collect events.

D

Swing Foundations D-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

JFrame Essentials

Much of the time when you use a RootPaneContainer , it is
actually a JFrame . This class is the Swing replacement for a
java.awt.Frame class.

Because the JFrame is a RootPaneContainer , you must take care
referring to the content pane while adding components or setting a
layout manager.

D

D-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Reacting to the System Menu

In addition to being the most common top-level Swing container,
the JFrame has a useful enhancement over the original
java.awt.Frame . It has behavior attached to its system menu
button. In AWT, if you wanted a window to close when the system
menu was used, you had to code this behavior using a listener.
With a JFrame , you have a choice of three reactions that can be set
using the setDefaultCloseOperation method. The options
are:

● DO_NOTHING_ON_CLOSE

● HIDE_ON_CLOSE

● DISPOSE_ON_CLOSE

These constants are declared in the JFrame class because JFrame
implements the interface javax.swing.W indowConstants .

Note – If you close the last or only JFrame , and request
DISPOSE_ON_CLOSEbehavior, the AWT thread and the Java Virtual
Machine (JVM) do not exit.

D

Swing Foundations D-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The Icon Interface

Most Swing components support graphics. You can place images in
buttons, labels, lists, and menus. At the heart of all of the graphics
capabilities in Swing is the Icon interface.

The Icon interface provides you with a means of drawing a
picture. An implementation of the Icon interface can display a
graphic file, such as a graphics interchange format (GIF) or joint
photographic group (JPEG) image. You can also use it to create a
“calculated” image.

D

D-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Implementing an Icon

The simplest way to create an Icon interface is to supply an image
file to the constructor of the ImageIcon class. Three constructors
provide different ways of specifying the location of the image file:

Icon icon = new ImageIcon(Image i);
Icon icon = new ImageIcon(String filename);
Icon icon = new ImageIcon(URL url);

These constructors create an Icon object that you can use with
most of the other Swing components.

You can also create an Icon by implementing the Icon interface in
a new class of your own. To do this, you must implement the
methods paintIcon , getIconWidth , and getIconHeight .

D

Swing Foundations D-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JLabel Class

One of the simplest Swing components is the JLabel . This class
contains all of the functionality associated with the AWT Label and
supports icons.

JLabel has a variety of constructors that enable you to specify text,
an Icon , or both.

You can construct a label using only an Icon . This is a convenient
way to put an image into an application.

Additionally, you can specify how the text and the Icon are to
align. The alignment feature uses values defined in the
SwingConstants interface.

D

D-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Tool Tips

Swing components support tool tips. Tool tips are short help
messages that are displayed when the mouse cursor pauses over a
component.

JLabel tipLabel = new JLabel("This label has a
tooltip");
tipLabel.setToolTipText("This is a tooltip");
add(tipLabel);

D

Swing Foundations D-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Buttons in Swing

The Swing package provides versions of all the AWT buttons. Like
other Swing components, Swing buttons can display graphics as
well as text.

You use the JButton class to create a basic push button in Swing.

D

D-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JButton Class

You can create JButton objects with a simple String argument to
the constructor, in which case they display that text as their label,
just as the AWT button did.

Creating graphical buttons is straightforward if you use an Icon
that defines the graphic you want displayed.

Icon cutIcon = new ImageIcon("cut32x32.gif");
JButton cutButton = new JButton("Cut", cutIcon);

Clicking on a JButton generates an ActionEvent . You might
want to set the action command property of your button so that the
ActionEvent carries a particular command string.

If you create a JButton with text, the label text is used by default
as the action command string. However, if you create a graphics-
only button or if the default action command string (which is the
text label of the button) is not what you need, define the action
command explicitly using the setActionCommand method.

D

Swing Foundations D-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JCheckBox Class

Checkboxes are directly supported by Swing, using the JCheckBox
class. The class name has a capital “B” in it, which is different from
the corresponding java.awt.Checkbox class.

Like other Swing components, you can use icons on a JCheckBox.

D

D-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JRadioButton Class

The JRadioButton class provides the radio buttons for Swing.
Individually, a JRadioButton toggles on and off each time it is
selected, just like a JCheckBox . To obtain the mutual exclusion
behavior of a radio button, add the buttons to a ButtonGroup . A
ButtonGroup is a manager that ensures that only one button is
selected at one time. In the AWT package, this behavior was
handled by the CheckboxGroup class, but Swing uses a more
generic ButtonGroup class to manage all types of buttons.

D

Swing Foundations D-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

D

D-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JComboBoxClass

The Swing package also provides a combo box. The closest
equivalent in the AWT package is the Choice button. However,
the JComboBox can be made “editable.” If it is not editable, it
behaves precisely like the Choice button. If it is editable, however,
you have the option of selecting one of the standard choices or
typing in a new value.

The JComboBox class has a convenient constructor that takes an
array of objects to use as the initial choices. You can add and
remove choices using the addItem and removeItem methods,
respectively.

D

Swing Foundations D-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The JMenu Class

Swing provides a set of menu components. As with other Swing
components, you can add icons to your menus. However, the menu
items themselves are now subclasses of AbstractButton . The
AbstractButton class is the parent class of both buttons and
menu items, so this means that you can use the same event handler
for buttons and menu items.

D

D-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Additional Features of the JMenu Class

Keyboard Accelerators

The JMenu class supports keyboard accelerators.

D

Swing Foundations D-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Menu Positioning

You can place menu bars anywhere in your application. This is a
significant change from the menu behavior in AWT. Because the
JMenuBar class is an extension of JComponent , you can position a
JMenuBar anywhere you would add items, such as buttons or
labels; they are no longer restricted to the physical frames of your
application. Be aware that positioning menu bars at locations other
than the top of a window might confuse users of your application.

E-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

TheAWTComponentLibrary E

This appendix describes the key AWT components used to build user
interfaces for programs.

E

E-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Facilities of the AWT

The AWT provides a wide variety of standard facilities. This
appendix introduces the components that are available to you, and
outlines any particular pitfalls that you might need to know when
using these components.

You should be aware of the full set of UI components so that you
can choose the appropriate ones when building your own
interfaces.

The AWT components provide mechanisms for controlling their
appearance, specifically in terms of color and the font used for text
display. They also support printing. This facility was added after
JDK1.0.

E

The AWT Component Library E-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Button

You have already learned about the Button component. It provides
a basic “push to activate” user interface component. It can be
constructed with a textual label that acts as a guide to the user as to
its use.

Button b = new Button(“Sample”);
add(b);

Use the ActionListener interface to react to button presses. The
getActionCommand method of the ActionEvent that is issued
when the button is clicked on is a label string by default. You can
modify this using the button’s setActionCommand method.

E

E-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Checkbox

The checkbox component provides a simple “on/off” input device
with a textual label beside it.

Checkbox one = new Checkbox("One", false);
Checkbox two = new Checkbox("Two", false);
Checkbox three = new Checkbox("Three", true);
add(one);
add(two);
add(three);

Selection, or deselection, of a checkbox is transmitted to the
ItemListener interface. The ItemEvent that is passed indicates
whether the operation selected or deselected a checkbox using the
getStateChange method. This method returns the constant
ItemEvent.DESELECTED or ItemEvent.SELECTED as appropriate.
The method getItem returns a String object that represents the
label string of the affected checkbox.

1 class Handler implements ItemListener {
2 public void itemStateChanged(ItemEvent ev) {
3 String state = “deselected”;
4 if (ev.getStateChange() ==
ItemEvent.SELECTED){
5 state = “selected”;
6 }
7 System.out.println(ev.getItem() + “ “ +
state);
8 }
9 }

E

The AWT Component Library E-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

CheckboxGroup – Radio Buttons

You can create checkboxes using a special constructor that takes an
additional argument, a CheckboxGroup . If you do this, the
appearance of the checkboxes is changed and all of the checkboxes
that are related to the same checkbox group exhibit radio button
behavior.

CheckboxGroup cbg = new CheckboxGroup();
Checkbox one = new Checkbox("One", cbg, false);
Checkbox two = new Checkbox("Two", cbg, false);
Checkbox three = new Checkbox("Three", cbg, true);
add(one);
add(two);
add(three);

E

E-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Choice

The choice component provides a “select one from this list” type
input.

Choice c = new Choice();
c.addItem("First");
c.addItem("Second");
c.addItem("Third");
add(c);

When the choice is clicked on, it displays the list of items that have
been added to it. The items added are String objects.

The ItemListener interface is used to observe changes in the
choice. The details are the same as for the checkbox.

E

The AWT Component Library E-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Canvas

A Canvas component provides a blank (background colored)
space. It has a preferred size of zero by zero, so you must ensure
that the layout manager gives it a nonzero size.

The space can be used to receive keyboard or mouse input, such as
drawing or writing text. Generally the Canvas is used either as is to
provide general drawing space, or as the basis of development to
provide a working area for a custom component.

The Canvas can listen to all the events that are applicable to a
general component. Notably you might want to add KeyListener ,
MouseMotionListener , or MouseListener objects to it to allow it
to respond in some way to user input. The methods in these
interfaces receive KeyEvent and MouseEvent objects, respectively.

Note – To receive key events in a canvas, it is necessary to call the
requestFocus method of the canvas. If this is not done, you
cannot direct keystrokes to the Canvas . Instead, the keys will go to
another component, or perhaps be lost entirely. The sample code
overleaf demonstrates this.

E

E-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

The following is an example of a Canvas component:

1 import java.awt.*;
2 import java.awt.event.*;
3 import java.util.*;
4
5 public class MyCanvas
6 implements KeyListener, MouseListener {
7 Canvas c;
8 String s = "";
9
10 public static void main(String args[]) {
11 Frame f = new Frame("Canvas");
12 MyCanvas mc = new MyCanvas();
13 mc.c = new Canvas();
14 f.add("Center", mc.c);
15 f.setSize(150, 150);
16 mc.c.addMouseListener(mc);
17 mc.c.addKeyListener(mc);
18 f.setVisible(true);
19 }
20
21 public void keyTyped(KeyEvent ev) {
22 System.out.println("keyTyped");
23 s += ev.getKeyChar();
24 // Not a good drawing technique!!!
25 c.getGraphics().drawString(s, 0, 20);
26 }
27
28 public void mouseClicked(MouseEvent ev) {
29 System.out.println("mouseClicked");
30 // force the focus onto the canvas
31 c.requestFocus();
32 }
33 public void keyPressed(KeyEvent ev) {
34 System.out.println("keyPressed");
35 }
36
37 public void keyReleased(KeyEvent ev) {
38 System.out.println("keyReleased");
39 }
40 public void mousePressed(MouseEvent ev) {
41 System.out.println("mousePressed");
42 }
43
44 public void mouseReleased(MouseEvent ev) {

E

The AWT Component Library E-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

45 System.out.println("mouseReleased");
46 }
47
48 public void mouseEntered(MouseEvent ev) {
49 System.out.println("mouseEntered");
50 }
51
52 public void mouseExited(MouseEvent ev) {
53 System.out.println("mouseExited");
54 }
55 }

E

E-10 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Label

A Label object displays a single line of text. The program can
change the text, but the user cannot. No special borders or other
decoration are used to delineate a label.

Label l = new Label(“Hello”);
add(l);

Label s are not usually expected to handle events, but can do so in
the same manner as a Canvas . That is, keystrokes can be picked up
reliably only by calling requestFocus() .

E

The AWT Component Library E-11
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

TextField

The TextField component is a single-line text device.

TextField f = new TextField(“Single line”, 30);
add(f);

Because only one line is possible, an ActionListener can be
informed using actionPerformed when the Enter or Return key is
pressed. You can add other component listeners if desired.

This can be set to read only. It does not display scrollbars in either
direction, but can scroll overly long text left to right if needed.

E

E-12 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

TextArea

The TextArea component is a multiple-line, multiple-column text
input device. You can set it to non-editable using the method
setEditable(boolean) in which case it becomes suitable for text
browsing. It displays horizontal and vertical scrollbars.

TextArea t = new TextArea(“Initial text”, 4, 30);
add(t);

You can add general component listeners to the text area, but
because the text is multi-line, pressing the Enter key puts another
character into the buffer. If you need to recognize completion of
input, add a button that indicates Apply or Commit next to a text
area to allow the user to indicate this.

TextComponent

Both text area and text field are documented in two parts. If you
look up a class called TextComponent , you will find many essential
methods documented there. This is because text area and text field
are subclasses of text component.

You have seen that the constructors for both TextArea and
TextField classes allow you to specify a number of columns for
the display. Remember that the size of a displayed component is
the responsibility of a layout manager, so these preferences might
be ignored. Furthermore, the number of columns is interpreted in
terms of the average width of characters in the font that is being
used. The number of characters that are actually displayed can
vary radically if a proportionally spaced font is used.

E

The AWT Component Library E-13
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

List

A List component allows you to present textual options, which
are displayed in a region that allows several items to be viewed at
one time to the user. The List is scrollable and supports both
single- and multiple-selection modes.

List l = new List(4, true);

The numeric argument to the constructor defines the preferred
height of the list in terms of a number of visible rows. As always,
remember that this can be overridden by a layout manager. The
Boolean argument indicates if the list should allow the user to
make multiple selections.

An ActionEvent, picked up using the ActionListener interface,
is generated by the list in both single- and multiple-selection
modes. Items are selected from the list with a single click. A
double-click is needed to trigger the action of the list.

E

E-14 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Frame

This is the general purpose top-level window. It has window
manager decorations, such as a title bar and resize handles.

Frame f = new Frame(“Frame”);

You can set a Frame’s size using the setSize method. However,
you should use the method pack, which causes the layout
manager to calculate a size that neatly encloses all the components
in the Frame. The size of the Frame is then set accordingly.

You can monitor the Frame’s events using all the listeners
applicable to general components. You can use WindowListener to
recognize, using the windowClosing method, that the Quit button
on the Window Manager menu has been selected.

Do not try to listen to keyboard events from a Frame directly.
Although the technique described for Canvas and Label
components, that is, calling requestFocus , sometimes works, it is
not reliable. If you need to follow keyboard events, add a Canvas ,
Panel , or something similar, to the Frame and add the listener to
that component.

E

The AWT Component Library E-15
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Panel

Panel is a general purpose container. You cannot use a panel in
isolation, unlike Frames , Windows , and Dialogs .

Panel p = new Panel();

Note – Because a Panel does not show up visibly, there is no
screen shot of the Panel .

Panel s can handle events, with the caveat that keyboard focus
must be requested explicitly, as with the Canvas example earlier.

E

E-16 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Dialog

A Dialog is similar to a Frame in that it is a free-standing window
with some decorations. It differs from a Frame in that fewer
decorations are provided and you can request a “modal” dialog,
which takes over all forms of input until it is closed.

Dialog d = new Dialog(f, "Dialog", false);
d.add("Center",
new Label("Hello, I'm a Dialog"));
d.pack();

Dialog s are not normally made visible to the user when they are
first created. Rather they are usually displayed in response to some
other user interface action, such as clicking on a button.

public void actionPerformed(ActionEvent ev) {
d.setVisible(true);
}

Note – Always treat a Dialog as a reusable device; that is, do not
destroy the individual object when it is dismissed from the display,
but keep it for later reuse. The garbage collector can make it too
easy to waste memory, but remember that creating and initializing
objects takes time and should not be done without some reason.

To hide a Dialog , you must call setVisible(false) on it. This is
typically done by adding a WindowListener to it, and awaiting a
call to the windowClosing method in that listener. This parallels
the closing of a Frame.

E

The AWT Component Library E-17
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

FileDialog

This is an implementation of a file selection device. It has its own
free- standing window, with decorations, and allows the user to
browse the file system and select a particular file for further
operations.

FileDialog d = new FileDialog(f, "FileDialog");
d.setVisible(true);
String fname = d.getFile();

In general, it is not necessary to handle events from the
FileDialog . The setVisible(true) call blocks until the user
selects OK, at which point the name of the selected file can be
retrieved. The file name is returned as a String .

E

E-18 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ScrollPane

This provides a general container that cannot be used free
standing. It provides a viewport onto a larger region and scrollbars
to manipulate that viewport.

Frame f = new Frame("ScrollPane");
Panel p = new Panel();
ScrollPane sp = new ScrollPane();
p.setLayout(new GridLayout(3, 4));
sp.add(p);
f.add(sp);
f.setSize(200, 200);
f.setVisible(true);

The ScrollPane creates and manages the scroll bars as necessary.
It holds a single component, and you cannot control the layout
manager it uses. Instead, add a Panel to the Scrollpane ,
configure the layout manager of that Panel, and place your
components into that Panel .

You will not generally handle events on a ScrollPane , rather you
would do so from the components that it contains.

E

The AWT Component Library E-19
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Menus

Menus are different from other components in one crucial way, you
cannot add menus to ordinary containers and have them laid out
by the layout manager. You can only add menus to menu containers.
Generally, you can only start a menu “tree” by putting a menu bar
into a Frame, using the setMenuBar method. From that point, you
can add menus to the menu bar and add menus or menu items to
the menus.

The exception to this is that a pop-up menu can be added to any
component because no layout is required.

The Help Menu

One particular feature of the menu bar is that you can nominate
one menu to be the Help menu. This is done with the method
setHelpMenu(Menu) . The menu to be treated as the Help menu
must be added to the menu bar, and treated in the appropriate
fashion on the local platform. For X/Motif type systems, this
involves flushing the menu entry to the right-hand end of the
menu bar.

E

E-20 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

MenuBar

The MenuBar class provides the horizontal menu. It can be added
only to a Frame object, and forms the root of all menu trees.

Frame f = new Frame(“MenuBar”);
MenuBar mb = new MenuBar();
f.setMenuBar(mb);

The MenuBar does not support listeners. This is because it is
anticipated that all events that occur in the region of a MenuBar are
processed automatically as part of the normal menu behavior.

E

The AWT Component Library E-21
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Menu

The Menuclass provides the basic pull-down menu. It can be added
to either a MenuBar or to another Menu.

MenuBar mb = new MenuBar();
Menu m1 = new Menu("File");
Menu m2 = new Menu("Edit");
Menu m3 = new Menu("Help");
mb.add(m1);
mb.add(m2);
mb.setHelpMenu(m3);

Note – The menus shown here are empty, which accounts for the
appearance of the File menu.

You can add an ActionListener to a Menu object, but this would
be unusual. Normally, menus are used to display and control menu
items, which are discussed next.

E

E-22 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

MenuItem

MenuItem s are the textual leaf nodes of a menu tree. They are
generally added to a menu to complete the picture.

Menu m1 = new Menu("File");
MenuItem mi1 = new MenuItem("Save");
MenuItem mi2 = new MenuItem("Load");
MenuItem mi3 = new MenuItem("Quit");
m1.add(mi1);
m1.add(mi2);
m1.addSeparator();
m1.add(mi3);

You usually add an ActionListener to a MenuItem object to
provide behavior for your menus.

E

The AWT Component Library E-23
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

CheckboxMenuItem

This is a checkable menu item, so you can have selections—on or
off choices—listed in menus.

Menu m1 = new Menu("File");
MenuItem mi1 = new MenuItem("Save");
CheckboxMenuItem mi2 =
new CheckboxMenuItem("Persistent");
m1.add(mi1);
m1.add(mi2);

You should monitor the CheckboxMenuItem using the
ItemListener interface. Therefore, the itemStateChanged
method is called when the checkbox state is modified.

E

E-24 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

PopupMenu

This provides a standalone menu that can be displayed on any
component. You can add menu items or menus to a PopupMenu.

Frame f = new Frame("PopupMenu");
Button b = new Button("Press Me");
PopupMenu p = new PopupMenu("Popup");
MenuItem s = new MenuItem("Save");
MenuItem l = new MenuItem("Load");
b.addActionListener(this);
f.add("Center", b);
p.add(s);
p.add(l);
f.add(p);

Note – The PopupMenu must be added to a parent component. This
is not the same as adding ordinary components to containers. In
this example, the PopupMenu has been added to the enclosing
Frame.

To cause the PopupMenu to be displayed, you must call the show
method. Showing requires a component reference to act as the
origin for the x and y coordinates. Usually you would use the
trigger component for this. In this case, that trigger is the button b.

public void actionPerformed(ActionEvent ev) {
p.show(b, 10, 10);
}

Note – The origin component must be beneath, or contained in, the
parent component in the containment hierarchy.

E

The AWT Component Library E-25
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Controlling Visual Aspects

You can control the appearance of AWT components in terms of
colors used for the foreground and the background, and the font
used for text.

Colors

Two methods that set the colors of a component are:

● setForeground()

● setBackground()

Both of these methods take an argument that is an instance of the
java.awt.Color class. You can use constant colors that are
referred to as Color.red , Color.blue , and so on. The full range
of predefined colors is listed in the documentation page for the
Color class.

In addition, you can create a specific color, such as:

int r = 255, g = 255, b = 0;
Color c = new Color(r, g, b);

Such a constructor creates a color based on the specified intensities
of red, green, and blue, as a value in the range of 0 to 255 for each.

E

E-26 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Fonts

You can specify the font used for displaying text in a component by
using the method setFont . The argument to this method should
be an instance of the java.awt.Font class.

No constants are defined for fonts, but you can create a font by
specifying the name of the font, the style, and the point size.

Font f = new Font(“TimesRoman”, Font.PLAIN, 14);

Valid font names include:

● Dialog

● DialogInput

● Monospaced

● Serif

● SansSerif

● Symbol

Font style constants, which are actually int values, are:

● Font.BOLD

● Font.ITALIC

● Font.PLAIN

● Font.BOLD + Font.ITALIC

Point sizes should be specified using an int value.

E

The AWT Component Library E-27
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Printing

Printing is handled in a fashion that closely parallels screen
display. A special kind of java.awt.Graphics object is obtained
so that any draw instructions sent to that graphic is actually
destined for the printer.

The printing system allows the use of local printer control
conventions, so that the user will see a printer selection dialog box
when a print operation is started. The user can then choose
options, such as paper size, print quality, and printer to use.

Frame f = new Frame("Print test");
Toolkit t = f.getToolkit();
PrintJob job = t.getPrintJob(f, "MyPrintJob", null);
Graphics g = job.getGraphics();

If the user cancels a print request, getPrintJob returns null.

These lines create a Graphics that is connected to the printer of
the user’s choice. Obtain a new Graphics for each page to be
printed. You can use any of the Graphics class drawing methods
to write to the printer. Alternatively, as shown here, you can ask a
component to draw itself onto the Graphics .

f.printAll(g);

The print method asks a component to draw itself in this way,
but it only relates to the component that it has been called for. In
the case of a container, such as here, you can use the printAll
method to cause the container and all the components that it
contains to be drawn onto the printer.

g.dispose();
job.end();

Once you have created a page of output, use the dispose method
to submit that page to the printer.

When you have completed the job, call the end method on the
print job object. This indicates that the print job is completed and
allows the printer spooling system to run the job.

F-1
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ObjectSerialization F

The Object Serialization API enables developers to write Java software code that
creates persistent storage for objects.

Additional Resources

Parts of this appendix have been borrowed in whole or in part from:
“Java Object Serialization Specification, Revision 1.2, December 2,
1996.” Available at:

http://www.javasoft.com /

F

F-2 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Introduction

Almost every application requires some way of storing data. Most
applications use a database for the storage or persistence of data.
However, databases are not typically used to store objects,
particularly Java software objects. What is required is a way to
keep the state of an object in such a way that the object can be
stored easily and retrieved into its previous (stored) state.

These are the goals of the Java Object Serialization API—to provide
a simple and transparent means of persisting objects.

Object serialization is fundamentally a single stream of data that
represents the state of an object. The API provides methods to
produce and consume the stream of data. Objects that need to act
as containers to be serialized implement an interface that allows
the contents of the object to be saved or restored in the single
stream. These are the java.io.ObjectOutput and
java.io.ObjectInput interfaces.

Object Serialization: The Old Way

To create a persistent storage mechanism without using the Object
Serialization API:

● Create a flexible mechanism for naming the objects you wanted
to store—some kind of code that identifies the kind of object to
be stored.

● Create a standard method for reading the value of every field
in the object and putting the fields onto the storage stream in a
canonical fashion.

● Create a method to access the name and storage method for all
of the objects referenced by the object that you are persisting.

● Create a mechanism for determining what field types are not
candidates for persistence.

F

Object Serialization F-3
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Object Serialization: The New Way

The java.io.Serializable interface was added after JDK1.0, as
well as changes to the Java Virtual Machine to support the ability
to save an object to a stream.

Saving an object to some type of permanent storage is called
persistence. An object is said to be persistent when you can store that
object on disk or tape, or send it to another machine to be stored in
its memory or on disk.

The java.io.Serializable interface has no methods and only
serves as a "marker" that indicates that the class that implements
the interface can be considered for serialization. Objects from
classes that do not implement Java.io.Serializable cannot be
serialized.

F

F-4 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Serialization Architecture

java.io Package

The Serialization API is built upon two interfaces,
java.io.ObjectOutput and java.io.ObjectInput . These
interfaces are abstract stream-based interfaces designed to put or
get objects onto an I/O stream. See Figure F-1.

Figure F-1 Interfaces and Classes From the Serialization API

java.io.DataOutput

ObjectOutput

java.io.OutputStream

ObjectOutputStream

ObjectInput

java.io.InputStream

ObjectInputStream

java.io.DataInput

java.lang.Object

java.io.Serializable

java.io.Externalizable

Legend
Class

Interface

Abstract class

Extends
Implements

ObjectStreamConstants

F

Object Serialization F-5
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

ObjectOutput Interface

The ObjectOutput interface extends DataOutput to write
primitives. The important method in the interface is the
writeObject method, which is used to write an object. Exceptions
can occur while accessing the object or its fields, or when
attempting to write to the storage stream.

package java.io;

public interface ObjectOutput extends DataOutput {

public void writeObject(Object obj)
throws IOException;

public void write(byte b[]) throws IOException;

public void write(byte b[], int off, int len)
throws IOException;

public void flush() throws IOException;

public void close() throws IOException;
}

ObjectInput Interface

The ObjectInput interface is used for reading from the storage
stream and returning an object. Exceptions are thrown when
attempting to read the storage stream, or if the class name of the
serialized object cannot be found.

package java.io;
public interface ObjectInput extends DataInput {

public Object readObject()
throws ClassNotFoundException, IOException;

public int read() throws IOException;

public int read(byte b[]) throws IOException;

public int read(byte b[], int off, int len)
throws IOException;

F

F-6 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

public long skip(long n) throws IOException;

public int available() throws IOException;

public void close() throws IOException;
}

Serializable Interface

The Serializable interface is used to identify classes that can be
serialized:

package java.io;

public interface Serializable {};

Any class can be serialized as long as the class meets the following
criteria:

● The class (or a class in the class hierarchy of this class) must
implement java.io.Serializable .

● Fields that should not be serialized must be marked with the
transient keyword. These include classes, such as
java.io.FileInputStream , java.io.FileOutputStream ,
and java.lang.Threads . If these fields are not marked
transient , an attempt to call the writeObject method will
throw a NotSerializableException .

What Gets Serialized

All of the fields (data) of a Serializable object are written to the
storage stream. This includes primitive types, arrays, and
references to other objects. Only the data (and class name) of the
referenced objects is stored.

Static fields are not serialized.

The field accessor (private , protected , and public) has no effect
on the field being serialized; you as the developer should mark
your private fields as private transient .

F

Object Serialization F-7
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

Object Graphs

When an object is serialized, only the data of the object is preserved
– class methods and constructors are not part of the serialized
stream. When a data variable is an object, the data members of that
object are serialized also. The tree, or structure of an object’s data,
including these subobjects, constitutes the object graph.

Some object classes are not serializable because the nature of the
data they represent is constantly changing; for example, streams,
such as java.io.FileInputStream and
java.io.FileOutputStream ; and java.lang.Thread . If a
serializable object contains a reference to a non-serializable
element, the entire serialization operation fails.

If the object graph contains a non-serializable object reference, the
object can still be serialized if the reference is marked with the
transient keyword.

public class MyClass implements Serializable {
public transient Thread myThread;
private String customerID;
private int total;

The field access modifiers (public, protected, private) have
no affect on the data field being serialized, and data is written to
the stream in byte format, with Strings represented as UTF
characters. Using the transient keyword prevents the data from
being serialized.

public class MyClass implements Serializable {
public transient Thread myThread;
private transient String customerID;
private int total;

Writing and Reading an Object Stream

Writing

Writing and reading an object to a file stream is a simple process.
Consider the following code fragment that sends an instance of a
java.util.Date object to a file:

1 Date d = new Date();

F

F-8 Java Programming Language Workshop
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

2 FileOutputStream f = new
FileOutputStream("date.ser");
3 ObjectOutputStream s = new ObjectOutputStream (f);
4 s.writeObject (d);
5 s.close ();

Reading

Reading the object is as simple as writing it, with one caveat—the
readObject method returns the stream as an Object type, and it
must be cast to the appropriate class name before methods on that
class can be executed.

1 Date d = null;
2 FileInputStream f = new FileInputStream
("date.ser");
3 ObjectInputStream s = new ObjectInputStream (f);
4 d = (Date)s.readObject ();
5 System.out.println ("Date serialized at: "+ d);

Serialization Versus Externalization

Classes that implement the Serializable interface automatically
have the capability to save and restore the state of the object.
Classes can also implement the Externalizable interface, in
which case the responsibility of the storage and retrieval of the
object’s state become the responsibility of the object itself.

package java.io;

public interface Externalizable extends Serializable {

public void writeExternal (ObjectOutput out)
throws IOException;

public void readExternal (ObjectInput in)
throws IOException, ClassNotFoundException;

}

Externalizable objects must:

● Implement the java.io.Externalizable interface

F

Object Serialization F-9
Copyright 2000 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services February 2000, Revision B.2

● Implement a writeExternal method to save the state of the
object; the method must explicitly coordinate with the
supertype to save its state

● Implement a readExternal method to read the data on the
stream and restore the state of the object; the method must
explicitly coordinate with the supertype to save its state

● Be responsible for the externally defined format; the
writeExternal and readExternal methods are solely
responsible for this format

Externalizable classes mean that the class is serializable, but you
must provide the methods for reading and writing objects; none
are provided by default.

Please

Recycle

Copyright 2000 Sun Microsystems Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la
copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune
forme, par quelque moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du systèmes Berkeley 4.3 BSD licenciés par l’Université de Californie.
UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

Sun, Sun Microsystems, le logo Sun,Solaris, OpenWindows, Java, JavaSoft, et HotJava sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays.

Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marques déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company,
Ltd.

L’interfaces d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses
utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour larecherche et le développement du concept
des interfaces d’utilisation visuelle ou graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive
de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent
en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

L’accord du gouvernement amér cain est requis avant l’exportation du produit.

Le système X Window est un produit de X Consortium, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA
LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE
MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

